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Comprehensive analysis of a
novel signature incorporating
lipid metabolism and
immune-related genes for
assessing prognosis and
immune landscape in
lung adenocarcinoma
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Yu Tang3, Rongzhong Xu1, Bo Zhang1, Jianchun Wu1*,
Zhihong Fang1* and Yan Li1*

1Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine,
Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2Information Center,
Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 3School of Basic Medical Sciences, Fudan University,
Shanghai, China
Background: As the crosstalk between metabolism and antitumor immunity

continues to be unraveled, we aim to develop a prognostic gene signature that

integrates lipid metabolism and immune features for patients with lung

adenocarcinoma (LUAD).

Methods: First, differentially expressed genes (DEGs) related to lipid

metabolism in LUAD were detected, and subgroups of LUAD patients were

identified via the unsupervised clustering method. Based on lipid metabolism

and immune-related DEGs, variables were determined by the univariate Cox

and LASSO regression, and a prognostic signature was established. The

prognostic value of the signature was evaluated by the Kaplan–Meier

method, time-dependent ROC, and univariate and multivariate analyses. Five

independent GEO datasets were employed for external validation. Gene set

enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune

infiltration analysis were performed to investigate the underlying mechanisms.

The sensitivity to common chemotherapeutic drugs was estimated based on

the GDSC database. Finally, we selected PSMC1 involved in the signature, which

has not been reported in LUAD, for further experimental validation.

Results: LUAD patients with different lipid metabolism patterns exhibited

significant differences in overall survival and immune infiltration levels. The

prognostic signature incorporated 10 genes and stratified patients into high-

and low-risk groups by median value splitting. The areas under the ROC curves

were 0.69 (1-year), 0.72 (3-year), 0.74 (5-year), and 0.74 (10-year). The Kaplan–
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Meier survival analysis revealed a significantly poorer overall survival in the high-risk

group in the TCGA cohort (p < 0.001). In addition, both univariate and multivariate Cox

regression analyses indicated that the prognostic model was the individual factor

affecting the overall survival of LUAD patients. Through GSEA and GSVA, we found

that tumor progression and inflammatory and immune-related pathways were enriched

in the high-risk group. Additionally, patients with high-risk scores showed higher

sensitivity to chemotherapeutic drugs. The in vitro experiments further confirmed that

PSMC1 could promote the proliferation and migration of LUAD cells.

Conclusions: We developed and validated a novel signature incorporating both lipid

metabolism and immune-related genes for all-stage LUAD patients. This signature can

be applied not only for survival prediction but also for guiding personalized

chemotherapy and immunotherapy regimens.
KEYWORDS

bioinformatics, lung adenocarcinoma, lipid metabolism, immune, signature, prognosis, TCGA
database, GEO database
Introduction

As the leading cause of cancer-related mortality among all

malignant tumors, lung cancer still contributes to a heavy

burden not only for patients but also for all of society (1, 2).

In China, the high prevalence of smoking and the risk of being

exposed to second-hand smoke make the prevention and

treatment of lung cancer grim (3). Lung adenocarcinoma

(LUAD) is the dominant pathological category of non-small-

cell lung cancer, and studies on the potential therapeutic

targets of LUAD are constantly expanding. In addition to the

common EGFR, ALK, and ROS1 inhibitors that are widely

used, some small molecular drugs targeting rare driver

mutations in LUAD such as BRAF, MET, RET, and NTRK,

have also shown promise in clinical practice. However,

resistance to targeted agents and distant metastasis remain

the major causes of treatment failure. Therefore, there is an

urgent need to seek potential therapeutic targets and

prognostic markers to predict survival and guide the clinical

treatment of LUAD patients.

In recent years, metabolic reprogramming has been regarded

as one of the hallmarks of malignant tumors (4). Lipids are a

critical form of energy storage in the human body, and the close

association between lipid metabolic reprogramming and the

development of lung cancer has been gradually revealed (5). A

previous meta-analysis indicated that the risk of lung cancer

development is positively associated with serum levels of total

cholesterol, and negatively associated with total triglycerides (6).

In addition, some lipid-modifying drugs, such as simvastatin,

have been shown to inhibit the proliferation and metastasis of

lung cancer cells by suppressing intracellular cholesterol
02
synthesis, inducing cell cycle arrest and apoptosis, and

reversing resistance to tyrosine kinase inhibitors (7, 8).

Therefore, the regulation of lipid metabolism has been

identified as a potential therapeutic target to improve

prognosis in patients with lung cancer. Moreover, several

studies have tried to construct prognostic models for lung

cancer patients based on lipid metabolism-related genes. For

example, Zhu’s study focused on early-stage LUAD patients

using lipid metabolism-related genes to establish prognostic

models and validated them according to external Gene

Expression Omnibus (GEO) databases (9). Another study

developed a signature based on serum lipid profiles to

distinguish patients with early-stage lung cancer from healthy

individuals, thereby achieving early diagnosis and treatment

(10). Nevertheless, the aforementioned studies both focused on

the development of diagnostic and prognostic models for early-

stage LUAD. Moreover, the validity and robustness of the

constructed models with a single feature are relatively poorer

than those of multifeature models. Hence, deeper insight into a

multifeature signature model for LUAD patients and its

prognostic implications is needed.

Emerging studies have revealed that lipid metabolic

reprogramming is not limited to tumor cells, as it is also

closely associated with the function of immune cells

infiltrating the tumor microenvironment. For instance, studies

have demonstrated that enhanced lipid uptake and lipid

oxidative phosphorylation are critical for tumor-associated

macrophage polarization, and the lipid uptake-related

molecule CD36 has been identified as a potential tumor

marker (11). Similarly, the lipid metabolism pattern of tumor-

infiltrating myeloid-derived suppressor cells (T-MDSCs) also
frontiersin.org
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shifts to fatty acid uptake and oxidation, thereby mediating the

immunosuppressive function of T-MDSCs via the STAT3 and

STAT5 signaling pathways (12, 13). In addition, a recent study

revealed a close association between the degree of lipid

metabolism signaling-related mutations and the efficacy of

immune checkpoint inhibitors in lung cancer patients (14).

Therefore, we attempted to combine lipid metabolism-related

and immune-related genes to establish a novel prognostic model

for LUAD patients according to the interactions between lipid

metabolism and antitumor immunity.

In the present study, we first identified subgroups of LUAD

patients based on different lipid metabolism patterns in an

unsupervised clustering approach based on The Cancer

Genome Atlas (TCGA) cohort (https://www.cancer.gov/tcga/).

The differences in overall survival and immune infiltration levels

between different subgroups were compared. Then, lipid

metabolism-related and immune-related differentially

expressed genes (DEGs) were included for the establishment

of the signature model by univariate Cox regression and least

absolute shrinkage and selection operator (LASSO) regression.

Five independent GEO datasets (15) were screened out and

employed for external validation. In addition, functional

enrichment analysis and somatic mutation analysis were

performed to investigate the potential mechanisms of survival

differences in different risk populations. Finally, we also

evaluated the correlation between risk scores and immune

infiltration levels and chemotherapeutic drug sensitivity.

