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Transcriptomic analysis of graft
liver provides insight into the
immune response of rat
liver transplantation

Wanyue Cao †, Jing Lu †, Shanbao Li †, Fangbin Song
and Junming Xu*

Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
Background: As an “immune-privileged organ”, the liver has higher rates of

both spontaneous tolerance and operational tolerance after being transplanted

compared with other solid organs. Also, a large number of patients still need to

take long-term immunosuppression regimens. Liver transplantation (LT)

rejection involves varieties of pathophysiological processes and cell types,

and a deeper understanding of LT immune response is urgently needed.

Methods: Homogenic and allogeneic rat LT models were established, and

recipient tissue was collected on postoperative day 7. The degree of LT

rejection was evaluated by liver pathological changes and liver function.

Differentially expressed genes (DEGs) were detected by transcriptome

sequencing and confirmed by reverse transcription-polymerase chain

reaction. The functional properties of DEGs were characterized by the Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

Reactome pathway analyses. The cells infiltrating the graft and recipient

spleen and peripheral blood were evaluated by immunofluorescence and

flow cytometry.

Result: A total of 1,465 DEGs were screened, including 1,177 up-regulated

genes and 288 down-regulated genes. GO enrichment and KEGG pathway

analysis indicated that DEGs were involved in several immunobiological

processes, including T cell activation, Th1, Th2 and Th17 cell differentiation,

cytokine-cytokine receptor interaction and other immune processes.

Reactome results showed that PD-1 signaling was enriched. Further research

confirmed that mRNA expression of multiple immune cell markers increased

andmarkers of T cell exhaustion significantly changed. Flow cytometry showed

that the proportion of Treg decreased, and that of PD-1+CD4+ T cells and

PD-1+CD8+ T cells increased in the allogeneic group.

Conclusion: Using an omic approach, we revealed that the development of LT

rejection involved multiple immune cells, activation of various immune
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pathways, and specific alterations of immune checkpoints, which would

benefit risk assessment in the clinic and understanding of pathogenesis

regarding LT tolerance. Further clinical validations are warranted for

our findings.
KEYWORDS

RNA-seq, liver transplantation, regulatory T cells, immune checkpoint, differentially
expressed genes, GO, KEGG pathway
Introduction

Liver transplantation (LT) is the most effective way to treat

end-stage liver disease (1). In the United Kingdom, 1- and 5-year

survival rates were reported to be over 90% and 80%, respectively

(2). However, patients with long-term application of

immunosuppressive (IS) drugs also face the risks of serious

adverse events, accounting for 58% of deaths after three years in

LT recipients (3, 4). Rejection is one of the important reasons

leading to the failure of liver transplantation. Understanding the

mechanism of LT rejection and inducing immune tolerance can

provide more specific strategies and improve postoperative

quality of life.

LT immunity is an adaptive immune response involving

activation of T and B lymphocytes (5). T cells can be divided into

different subgroups according to their function. Regulatory T

cells (Tregs), a specialized subset of CD4+ T cells expressing the

key transcription factor Foxp3, play an important role in

operational tolerance after solid organ transplantation (6, 7).

Tregs could inhibit activation and proliferation of multiple

immune cells through inhibitory costimulatory molecules,

such as T cell immunoglobulin domain and mucin domain 3

(TIM-3), programmed cell death protein 1 (PD-1), and T cell

immunoreceptor with Ig and ITIM domains (TIGIT) (8–11).

Studies have also shown that costimulatory pathways blockade

could limit the activation of T cells reversely (12), which may

alter the immune response against allograft and attenuate
suppressive drugs; Th,

cell immunoglobulin

cell death protein 1;

ains; RNA-seq, RNA

g, Interferon-g; IL-2,

Cells; RAI, Rejection

minotransferase; AST,
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rejection, prolonging graft survival time (13). Currently, the

potential for adoptive cell therapy with Tregs to promote

transplant tolerance is being actively explored (14). Although

most results of these trials are optimistic, many experimental

and clinical unanswered questions are slowing the progression of

this new therapeutic alternative (15). In addition, cytokines with

pro-inflammatory and regulatory properties are also considered

as potential therapeutic targets for inhibiting or enhancing the

immune response of recipients (16–18). These results suggest

that the content of cytokines, proliferation, and differentiation of

T cell subsets, and inhibition of costimulatory molecules are

essential for the formation of immune tolerance.