Therefore, our study provides novel insight into individualized

treatment strategies and the prognostic prediction of LUAD
Frontiers in Immunology 03
patients from the perspective of immune-metabolic crosstalk. A

flow chart summarizing the present study is shown in Figure 1.
Materials and methods

Data acquisition and preprocessing

The RNA-sequencing data and clinical information of the

lung adenocarcinoma (LUAD) patients were downloaded from

the TCGA data portal (https://www.cancer.gov/tcga/) and UCSC

Xena browser (https://xenabrowser.net/). All of the Fragments

Per Kilobase Million (FPKM) transcriptome data were log-

transformed and converted to transcripts per million (TPM)

before analysis.

For external validation, five independent datasets

[GSE13213 (16), GSE31210 (17, 18), GSE37745 (19),

GSE68465 (20), GSE72094 (21)] along with clinical

information were downloaded from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). The following inclusion

criteria were applied for screening the qualified GEO datasets:

(1) achievable datasets with complete gene expression profiles

and survival information limited to LUAD patients; (2) the raw

gene expression data could be downloaded in CEL files and

included the corresponding probe information; and (3) the total

number of samples was no less than 50. The raw matrix data

were log2-transformed, quantile normalized, and averaged over

duplicate genes using the ‘limma’ package in R software. The

clinical characteristics of LUAD patients in the training datasets
FIGURE 1

The flow diagram of the present study.
frontiersin.org

https://www.cancer.gov/tcga/
https://www.cancer.gov/tcga/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.950001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.950001
(TCGA) and the validation datasets (GEO) are displayed in

Supplementary Table S1.
Identification of lipid metabolism-related
and immune-related differentially
expressed genes

The ‘limma’ R package was applied to perform differential

gene expression analysis between lung adenocarcinoma and

normal tissues in the TCGA dataset. The differentially

expressed genes (DEGs) with absolute fold change (|logFC|) >

1.5 and adjusted p value < 0.05 were selected. As for the genes

related to lipid metabolism, we included all of the genes in 34

lipid metabolism-related gene sets from the Molecular Signature

Database (MsigDB, https://www.gsea-msigdb.org/gsea/msigdb/)

(22) and took the intersection to obtain the final 1996 lipid

metabolism-related genes. The detailed information on the lipid

metabolism-related gene sets is provided in Supplementary

Table S2. In addition, we downloaded all of identified 2483

immune-relevant genes from the ImmPort database (https://

www.immport.org/) (23). After removing duplicated genes, we

finally obtained a total of 1793 immune-related genes. Then, by

taking the intersection of lipid metabolism-related and immune-

related genes with DEGs of LUAD, lipid metabolism-related and

immune-related DEGs were obtained for subsequent analysis.

The details of lipid metabolism-related and immune-related

genes are presented in Supplementary Table S3.
Unsupervised consensus clustering of
lipid metabolism-related differentially
expressed genes

To explore the prognostic impact of different lipid

metabolism patterns, we adopted the ‘ConsensusClusterPlus’ R

package to identify the subgroups of LUAD patients based on

lipid metabolism-related DEGs. In detail, the expression profiles

were clustered using a partition around medoids (PAM)

approach with the Euclidean distance metric and a

subsampling ratio of 0.8 for 1000 iterations. To ensure the

reproducibility of our approach, we arbitrarily set the number

of random seeds to 999999 in the ‘ConsensusClusterPlus’

package. Furthermore, the clustering reproducibility of the

consensus clustering method was also verified in the five

external GEO datasets. The optimal cluster number was

determined according to the clustering consistency, cumulative

distribution function (CDF) curve, the relative changes in the

area under the CDF curve, and Silhouette clustering index.

Survival curves for each cluster were analyzed with the

Kaplan–Meier method. In addition, we also utilized several

immune-related algorithms (‘immunedeconv’ R package) (24),

including xCell (25), quanTIseq (26), and MCPcounter (27), to
Frontiers in Immunology 04
analyze the immune cell infiltration patterns in the tumor

microenvironment, thus exploring the underlying causes of

survival differences.
Construction and validation of a
prognostic signature based on lipid
metabolism-related and
immune-related genes

For the close association between lipid metabolism and

immune infiltration patterns, we sought to construct and

validate the feasibility of combining lipid metabolism-related

and immune-related genes to construct a clinical prognostic

signature for LUAD patients. First, univariate Cox regression

(‘survival’ R package) was conducted based on lipid metabolism-

related and immune-related DEGs to screen the prognosis-

related genes in the TCGA training set. Then, the least

absolute shrinkage and selection operator (LASSO) regression

(‘glmnet’ R package) was further performed to narrow down the

candidate genes and establish the prognostic signature. The risk

score was calculated based on the linear combination of the

regression coefficient (b) derived from the LASSO regression

multiplied by gene expression levels. The specific calculation

formula for the risk score was as follows:

Risk Score =on
i=1Coefficient  bð Þi∗ xi

LUAD patients were categorized into low- and high-risk

groups according to the median risk score. Subsequently,

Kaplan–Meier survival curves (‘survminer’ and ‘survival’) and

time-dependent receiver operating characteristic (ROC) curves

(‘pROC’ R package) were plotted to assess the prognostic value

of the clinical model. For external validation, five independent

datasets from GEO (GSE13213, GSE31210, GSE37745,

GSE68465, GSE72094) were employed to verify the robustness

of the novel signature, and prognostic meta-analysis (‘meta’ and

‘forestplot’ R package) was conducted to comprehensively

evaluate the prognostic value based on a fixed-effects model.

We further compared the expression patterns of signature genes

between normal and LUAD tissues according to The Human

Protein Atlas database (HPA, https://www.proteinatlas.org/,

accession date: April 2022).
Comparison of clinical characteristics
and subgroup analysis based on the
prognostic signature model

To further assess the correlations between the prognostic

signature model and clinical characteristics of LUAD patients,

differences in risk scores for each clinical feature, including age,

T stage, N stage, M stage, pathological TNM stage, and primary

outcome, were compared using the Wilcoxon rank-sum test or
frontiersin.org
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Kruskal–Wallis test. Then, we also conducted subgroup analysis

according to pathological TNM stages, ages, and sexes to

evaluate the prognostic significance of the signature model.

Univariate and multivariate Cox regression analyses (‘survival’

R package) were also performed to identify prognostic factors

independently associated with the overall survival of

LUAD patients.
Construction and evaluation of a
predictive nomogram model for lung
adenocarcinoma patients

Based on the results of themultivariate Cox regression analysis,

we further constructed a predictive nomogram model (‘rms’ and

‘survival’Rpackage) for predicting the probability of 1-year, 3-year,

and 5-year overall survival for LUAD patients (28). Calibration

curves were generated to assess the accuracy of the nomogram. For

an ideal predictive model, the predictive results are expected to fall

on the 45-degree diagonal line of the calibration plot and with a

higher C-index in the Harrell concordance test. Decision curve

analysis (DCA) (29) was also performed tomeasure the net clinical

benefits of the nomogram model.
Mutation analysis based on the
prognostic signature model

The TCGA somatic mutation data of LUAD patients were

downloaded from the UCSC Xena browser (https://

xenabrowser.net/). The differences in somatic mutation data

between the high- and low-risk groups were analyzed and

presented in the form of waterfall charts (‘maftool’ R package).

Tumor mutation burden (TMB) is defined as the number of

tumor mutations per megabases in each tumor sample. The

corresponding TMB values were calculated by the ‘tmb’ function

in the ‘maftool’ R package and log-transformed for visualization.
Functional annotation and
enrichment analyses

Lipid metabolism-related DEGs were extracted for Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG)enrichment analyses (‘clusterProfiler’Rpackage).Gene set

enrichment analysis (GSEA) was performed to assess the potential

differences in biological functions between different risk groups, as

defined by the C2 (c2.cp.kegg.v7.4.symbols.gmt) subset retrieved

from the Molecular Signature Database (MsigDB, https://www.

gsea-msigdb.org/gsea/msigdb/) (22). For GSEA, terms with an

adjusted p value < 0.05 and a false discovery rate (FDR) < 0.25

were considered significant. Moreover, the gene set variation

analysis (GSVA) algorithm was applied based on 50 hallmark
Frontiers in Immunology 05
pathways described in the Molecular Signature Database to

identify enriched signaling pathways between the low-risk and

high-risk groups (‘GSVA’ R package) (30).
Tumor immune infiltration analysis

The Tumor Immune Estimation Resource algorithm (TIMER,

http://timer.cistrome.org/) was employed to estimate whether the

risk score was correlated with immune cell infiltration levels in the

LUAD tissues (31). We also applied the xCell algorithm (25) to

calculate the tumormicroenvironment scores, immune scores, and

stroma scores with the ‘immunedeconv’ R package (24). The DNA

methylation-based stemness scores (DNAss) and RNA-based

stemness scores (RNAss) of TCGA-LUAD patients were

retrieved from the UCSC Xena browser (http://xena.ucsc.edu/).

The immunophenoscore (IPS) of TCGA-LUAD patients was

downloaded from The Cancer Immunome Database (TCIA,

https://tcia.at/home) (32). The TIDE scores, dysfunction, and

exclusion scores were acquired from the Tumor Immune

Dysfunction and Exclusion website (TIDE, http://tide.dfci.

harvard.edu/) (33). In addition, the single-sample gene set

enrichment analysis (ssGSEA) (22) was performed to quantify

the relative immune cell infiltration levels and immune function

between the low- and high-risk groups (‘GSVA’ R package).
Drug sensitivity analysis

For the drug sensitivity analysis, we obtained the analyzed

dataset of six commonly used chemotherapeutic drugs

(cisplatin, docetaxel, paclitaxel, gemcitabine, vinorelbine,

and bleomycin) for lung cancer from the Genomics of

Drug Sensitivity in Cancer database (GDSC, https://www.

cancerrxgene.org/) (34). The ‘pRRophetic’ R package was

utilized to estimate the half inhibitory concentration (IC50)

values of each chemotherapeutic drug.
Cell lines and cell culture

A549 and H1299 cell lines were provided by Stem Cell Bank,

Chinese Academy of Sciences. The A549 and H1299 cells were

maintained in the DMEMmedium, containing 80 U/L penicillin

and 0.08 mg/mL streptomycin. 10% of fetal bovine serum was

also added to the medium. The cells were cultured in a

conventional incubator at 37°C in a 5% CO2 atmosphere.
Cell transfection

Small interfering RNA (siRNA) targeting human PSMC1,

and negative control siRNA (siNC) were purchased from
frontiersin.org
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Shanghai GenePharma (Shanghai, China). The transient

transfection of siRNA was performed according to the

manufacturer’s instructions. First, A549 and H1299 cells were

seeded the day before transfection at 30-50% confluency. siRNA

duplexes were diluted into reduced serum media Opti-MEM®.

Then, add transfection reagent lipo 3000 (Invitrogen) into the

siRNA solution, vortex-mixed, and incubated for 5 min at room

temperature. Finally, lipo 3000-siRNA complexes were added in

a fresh medium to incubate cells at 37 °C. 24 h later, the

transfected cells were collected for further experiments. The

knockdown efficiency of siRNA was tested by quantitative real-

time PCR assay.
Real-time qPCR assay

The quantitative real-time PCR assay was designed to

validate the efficiency of transfection. Firstly, extract total RNA

from the samples with Trizol reagent. By the process of reverse

transcription, the extracted RNAs were converted to cDNA.

PCR amplification was carried out according to the following

steps: the denaturation step lasted for 10 seconds at 95°C, the

annealing step lasted for 20 seconds at 60°C, the extension step

lasted for 30 seconds at 72°C, and 40 cycles were carried out in

total. The primer sequences were designed as followed: PSMC1:

F: 5’-CAGTAGCAAACCAAACCTCAGC-3’, R: 5’-TGGCGT

CAATTTCATCAATAAAC-3’; GAPDH: F: 5’-GGAGCGAGA

TCCCTCCAAAAT-3’, 5’-GGCTGTTGTCATACTTCTCAT

GG-3’. The expression level of the GAPDH was taken as

endogenous control, and the 2-△△Ct value was used to qualify

the relative gene expression levels.
Cell proliferation assay

Cell Counting Kit-8 (CCK-8, Dojindo, Japan) was applied to

assess cell proliferation ability as instructed by the manufacturer.

Cells were plated into 24-well plates (6×104 cells/well) for

indicated time points. 10 mL CCK-8 solution was added to

each well followed by incubation for another 1 hour. Lastly,

the absorbance was measured at 450 nm with a microplate

reader (Bio-Gene, China).
Wound healing assay

A wound healing assay was carried out to assess cell

migration. Briefly, monolayer cells were wounded by scratching

the surface of each well as uniformly as possible with a sterile

200 μL pipette tip. The wells were then rinsed with phosphate-

buffered saline three times and were incubated at 37°C for 48 h.

Images of the initial wound, and the movement of cells into the

scratched area, were captured using an inverted microscope
Frontiers in Immunology 06
equipped with a digital imaging system (Leica Microsystems

GmbH, Wetzlar, Germany).
Transwell migration assay

The 24-well transwell chambers (BD Biosciences, San Jose,

CA, USA) with 8-mm pores were used to assess cell migration.

Cells (1×104 cells/well) in serum-free medium were seeded into

the upper chamber. The complete growth medium was added to

the lower chamber as a chemoattractant. After culturing for 24

and 48 h at 37°C, noninvasive cells in the upper chamber were

removed with cotton swabs carefully, and invasive cells on the

lower membrane surface were fixed in methanol and stained

with 0.1% crystal violet (Sigma-Aldrich) for 15 min. Finally, the

invasive cells were photographed and counted under a

microscope (Nikon, Tokyo, Japan).
Statistical analysis

R software 4.1.3 was used for data analysis and visualization.

Comparisons between two groups were evaluated by the

Wilcoxon rank-sum test, while the Kruskal–Wallis test was

conducted to compare more than two groups. Categorical

variables were compared using Fisher’s exact or Chi-square

tests. The log-rank test was used to determine the difference

between survival curves. Correlations between two variables

were tested with the Spearman correlation test. All p values <

0.05 were considered statistically significant.
Results

Identification and exploration of lipid
metabolism-related differentially
expressed genes

To investigate the prognostic significance of lipid

metabolism-related genes in LUAD patients, we first obtained

the differentially expressed genes (DEGs) by comparing LUAD

and normal lung tissues based on the TCGA database

(Supplementary Table S4). Then, a total of 247 common

DEGs were detected as lipid metabolism-related DEGs

through the intersection of DEGs of LUAD and genes

associated with lipid metabolism (Supplementary Table S5).