To date, several reports have focused on the effects of different

factors on gene expression patterns in regenerating rat livers (19–

21), post-transplant tumor recurrence (22), before and after

human liver perfusion (23–25), and even the microenvironment

of steatotic liver graft (26) using the next-generation RNA

sequencing (RNA-seq) or at the single‐cell level. However, to

our knowledge, our research is the first to reveal differential

expression profiles between immune tolerance and rejection

models of rat liver transplantation by RNA-seq, complemented

with additional validation using quantitative real-time PCR,

immunofluorescence, and flow cytometry. We found that LT

rejection involves the participation of various immune cells, the

activation of immune process, and the changes of multiple

immune checkpoints. These results provide a strong theoretical

basis for the potential clinical risks, related immune process, and

pathogenesis of LT, and promote us to design rational drugs for

the treatment of liver dysfunction caused by LT rejection.
Materials and methods

Animals

Kamada’s two-cuff method was used to establish a rat LT

model (27). Lewis and Brown Norway (BN) rats, each weighing

210-240 g, were utilized as liver donors and recipients to establish

allogeneic rejection models. Lewis-rats were used to construct

homogenic tolerance models. All operations were carried out in
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accordance with the guidelines of the Ethics Committee of

Shanghai General Hospital, Affiliated Hospital of Shanghai Jiao

Tong University School of Medicine (Ethical code: 2019SQ147).
Histopathological examination and blood
sample testing

Liver tissue was collected from the recipient rats for

histopathological examination. The rejection activity index

(RAI) was independently determined by three pathologists

using the Banff Schema (International Panel, 1997) (28).

Serum samples were obtained from the recipients for

evaluation of liver function on postoperative day (POD) 7.

The levels of alanine aminotransferase (ALT), aspartate

aminotransferase (AST), g-glutamyl transpeptidase (GGT,

g-GT), and total bilirubin (TBIL) were examined with an

automated chemical analyzer (Hitachi 7600-10; Hitachi

High-Technologies, Japan). The ELISA kits of necrosis factor-b
(TNF-b), interferon-g (IFN-g), and interleukin-2 (IL-2), IL-4

were purchased from MULTISCIENCE (Shanghai, China).
RNA isolation, library construction
and sequencing

Liver tissues of recipient rats were collected on POD 7. Total

RNA was isolated from graft liver tissue using TRIzol reagent

(ThermoFisher, Waltham, MA, USA) according to the

manufacturer’s guideline, and the purity and concentration of

RNA were detected by agarose electrophoresis or a standard

Agilent 2100 Bioanalyzer (Agilent Technology, Santa Clara, CA,

USA). Briefly, mRNA was captured by magnetic oligo(dT) beads

and fragmented, and the first-strand cDNA was generated

using random hexamers. After the library was constructed,

PCR amplification was used to enrich fragments, and 450bp

was optimal size. Then, the total concentration and effective

concentration of the library were detected using an Agilent 2100

Bioanalyzer. The standardized cDNA libraries were sequenced on

an Illumina HiSeq2500 sequencer by the way of paired-end. The

data were stored in the form of FASTQ. The raw sequencing data

were filtered and evaluated for quality. The clean reads were

mapped to the reference genome (Rattus_norvegicus.Rnor_

6.0.dna.toplevel.fa) using BWT algorithm of HISAT2 (29). After

the statistical analysis, the software HTSeq-count (30) was used to

screen the differentially expressed genes (DEGs) by the following

criteria: fold change >2 or < −2, false discovery rate (FDR) < 0.05.
Bioinformatic analysis

The Gene Ontology (GO) (31, 32) is a free available public

resource that describes the role of genes in biological systems.
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The GO terms were comprised of the following three divisions:

biological process (BP), cellular component (CC) and molecular

function (MF). Adj. P<0.05 was regarded as statistically

significant (33).

Kyoto Encyclopedia of Genes and Genomes (KEGG) is an

integrated database resource, which aims to link genomic

information with higher order functional information by

computerizing current knowledge on cellular processes and by

standardizing gene annotations (34).

The Reactome Knowledgebase systematically links proteins

to their molecular functions, providing a resource that serves

both as an archive of biological processes and as a tool for

discovering unexpected functional relationships (35).

The GO annotation, KEGG pathways, and Reactome

pathways were used to visualization and pathway enrichment

analysis of DEGs, with a corrected P-value < 0.05 defined as

significantly enriched.
Quantitative real-time polymerase
chain reaction

RNA was extracted as previously described. The extracted

RNA was analyzed by Nano Drop 2000 (Thermo Fisher

Scientific, Waltham, MA, USA) to ensure RNA quality and

purity. After quantified, RNA was reverse transcribed into

cDNA using PrimeScript™ RT Master Mix (Perfect Real

Time; Takara). RT‐PCR was performed using SYBR® Premix

Ex Taq™ (Tli RNaseH Plus; Takara, Japan) in a Light Cycler

Real‐time PCR System (Roche) (36). The corresponding primer

sequences are provided in Supplement Table 1.
Immunofluorescence assay

Paraffin sections were de-paraffinized, rehydrated and

antigen retrieval according to standard protocols. Then, slices

were incubated with anti-CD3 (1:200, Abcam, ab16669), anti-

CD4 (1:200, Abcam, ab237722), anti-CD8 (1:200, Abcam,

ab33786), and anti-Foxp3 (1:100, Abcam, ab215206).