The biological processes and molecular function in GO

annotation indicated that the DEGs were significantly enriched

in lipid localization, lipid transportation, and lipid metabolism-

related receptor binding, and the cell component was primarily

located in cell membranes that were rich in lipids (Figure 2A). In

addition, KEGG pathway analysis predicted that lipid

metabolism-related DEGs were enriched in the pathways of
frontiersin.org
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glycerophospholipid metabolism, ether lipid metabolism,

choline metabolism, and ABC transporters (Figure 2B).

Unsupervised consensus clustering analysis was further

carried out to identify clusters of LUAD patients with distinct

lipid metabolism patterns (Figures 2C–F, Figure S1). The results

indicated that LUAD patients were divided into two clusters, and

a significant overall survival difference was observed between the

two clusters (hazard ratio (HR): 0.68, 95% confidence interval

(CI): 0.51-0.91, log-rank p value = 0.01) (Figure 2G). In addition,

similar consensus clustering patterns were also determined in

the five GEO datasets (Figure S2), and the consensus clustering

algorithm also well distinguished LUAD patients in the high-

and low-risk groups from healthy controls (Figure S3).

To investigate the potential causes of survival differences, we

estimated the immune cell infiltration in LUAD tissues under

different lipid metabolism patterns based on the xCell,

quanTIseq, and MCPcounter algorithms. The results showed

that the degree of immune infiltration differed obviously

between different clusters, especially in the T-cell subsets, B

cells, macrophages, and granulocytes (Figure 2H). These results
Frontiers in Immunology 07
suggested that the lipid metabolism patterns were closely related

to the immune infiltration and prognosis of LUAD patients,

which prompted us to combine the immune-related and lipid

metabo l i sm-re la ted genes to cons truc t a c l in i ca l

prognostic model.
Construction of a prognostic signature
incorporating immune-related and lipid
metabolism-related differentially
expressed genes

First, 247 lipid metabolism-related DEGs and 188 immune-

related DEGs were detected by Venn diagram intersection

(Figure 3A). Before constructing the predictive model, we

performed a univariate Cox regression analysis to assess the

prognostic value of these lipid metabolism-related or immune-

related DEGs, and a total of 82 candidate genes with prognostic

values were screened out (Figure S4). By using LASSO regression

analysis, ten genes, ADRB2, P2RX1, MIF, SLC2A1, F2RL1,
A B

D

E F

G

HC

FIGURE 2

Exploration of lipid metabolism-related DEGs. Gene ontology (GO) functional annotation (A) and KEGG pathway enrichment analysis (B) of lipid
metabolism-associated DEGs. (C) Heatmap of unsupervised consensus clustering. (D) The plot of changes in the relative area under the
cumulative distribution function (CDF) curve from k = 2 to 7. (E) Consensus CDF curve plot. (F) The tracking plot of the clustering samples.
(G) Kaplan–Meier curves for the overall survival of LUAD patients in different clusters. (H) Comparison of immune cell infiltration patterns
between different clusters performed by the xCell, quanTIseq, and MCPcounter algorithms.
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PSMC1, LGR4, ADM, TYMS, and GJB3, were selected as

variables in the prognostic signature (Figures 3B, C).

According to the median value of the signature, LUAD

patients were stratified into high-risk (n = 248) and low-risk

(n = 249) groups. The baseline characteristics of LUAD patients

according to the predictive model are displayed in Table 1.

Compared with the low-risk group, the proportion of LUAD

patients who died was significantly higher in the high-risk group

(Figure 3D). To evaluate the predictive accuracy of the

prognostic signature, time-dependent ROC and Kaplan–Meier

curves were plotted and compared. The results showed that the

areas under the ROC curves (AUCs) for 1-, 3-, 5-, and 10-year

overall survival were 0.69, 0.72, 0.74, and 0.74, respectively, in

the TCGA cohort (Figure 3E). Kaplan–Meier analysis confirmed

that LUAD patients in the low-risk group had significantly

longer overall survival than those in the high-risk group (HR:

0.46, 95% CI: 0.35-0.62, log-rank p value < 0.001) (Figure 3F).

By plotting the bar charts of variables (Figure 4A) and the

forest plot of univariate Cox regression analysis (Figure 4B), we

found that two genes (ADRB2 and P2RX1) involved in the

prognostic signature were protective factors (HR < 1), while

the other eight genes were risk factors (HR > 1) for LUAD

patients. The correlation matrix revealed that the expression

levels of the two protective genes showed a significant positive
Frontiers in Immunology 08
correlation with each other, but a negative correlation with the

other eight risk genes in expression levels (Figure 4C). To further

validate the expression patterns of the signature genes in LUAD

patients, we have compared the protein expression profiles

determined by immunohistochemistry staining which are

available in the HPA database. The results indicated that seven

risk genes (TYMS, ADM, LGR4, PSMC1, F2RL1, SLC2A1, and

MIF) of the signature were overexpressed in the LUAD tissues

compared to the normal tissues (Figure 4D).
Validation of the prognostic signature
based on the GEO database

To further confirm the robustness of the prognostic

signature, five GEO datasets were screened and enrolled for

external validation cohorts. The risk scores of each GEO dataset

were calculated, and LUAD patients were divided into high-risk

and low-risk groups according to the median cutoff value of risk

scores. The survival analysis of the five validation datasets all

demonstrated that LUAD patients in the high-risk group had a

significantly poorer overall survival than those in the low-risk

groups (GSE13213: p = 0.003, GSE31210: p < 0.001, GSE37745: p

< 0.001, GSE68465: p < 0.001, GSE72094: p < 0.001). The time-
A B
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FIGURE 3

Construction of a prognostic model for LUAD patients based on immune-related and lipid metabolism-related DEGs. (A) The Venn diagram
displays the intersection of common genes among LUAD-related DEGs and lipid metabolism-related and immune-related genes. (B) The LASSO
regression algorithm was used to select the optimal variable (l) with a 10-fold cross-validation method. (C) The solution path was plotted
according to coefficients against the L1 norm. (D) The distribution of risk score, survival status, and the expression levels of coefficients in the
prognostic signature. (E) The time-dependent ROC curves for the prognostic signature in the TCGA cohort. (F) The overall survival curves of
LUAD patients with high- and low-risk scores were plotted based on the prognostic signature.
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dependent ROC curves also indicated similar results to those of

the TCGA training dataset (Figures S5A–E). Moreover, we

performed a prognostic meta-analysis combining statistical

outcomes from both the training and validation datasets, and

the results showed that the clinical predictive signature was an

independent prognostic factor for LUAD patients (HR: 0.44,

95% CI: 0.38-0.52, p value < 0.001), as shown in Figure S5F.
Correlation analysis between the
prognostic signature and clinical
characteristics of LUAD patients

To understand the clinical relevance and prognostic value of

the signature, we first plotted survival curves to evaluate the

prognostic value of each gene involved in the predictive

signature. Through the log-rank test, patients in the high ADM,
Frontiers in Immunology 09
F2RL1,GJB3, LGR4,MIF, PSMC1, SLC2A1, and TYMS expression

groups had worse overall survival outcomes than those in the low

expression groups (p < 0.05). In contrast, LUAD patients with

high expression of ADRB2 and P2RX1 had significantly longer

overall survival than those in the low-expression group (p < 0.05),

as shown in Figure 5A. In addition, subgroup analysis based on

clinical features suggested that the levels of risk score varied

significantly among the pathological stage (Stage II and Stage III

and Stage IV vs. Stage I, p < 0.05), T stage (T2 and T3 vs. T1, p <

0.05), M stage (M1 vs. M0, p < 0.05), N stage (N1 and N2 vs. N0, p

< 0.05), and primary outcome (CR+PR vs. SD+PD, p < 0.05), as

shown in Figure 5B.

To further explore the predictive value of the prognostic

signature, we conducted a subgroup analysis of LUAD patients

in the high- and low-risk groups based on different clinical

features. Similar to the results in the training and validation

cohorts, LUAD patients in the high-risk group with different
TABLE 1 Baseline characteristics and comparison of LUAD patients divided by the prognostic model.

Characteristic levels Low-risk High-risk p Method
n 249 248

event, n (%) Alive 181 (72.7%) 136 (54.8%) < 0.001 Chi-square

Dead 68 (27.3%) 112 (45.2%)

Age, n (%) <65 103 (41.4%) 111 (44.8%) 0.501 Chi-square

≥65 146 (58.6%) 137 (55.2%)

T Stage, n (%) T1 104 (41.8%) 62 (25.0%) < 0.001 Fisher’s test

T2 121 (48.6%) 146 (58.9%)

T3 13 (5.2%) 30 (12.1%)

T4 9 (3.6%) 9 (3.6%)

Tx 2 (0.8%) 1 (0.4%)

N Stage, n (%) N0 178 (71.5%) 143 (57.7%) 0.002 Fisher’s test

N1 37 (14.9%) 57 (23.0%)

N2 25 (10.0%) 44 (17.8%)

N3 1 (0.4%) 1 (0.4%)

Nx 8 (3.2%) 3 (1.2%)

M Stage, n (%) M0 239 (96.0%) 233 (94.0%) 0.256 Fisher’s test

M1 9 (3.6%) 15 (6.0%)

Mx 1 (0.4%) 0 (0%)

Stage, n (%) Stage I 155 (62.2%) 112 (45.2%) < 0.001 Fisher’s test

Stage II 54 (21.7%) 69 (27.8%)

Stage III 29 (11.6%) 52 (21.0%)

Stage IV 10 (4.0%) 15 (6.0%)

Unknown 1 (0.4%) 0 (0%)

Gender, n (%) Female 145 (58.2%) 124 (50.0%) 0.080 Chi-square

Male 104 (41.8%) 124 (50.0%)

Outcome, n (%) CR 168 (67.5%) 138 (55.6%) 0.021 Fisher’s test

PD 26 (10.4%) 42 (16.9%)

PR 4 (1.6%) 1 (0.4%)

SD 18 (7.2%) 19 (7.7%)

Unknown 33 (13.3%) 48 (19.4%)

time, median (IQR) 724 (476, 1268) 596.5 (332.25, 945.5) < 0.001 Wilcoxon
fron
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clinical features all exhibited poorer survival than those in the

low-risk group. Moreover, time-dependent ROC curves

indicated that the prognostic signature had a comparable

predictive ability at 1, 3, and 5 years for patients of different

ages (Figures 6A, B). Furthermore, it performed better in

predicting survival for males (Figures 6C, D) and patients with

early-stage disease (Figures 6E, F).
Construction and evaluation of a
nomogram for survival prediction in
LUAD patients

Toestablish aprognostic nomogram forpredicting the survival of

LUADpatients, univariate andmultivariateCoxanalyseswere carried

out using clinical features and risk scores. Univariate Cox regression

indicated that pathological stage, T stage, N stage, M stage, primary

outcome, and risk score were closely correlated with the overall

survival of LUAD patients. Further multivariate analysis confirmed

that the primary outcome and risk score were independent factors

affecting the prognosis of LUAD patients (Table 2).

Subsequently, a nomogram incorporating independent

factors was established for predicting the 1-year, 3-year, and 5-

year overall survival (Figure 7A). Further analyses of the
Frontiers in Immunology 10
performance of the nomogram model showed that the C-index

was 0.726, and the calibration curves fit well with the ideal

diagonal line. These findings indicate good discrimination of the

model (Figure 7B). Decision curve analysis also demonstrated

that compared with the TNM stage or prognostic signature, the

nomogram model had better performance for predicting the 1-

year, 3-year, and 5-year overall survival of LUAD patients

(Figures 7C–E). In addition, we also performed a horizontal

comparison of the C-indices of nomogram models based on the

TCGA-LUAD database in other similar studies. The results

indicated that our study exhibits certain advantages in the

consistency of model fitting compared with previously

reported models constructed with a single characteristic, as

shown in Table 3.
Mutation analysis based on the
prognostic signature

Waterfall plots were used to display the type and frequency of

somaticmutations in the high-risk and low-risk groups. These data

suggested that the overall levels of tumor mutation burden were

significantly higher in thehigh-riskgroup than those in the low-risk

group (Figure 8 and Figure S6A). In addition, compared with the
A B
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C

FIGURE 4

(A) The bar charts display the variables and corresponding coefficients in the prognostic signature. (B) The forest plot shows the results of
hazard ratios and 95% confidence intervals of signature genes from the univariate Cox regression analysis. (C) The correlation matrix illustrates
the correlations between genes involved in the prognostic signature. (D) Representative immunohistochemical staining images of TYMS
(antibody HPA074922, 10×), ADM (antibody CAB016075, 10×), LGR4 (antibody HPA030267, 10×), PSMC1 (antibody HPA016885, 10×), F2RL1
(antibody CAB012989, 10×), SLC2A1 (antibody CAB002759, 10×), and MIF (antibody CAB005284, 10×) in normal and LUAD tissues are retrieved
from The Human Protein Atlas database (HPA, https://www.proteinatlas.org/, accession date: April 2022). It should be noted that the
immunohistochemistry staining of ADRB2, P2RX1, and GJB3 were absent from the HPA database.
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low-risk group, themost frequentlymutated genes,TP53 andTTN,

had a significantly higher frequency of mutations in the high-risk

group. The other eight LUAD-mutated genes (MUC16, CSMD3,

RYR2, LRP1B, ZFHX4, USH2A, KRAS, and XIRP2) also showed

various degrees of increasing trends (Figure 8).
Functional enrichment analysis

To gain insight into the underlying mechanisms of the survival

difference, gene set enrichment analysis (GSEA)was performed. The

results revealed that lipid metabolism-related pathways, including

ether lipid metabolism and glycerophospholipid metabolism, were

mainly enriched in the low-risk group (Figures 9A, B). Moreover,

immune-related pathways, including the cell cycle, major

histocompatibility complex (MHC) class II antigen presentation,

Toll-like receptor, and natural killer cell-mediated cytotoxicity, were

mainly enriched in the high-risk group (Figures 9C–F).