Fluorophore-conjugated secondary antibodies were incubated

for one hour at room temperature (1:200, Abcam). The slides

were imaged with fluorescence microscopes (Leica,

Barcelona, Spain).
Flow cytometry

Spleens of recipient rats were collected, grounded, and

filtered to obtain cell suspension, which was centrifuged at

1600 rpm at 4°C for 5 mins. The precipitation was

resuspended by pre-cooled phosphate buffer solution. Double

volume of lymphocyte separation solution purchased from
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2022.947437
Sigma-Aldrich was added and centrifuged at 2000 RPM for

25 min to obtain cell suspension. CD4+ T cells and CD8+ T cells

were isolated by LS column (Miltenyi Biotec, Germany, #130-

042-401) with the method of antibiotic microbeads (Miltenyi

Biotec, Germany, # 130-090-319, # 130-090-318) as previously

described (37, 38). Sorted cells were incubated directly with

diluted fluorochrome-conjugated monoclonal antibodies as

shown below: anti-CD4 (Invitrogen, #11-0040-82, FITC), anti-

CD8a (Invitrogen, #11-0084-82, FITC), anti-PD-1 (Proteintech,

#65211, Coralite647) and anti-Foxp3 (eBioscience, #12-5773-

82, PE).

Statistical analysis

Statistical analyses were performed by GraphPad Prism

V7.0. Results are shown as representative images or as mean ±

standard deviation (SD) of at least three independent

experiments. Differences between LT tolerance and rejection

groups were estimated by the Student’s t-test. For all tests,

statistical significance was considered at a P value < 0.05.
Frontiers in Immunology 04
Results

The allogeneic LT group has a higher
degree of rejection than the
homogeneic group

The homogeneic and allogeneic rat LT models were

constructed and the rejection degree was evaluated on POD 7.

Histopathological changes of liver were graded according to the

Banff model (28). As shown in Figure 1A, rejection was relentless

in the allogeneic LT model, as evidenced by marked infiltration

of inflammatory cells into most portal areas, damage of bile duct

epithelial cells and increased venous endothelial inflammation.

The RAI score was shown in Figure 1B (t=4.899, P=0.008). In

addition, the recipients in the homogeneic LT group shown

better liver function indexes compared with allogeneic group

(ALT: t=5.349 P=0.0059; AST: t=8.479 P=0.0011; GGT: t=5.77

P=0.0045; TBIL: t=5.279 P=0.0062). These results indicated that

the allogeneic LT group has a higher degree of rejection than the

homogeneic group.
A B

C

FIGURE 1

Validation of differences in liver transplantation rejection between Lewis-Lewis group and Lewis-BN group on POD 7. (A, B) Hepatic
morphologic changes and RAI scores of recipient rats. (C) Peripheral blood of each group was taken for analysis and determination of serum
aspartate aminotransferase (AST), alanine aminotransferase (ALT), g-glutamyl transpeptidase (GGT) and total bilirubin (TBIL) by automatic
biochemical analyzer (N = 3). *P<0.05, **P < 0.01, ***P < 0.001.
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RNA-seq profiling showed allograft
rejection involved significant
immune dysregulation

To reveal the molecular mechanism related to graft rejection,

gene expression changes between the two groups were identified

by RNA-seq. A total of 845,870,684 reads were obtained. After

filtering and quality control, an average of 92.7% reads are

available. The allograft models were taken as the experimental

group. Using criteria of fold-change > 2 and FDR < 0.05 to define

DEGs. Compared with the control group, a total of 1,465 DEGs

were identified, of which 1,177 up-regulated genes and 288 down-

regulated genes (Figure 2). Among them, the top five down-

regulated genes were SLC24A2, Pex5l, Kif28p, Brinp3, andNudt10.