To further distinguish the differences in biological behaviors

between the high-risk and low-risk groups of LUAD patients, gene

set variation analysis (GSVA) was carried out. The results

demonstrated that pathways associated with tumor progressions,

such as glycolysis, the G2/M checkpoint, Myc targets, PI3K-AKT-

mTOR, DNA repair, hypoxia, and epithelial-mesenchymal

transition, were mainly enriched in the high-risk group of LUAD
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patients. Moreover, inflammatory and immune-related signaling

pathways, including TNF-a, TGF-b, and interferon-g, were also

enriched in the high-risk group. In contrast, metabolism-related

pathways, such as bile acid metabolism, myogenesis metabolism,

and heme metabolism, were significantly enriched in the low-risk

groups (Figures S7A, B).
Immune infiltration analysis based on the
prognostic signature

Since a close association between the prognostic signature and

immune responsewas found in the functional enrichment analysis,

we further investigated the correlation between the risk scores and

infiltrated immunecells.The results of theTIMERdatabase showed

that the risk scorewasnegativelycorrelatedwithBcells (r=-0.431,p

< 0.001), CD+
4 T cells (r = -0.196, p < 0.001), and CD+

8 T cells (r =

-0.093, p= 0.037), as shown inFigure 10A. Comparedwith the low-

risk group, the high-risk group displayed substantially lower IPS

scores and markedly higher TIDE scores, dysfunction scores, and

exclusion scores (p < 0.001), which indicate poorer efficacy of

immune checkpoint blockade therapy (Figures 10B,C, Figure S6B).

We next evaluated the tumor stemness between different risk

patterns using DNAss and RNAss. The results indicated that the

risk score was positively correlated with values of the DNAss (r =
A

B

FIGURE 5

(A) Survival analysis of genes involved in the prognostic signature. (B) Subgroup analysis based on the clinical characteristics of LUAD patients.
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0.138, p = 0.004) and RNAss (r = 0.313, p < 0.001), as shown in

Figures 10D, E. The DNAss and RNAss were also significantly

higher in the high-risk group (p < 0.05). In addition, a negative

correlation was observed between the risk score and immune score

(r = -0.297, p < 0.001), microenvironment score (r = -0.354, p <

0.001), and stroma score (r = -0.319, p < 0.001), and these findings

were consistentwith the comparisonof score values indifferent risk

groups (p < 0.001), as shown in Figures 10F–H.

Furthermore, the ssGSEA algorithm was carried out to assess

the differences in immune status between different risk groups. For

immune cell type analysis, LUAD patients in the low-risk group

were found to have higher infiltration of active dendritic cells

(aDCs), B cells, immature dendritic cells (iDCs), mast cells,

neutrophils, T helper cells, and tumor-infiltrating lymphocytes

(TILs) in the tumor microenvironment. In contrast, relatively low

infiltration of natural killer cells was detected in the low-risk group

(p < 0.05). In addition, the levels of antigen-presenting cell (APC)
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coinhibition,MHC class I, and parainflammationwere observed to

be significantly higher in the high-risk group. Conversely, opposite

trends were detected in the function of T-cell costimulation and

Type II interferon response (p < 0.05) (Figures 11A, B).
Chemotherapeutic drug sensitivity
analysis according to the
prognostic signature

To further examine the relationship between drug sensitivity

and risk score, we compared the sensitivity of different risk

groups of lung cancer patients to common chemotherapeutic

drugs based on the GDSC database. The results revealed that the

estimated IC50 values of six chemotherapeutic drugs (cisplatin,

docetaxel, paclitaxel, gemcitabine, vinorelbine, and bleomycin)

were significantly higher in the low-risk group (p < 0.05), which
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FIGURE 6

Comparison of overall survival and time-dependent ROC curves for LUAD patients of different ages (A, B), sexes (C, D), and pathological stages
(E, F) between the high-risk and low-risk groups.
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indicated that LUAD patients in the high-risk group were more

sensitive to chemotherapy (Figures S8A–F).

Downregulated PSMC1 inhibits the
proliferation and migration of lung
adenocarcinoma cells

To further verify the value of our prognostic model, we

selected the potential oncogene PSMC1, which has not been
Frontiers in Immunology 13
previously reported in LUAD patients, and confirmed its

biological function through in vitro experiments. For the loss-

of-function assay, siRNA of PSMC1 were transfected into A549

and H1299 cells to explore whether PSMC1 exerts effects on

LUAD cell function. Firstly, the knockdown efficiency of the si-

RNA was verified by RT-qPCR (Figure 12A). As illustrated in

Figure 12B, the CCK-8 assay revealed that knockdown of

PSMC1 inhibited cell proliferation. In addition, both the

wound-healing assay and the Transwell migration assay
TABLE 2 The univariate and multivariate Cox regression analyses of clinical characteristics for overall survival in LUAD patients.

Characteristic Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age 497

<65 214 Reference

>=65 283 1.078 (0.800-1.453) 0.623

T Stage 497

T1 166 Reference

T2 267 1.481 (1.034-2.120) 0.032 0.904 (0.617-1.323) 0.603

T3 43 2.956 (1.739-5.024) <0.001 1.241 (0.640-2.404) 0.523

T4 18 2.975 (1.529-5.786) 0.001 1.274 (0.581-2.796) 0.545

Tx 3 4.745 (1.140-19.755) 0.032 0.431 (0.033-5.646) 0.522

N Stage 497

N0 321 Reference

N1 94 2.439 (1.727-3.445) <0.001 1.419 (0.795-2.531) 0.236

N2 69 3.108 (2.119-4.559) <0.001 1.654 (0.649-4.214) 0.292

N3 2 0.000 (0.000-Inf) 0.994 0.000 (0.000-Inf) 0.995

Nx 11 1.656 (0.606-4.524) 0.325 2.033 (0.490-8.423) 0.328

M Stage 497

M0 472 Reference

M1 24 2.210 (1.300-3.758) 0.003 0.263 (0.016-4.426) 0.354

Mx 1 0.000 (0.000-Inf) 0.994 0.000 (0.000-Inf) 0.998

Pathological Stage 497

Stage I 267 Reference

Stage II 123 2.349 (1.635-3.375) <0.001 1.582 (0.850-2.943) 0.148

Stage III 81 3.528 (2.403-5.181) <0.001 1.730 (0.637-4.700) 0.282

Stage IV 25 3.862 (2.224-6.707) <0.001 7.003 (0.378-129.642) 0.191

Unknown 1 0.000 (0.000-Inf) 0.995

Gender 497

Male 228 Reference

Female 269 0.954 (0.711-1.279) 0.752

Outcome 497

CR 306 Reference

PR 5 2.533 (0.621-10.339) 0.195 3.412 (0.786-14.812) 0.101

SD 37 1.133 (0.568-2.258) 0.723 1.037 (0.516-2.085) 0.918

PD 68 4.136 (2.870-5.960) <0.001 3.541 (2.394-5.239) <0.001

Unknown 81 3.595 (2.464-5.243) <0.001 3.373 (2.255-5.047) <0.001

Risk score 497

Low 249 Reference

High 248 2.172 (1.605-2.939) <0.001 1.832 (1.331-2.521) <0.001
fronti
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indicated that the migration ability decreased following PSMC1

silencing (Figures 12C, D). Therefore, these findings suggested

that PSMC1 could promote the proliferation and migration of

LUAD cells, which may contribute to the poor prognosis in

LUAD patients to a certain extent.
Discussion

To the best of our knowledge, the high mortality rate of lung

adenocarcinoma remains the most troubling issue for clinicians
Frontiers in Immunology 14
(41). Hence, the exploration of an effective and robust prognostic

model is imperative to inform clinical decision-making. In recent

years, accumulating numbers of studies have demonstrated that

lipid metabolism in the tumor microenvironment not only

regulates the proliferation and invasion of tumor cells but also

reshapes the function of stromal cells, especially immune cells that

contribute to tumor metastasis (42). Therefore, it is suggested that

there is a close link between lipid metabolism patterns and

antitumor immunity. However, most previous similar studies (9,

14, 43) have constructed prognostic models based on single lipid

metabolism features, which often have the limitation of poor

robustness and extrapolation. To overcome the shortcomings of

previous studies, both immune-related and lipid metabolism-

related genes were included in the present study to further

improve the accuracy and robustness of prognostic signatures by

providing multiscale clinical features.

First, lipid metabolism-related DEGs were obtained by taking

the intersection of the lipid metabolism-related genes and DEGs

associated with LUAD. GO annotation and KEGG enrichment

analyses indicated that these DEGs were mainly involved in the

biological processes of lipid biosynthesis, metabolism, and

transportation. Then, two main subgroups were identified using

unsupervised consensus clustering based on lipid metabolism-

related DEGs. Notably, significant differences in overall survival
A B

D EC

FIGURE 7

(A) A nomogram model was constructed to predict the 1-year, 3-year, and 5-year overall survival of LUAD patients. (B) Calibration curves of the
nomogram model for 1-year, 3-year, and 5-year overall survival. (C–E) Decision curve analysis for 1-year (C), 3-year (D), and 5-year (E) overall
survival of the nomogram model.
TABLE 3 Comparison with the C-indices of other previously
reported nomogram models in the TCGA-LUAD cohort.

Literature Characteristics C-index

Present study Lipid metabolism and immune 0.726

Jin_Duan_2021 (35) Autophagy 0.721

Zetian_Gong_2022 (36) Pyroptosis 0.711

Xuelong_Wang_2021 (37) Methylation 0.710

Chunyu_Li_2020 (38) None 0.710

Lulu_He_2020 (39) Metabolism 0.702

Jian_Yang_2022 (40) Cell cycle checkpoints 0.700
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were observed between LUAD patients with different lipid

metabolism patterns. Furthermore, according to different

immune infiltration algorithms, we found that the infiltration

patterns of immune cells varied in different subgroups, and a

high infiltration level of immune cells showed a significant

positive relationship with the overall survival of LUAD patients.

Thus, we speculated that survival differences under different lipid

metabolism patterns may be related to the immune infiltration of

the tumor microenvironment. This prompted us to integrate both

lipid metabolism and immune features to construct a clinical

prognostic model in the present study.
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By performing univariate and LASSO penalized Cox

regression, 10 variables were screened out and included in the

final prognostic signature. Interestingly, of these 10 variables, four

(F2RL1, ADRB2, LGR4, PSMC1) were immune-related genes, four

(P2RX1, TYMS, GJB3, SLC2A1) were lipid metabolism-related

genes, and the two (ADM,MIF) were closely associated with both

lipid metabolism and immunity. These findings suggest that

immunity and lipid metabolism contributed comparable weights

in themodel construction.Moreover,ADRB2 andP2RX1 showed a

negative correlation with risk scores and overall survival, while the

remaining eight genes were positively correlated with these
A B

FIGURE 8

Comparison of somatic mutation rates between the low-risk (A) and high-risk (B) groups in the TCGA cohort.
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FIGURE 9

The KEGG signaling pathways enriched by GSEA. (A, B) The signaling pathways of ether lipid metabolism and glycerophospholipid metabolism
were mainly enriched in the low-risk group. (C–F) The signaling pathways of the cell cycle, MHC class II antigen presentation, Toll-like receptor,
and natural killer cell-mediated cytotoxicity were mainly enriched in the high-risk group.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.950001
parameters. Based on the Kaplan–Meier survival curves, a

significantly shorter overall survival was observed in LUAD

patients in the high-risk subgroup than in those in the low-risk

subgroup (HR: 0.46, log-rank p value< 0.001). The time-dependent

ROC curve analysis indicated high accuracy of the prognostic

signature in predicting the survival of LUAD patients. Moreover,

the results of external validation based on five GEO datasets and

prognostic meta-analysis all confirmed the relatively better

robustness of the prognostic signature compared to previous

studies (9, 37).

F2RL1, also known as protease-activated receptor 2 (PAR2),

has been reported to be associated with the occurrence and

development of lung adenocarcinoma (44) and intestinal
Frontiers in Immunology 16
tumors (45, 46). A recent study revealed that hypomethylation

of the F2RL1 promoter could upregulate its expression and

promote the proliferation, migration, and invasion of LUAD

cells (44). The ADRB2 gene encodes the beta2-adrenergic

receptor (b2-AR), which plays a crucial role in facilitating

bronchodilation (47). Studies have shown that targeting ADRB2

could enhance the sensitivity of lung cancer cells to VEGFR2-TKIs

(48), but the protective mechanism of ADRB2 on LUAD has not

been mentioned in the literature. The binding of leucine-rich

repeat-containing G-protein-coupled receptor 4 (LGR4) to its

receptor R-spondin was reported to promote the proliferation

and metastasis of cancer cells. Moreover, LGR4 inhibition could

improve the clinical efficacy of immune checkpoint blockade by
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FIGURE 10

Correlation analysis of the prognostic signature and immune infiltration in LUAD patients. (A) Correlation analysis of the risk score and immune
infiltration via The Tumor Immune Estimation Resource (TIMER, http://timer.cistrome.org/) database. (B, C) Comparison of the IPS score (B) and
the TIDE score (C) between the high-risk and low-risk groups. (D–H) Correlations between risk score and DNA methylation-based stemness
score (D), RNA-based stemness score (E), immune score (F), microenvironment score (G), and stroma score (H), and the comparison of various
scores between the high-risk and low-risk groups.
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modulating TAM polarization and CD+
8 T-cell infiltration (49).

For the lipid metabolism-related genes, thymidylate synthetase

(TYMS) (50–52) and SLC2A1 (53–55) have repeatedly emerged as

variables in clinical prognostic signatures for LUAD patients,

suggesting that they are critical metabolism-related genes that

affect the prognosis of LUAD patients. A meta-analysis

demonstrated that as a pyrimidine metabolic rate-limiting

enzyme (56), TYMS expression was negatively correlated with

response rate, overall survival, and progression-free survival in

NSCLC patients treated with pemetrexed-based chemotherapy

(57). Downregulation of SLC2A1 can interfere with glycolysis in

lung cancer cells. Thus, it can inhibit cell proliferation, migration,

and the cell cycle and promote apoptosis (58, 59). In addition, for

the intersected genes of two features, tumor-secreted

adrenomedullin (ADM) is recognized as a type of regulatory

polypeptide driving both tumor and lymph node angiogenesis.

Therefore, it may serve as a potential target for suppressing the

lymphatic metastasis of lung cancer (60). Similar to the

aforementioned TYMS and SLC2A1, macrophage migration
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inhibitory factor (MIF) has also been involved in the

establishment of prognostic models for LUAD patients on

several independent occasions (61, 62). A previous study

suggested that MIF overexpression could promote the Warburg

effect of lung cancer cells via the NF-kB/HIF-1a signaling

pathway, thus contributing to the progression of lung cancer

(63). However, the exact mechanisms by which PSMC1, P2RX1,

and GJB3 are involved in the progression of lung cancer have not

yet been reported in the literature and warrant further exploration.