However, the genes related to various immune components

significantly upregulated in the allogeneic group with increased

transplantation rejection response. The markers of T cell (CD2,

CD3, CD28), B cell (CD19,CD79A), T-cells/NK-cells/T-cell

activation and migration (ICOS, LCK, GZMA/B, CCR6, CCR7)

and cellular infiltrates, such as dendritic cell markers CD80 and

CD86 were significantly up-regulated. In addition to the markers

mentioned above, multiple immune pathways, including the Th1

(STAT1, TBX21,IFNG, CXCL9/CXCL10/CXCL11), Th2 (CCR5,

CCL11) and T cell exhaustion (LAG3, TIGIT, HAVCR2) were also

up-regulated. The top five genes with the highest expression up-

regulation related to immune regulation were CRTAM, IFNG,

TIGIT, IL21, CD3E. Changes in the expression of chemokine

receptor families and markers of immune cells suggest that

multiple immune pathways are involved in the activation and

participation of liver transplantation rejection.
Frontiers in Immunology 05
DEGs functional annotation and
enrichment analysis

DEGs were annotated using the GO database to examine

the biological functions and pathways. As shown in the

Figure 3A, DEGs were mainly involved in the biological

processes such as immune response, regulation of the immune

system process and T cell activation, etc., which were consistent

with the above speculation. The most enriched MF terms

include immune receptor activity, signaling receptor binding,

protein binding, cytokine receptor activity, and chemokine

binding. In addition to other cell components such as cell

surface, side of membrane, and external side of plasma

membrane, MHC and MHC class II protein complexes are

also enriched (Figure 3A).

KEGG database was used to functionally annotate the

observed gene expression changes to identify potential

pathways. KEGG pathway analysis indicated that DEGs were

enriched in cytokine-to-cytokine receptor interaction, graft-

versus-host disease, allograft rejection, cell adhesion molecules,

Th1/Th2/Th17 cell differentiation, NK cell–mediated

cytotoxicity, and antigen processing and presentation

(Figure 3B). In addition to the classic KEGG pathway analysis,

the Reactome database was also used to further analyze possible

pathways involved in DEGs. As shown in the Figure 3C, the

main enrichment pathway of DEGs were immunoregulatory

interactions between a Lymphoid and a non−Lymphoid cell,

Chemokine receptors bind chemokines, Cytokine Signaling in

immune system, TCR signaling, Programmed Cell Death, and

PD−1 signaling (Figure 3C).
A B

FIGURE 2

Heat map and volcano map of differentially expressed genes (DEGs). (A) Each column represents a sample. Red indicates up-regulated genes;
green indicates down-regulated genes. (B) Volcano map of DEGs. fold change >2 or < −2, FDR < 0.05.
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Analysis and validation of RNA-seq data

To further identify key genes involved in the progress of LT

rejection, we selected ten genes associated with T cell activation

or immunosuppression. The expression of T cell markers, CD3e
Frontiers in Immunology 06
and CD8a, increased (CD3e: P=0.0397; CD8a: P=0.006), while

the expression difference in CD4 was not significant. The main

Th1 cytokines, IFN-g, and Th1 pathway, CXCL9 and CXCL11,

were significantly increased (IFN-g: P<0.0001; CXCL9: P=0.0065;
CXCL11: P=0.442), while FOXP3, the Treg marker and Th17
A B

C

FIGURE 3

DEGs identified by RNA-seq were evaluated for functional enrichment using multiple gene annotation databases. (A) TopGO was used for GO
enrichment analysis. GO enrichment analysis results of DEGs were classified according to molecular function (MF), biological process (BP) and
cell component (CC). The top 10 GO term items with minimum p-value and most significant enrichment in each GO category were selected.
(B) KEGG pathway enrichment analysis of DEGs. According to KEGG enrichment results, the top 20 KEGG pathways with the smallest FDR value,
namely the most significant enrichment, were selected. (C) For the results of Reactome enrichment analysis of DEGs, the top 20 Reactome
results with minimum p-value were selected.
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cytokine, IL-17a, showed no significant changes. In addition, the

marker of T cell exhaustion TIM-3 showed significant

differences (P=0.0077), but PDCD1 mRNA did not differ

between the two groups (Figure 4).
The cells infiltrating graft liver were
increased in the rejection group

We further explored the cells infiltrating graft to confirm the

reliability of the expression profiles generated by the RNA-Seq

and DEGs analysis. Compared with the control group, the content

of CD4 and CD8 T cell was up-regulated in the allograft (CD4+ T

cell: t=4.641, P=0.097; CD8+ T cell: t=4.201, P==0.0137), and the

expression of Foxp3 was also increased (t=8.665, P<0.001).