For further validation, we explored the role of PSMC1 in the

progression of lung cancer through in vitro experiments. The

results have demonstrated that downregulation of PSMC1 could

attenuate the proliferation and migration of LUAD cells, which is

in agreement with previous bioinformatic predictions.

The results of clinical feature-based subgroup analyses indicated

good agreement between the risk scores and the disease stage. The

follow-up subgroup analyses based on different ages, sexes, and

TNM stages also suggested a robust predictive power of the

signature in each category. Moreover, the prognostic value of the
A

B

FIGURE 11

The ssGSEA algorithm was employed to quantify the immune cell infiltration (A) and immune function (B) between the high-risk and low-risk
groups. *, p value < 0.05; ***, p value < 0.001; ****, p value < 0.0001; ns, not significant, p value > 0.05.
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signature for LUAD patients was further confirmed by univariate

and multivariate analyses. Then, a nomogram model was built

based on this signature to determine individualized prognostic

scores and was evaluated by the C-index and the calibration

curves. Decision curve analysis also revealed the great clinical

application value of the nomogram model, which further

supported the reliability of this signature.

For a deeper investigation of the potential mechanisms

affecting the survival difference, we first compared the genes

with high-frequency rates of somatic mutations in lung cancers,

such as TP53, TTN, and MUC16. The results showed that the

mutation rates of TP53 and TTN were highly associated with the
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risk scores predicted by the prognostic signature, which may be

one of the reasons for the poorer prognosis of LUAD patients in

the high-risk group. Through GSEA and GSVA, we found that in

addition to the glycolysis, cell cycle, hypoxia, and angiogenesis

phenotypes associated with tumor proliferation and invasion,

several inflammatory/immune responses-related signaling

pathways were also enriched in the high-risk group. These

findings indicated that the survival differences may be driven

by the varied immune status of LUAD patients.

To further elucidate the underlying immune-related

mechanisms of the signature for predicting the prognosis of

LUAD patients, a deconvolution algorithm of TIMER was
A B

D

C

FIGURE 12

Downregulation of PSMC1 inhibits the proliferation and migration of LUAD cells. (A) The quantitative real-time PCR was performed to validate
the transfected efficiency. (B) CCK-8 assay was used to determine the proliferation ability of A549 and H1299. (C) The cell migration ability was
analyzed using the wound-healing assay. (D) The cell migration ability was detected by the Transwell migration assay. Data represent mean ±
SD from three replicates of each sample. ns, no significance; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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employed to assess the relationship between the risk score and the

immune infiltration levels. The results showed negative

correlations between the risk score and several antitumor

immune effector cells, particularly B cells and CD+
4 T cells.

These findings indicate a lower level of antitumor immune

response in the high-risk groups. The immunophenoscore (IPS)

is a tumor immunogenicity index calculated based on four

representative immune cells: activated CD+
4 T cells, activated

CD+
8 T cells, effector memory CD+

4 T cells, and MDSCs, which is

positively correlated with the response rate to immune checkpoint

inhibitors (32). Conversely, the TIDE score is based on cytotoxic T

lymphocyte function, and it is negatively correlated with clinical

response to immune checkpoint blockade (ICB) and overall

survival (33). Both IPS and TIDE algorithms (TIDE score,

dysfunction score, and exclusion score) indicated that LUAD

patients in the high-risk group presented with a relatively lower

sensitivity to immune checkpoint inhibitors. Moreover, tumor

hypoimmunogenicity and hyporesponsiveness to ICB were also

corroborated by the xCell algorithm-derived immune scores,

stroma scores, and microenvironment scores. Tumor stemness-

related scores, such as RNAss and DNAss, are positively

correlated with tumor proliferation, invasion, metastasis, and

chemoresistance (64). Our findings confirmed significant

positive correlations between DNAss and RNAss and the risk

score, revealing the potential reason for poor prognosis in the

high-risk group from another perspective.

By quantifying immune cell infiltration and immune function

based on the ssGSEA algorithm, we further confirmed obvious

differences in the degree of B- and T-cell subset infiltration,

antigen presentation, T-cell costimulatory function, and

inflammatory response between the high- and low-risk groups.

These findings were consistent with the results of the GSEA and

TIMER analyses described above. In addition, the infiltration

levels of active dendritic cells (aDCs) and immature dendritic

cells (iDCs) were higher in the low-risk group. As specialized

antigen-presenting cells, DCs play a critical role in the activation

of antitumor-associated T cells (65). Studies have shown that lung

cancer can dynamically exclude functional DCs from tumor

tissues and recruit immunosuppressive plasma DCs to the

tumor microenvironment, thereby impeding immune clearance

(66). These findings partially explain the poorer prognosis in the

high-risk group. It is still noteworthy that the infiltration levels of

mast cells and neutrophils were substantially elevated in the low-

risk group. Previous studies have shown that mast cells are an

important source of VEGF and can promote tumor proliferation

and angiogenesis (67, 68). However, the latest research described

the heterogeneity of mast cells and confirmed that the CD+
103mast

cell subset exhibited a stronger expression of antigen presentation-

related molecules including ICAM-1, CD80, and MHC-class II.

This, in turn, effectively activated CD+
4T cells. The study also

indicated that lung cancer patients with high mast cell infiltration

in the tumor microenvironment exhibited better overall and

disease-free survival (69). In addition, it has been reported that
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MHC protein is one of the key molecules in presenting antigens

and activating T lymphocytes for anti-tumor immunity (70).

Downregulation of MHC molecules is usually closely associated

with ICB resistance and poor clinical outcomes (71, 72).

Nevertheless, a recent study has demonstrated that the common

MHC class I component b2-microglobulin can bind to the

inhibitory receptor LILRB1 of macrophages, thereby protecting

tumor cells from phagocytosis and promoting resistance to

immunotherapy (73). This might partly explain the underlying

causes of the enrichment of the MHC molecules in the high-risk

group. The relationship between the high circulating neutrophil to

lymphocyte ratio and poor prognosis in lung cancer patients has

been revealed in several studies (74–76). However, the plasticity of

neutrophil function in the tumor microenvironment has not been

fully uncovered and needs to be further investigated (77). In

addition, LUAD patients in the high-risk group showed better

sensitivity to chemotherapy, which may be associated with the

increased proliferative and invasive capability in the ‘high-risk’

tumors. The above findings lead us to believe that the prognostic

signature not only exhibits robustness and accuracy in clinical

outcome prediction but also shows potential value in estimating

the efficacy of chemotherapy and immunotherapy.

Some limitations of the present study should be mentioned.

First, the establishment and validation of the prognostic

signature were both based on retrospective analyses on public

databases, which were biased. The robustness and accuracy of

this study should be further confirmed in large prospective real-

world studies. Besides, the correlation between some individual

genes involved in the signature and lung adenocarcinoma

remains unclear and warrants further exploration.

Conclusion

In summary, we first developed and validated a novel

signature incorporating both lipid metabolism-related and

immune-related genes for LUAD patients. More importantly,

the application of the prognostic model was extended to all

stages of LUAD patients compared with previous studies. This is

useful for predicting not only the prognosis but also the efficacy

of chemotherapy and immune checkpoint inhibition.
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