However, the ratio of Foxp3/CD4 showed an opposite trend in

allograft (t=4.433, P=0.0114) (Figure 5). We also investigated the

proportion of Foxp3+ T cells and the expression of PD-1 in the

recipient spleen and PBMCs. The expression level of Foxp3 on T

cells showed lower expression on CD4+ T cells compared with the

control group (Spleen: Tregs, t=2.942, P=0.0423, PBMCs: Tregs,

t=7.166, P=0.002). The expression of PD-1 on CD4+ and CD8+ T

cells was up-regulated with the aggravation of rejection (Spleen:
Frontiers in Immunology 07
PD-1+CD4+ T cell, t=6.106, P=0.036; PD-1+CD8+ T cell, t=3.425,

P=0.02676; PBMCs: PD-1+CD4+ T cell, t=5.75, P=0.0045; PD-

1+CD8+ T cell, t=3.818, P=0.0188) (Figures 6A–D). The above

results were consistent with the previous results of DEGs analysis.

The proportion of CD4+ T and CD8+ T cells in the transplant

rejection group was increased, and the expression of immune

checkpoint PD-1 was also up-regulated. However, the proportion

of Tregs was higher in the control group.
Comparison of cytokine content in
peripheral blood

Serum cytokines secreted by T cells play an important role in

regulating various immune responses, including LT (39).

Therefore, we measured the levels of TNF-a, IFN-g, IL-2, and
IL-4 by ELISA kit. The results indicated that TNF-a, IFN-g and
IL-2 increased in allogeneic transplant recipients (TNF-a:
t=4.072, P=0.0152; IFN-g: t=5.31, P=0.006; IL-2: t=11.62,

P=0.0003) while IL-4 decreased (t=6.641, P=0.0027)

(Figure 6E). Together, these results further suggest that

multiple cytokines secreted by Th1 and Th2 cells are involved

in the immune rejection of LT.
A B

D E F

C

FIGURE 4

Fold-changes of immune mediators in the liver of homogenic and allogeneic rat liver transplantation recipients were measured by quantitative
real-time PCR. *P<0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Discussion

Compared with other solid organs, a small portion of stable LT

recipients showed sustained graft tolerance after complete withdrawal

from IS, known as operational tolerance (40). However, the majority

of patients still require a lifetime medication regimen. Therefore, the

processes and mechanisms that control the outcome of LT remain to

be thoroughly understood.

Amajor advantage of RNA-seq is its ability to identify potential

novel biomarkers (41). The high genomic match between rat and

human makes it a powerful model for elucidating the immune

mechanisms of LT (42). There have been numbers of reports on

liver regeneration pathways, ischemia-reperfusion at different time

points, and different perfusionmethods of rats and humans (19, 22,

24, 25, 43). Single-cell techniques have also been reported to assess

the plasticity and phenotype of immune cells in the
Frontiers in Immunology 08
microenvironment of liver grafts (26). However, mRNA changes

in rats at 7 days after homo/allogeneic LT have not been reported.

And this is the first comprehensive transcriptomic analysis of rat

graft liver on POD 7. DEGs identified were enriched in multiple

immune processes, regulation of immune response, lymphocyte

activation, and cell activation. KEGG results showed that Th1, Th2,

and Th17 cell differentiation, NK-cell-mediated cytotoxicity,

antigen presentation, and other immune mechanisms

participated in the progression of transplant rejection. In addition

to the involvement of the immune system, Reactome database

analysis showed that PD-1 signaling pathway and cytokine

signaling were also involved.

The rejection of allogeneic transplantation is mainly

mediated by the recognition of non-self donor alloantigens

(44–46), which leads to T cell activation and proliferation.

MHC class I molecules present intracellular epitopes to CD8+
A

B

C D

FIGURE 5

Comparison of the content of cells infiltrating graft between two groups. (A-D) The cells infiltrating the graft were examined by
immunofluorescence staining. *P<0.05, **P < 0.01, ***P < 0.001.
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cytotoxic T cells, while MHC class II molecules are mainly

responsible for presenting epitopes from extracellular substances

to CD4+ helper T cells (47). Activated T cells work through a

variety of effector mechanisms, including T cell-mediated direct

damage to bile ducts, endothelium, and liver cells, as well as

indirect effects through cytokine production and tissue

destructive inflammatory cell recruitment (44, 48, 49). These

effects explain the histological appearance of typical acute T cell-

mediated rejection (48). CD8+ T cells could differentiate into

cytotoxic T-cells able to exert direct cell damage on the allograft

(44), and are also the main effector lymphocytes responsible for

mediating tissue damage.

The outcome of liver is determined by the balance of effector

and regulatory immune cell activities (50). Tregs are thought to be

involved in inducing LT immune tolerance (45, 51–55). At

present, several clinical trials on Treg treatment are under way

(56), but there are still great challenges regarding the efficacy and

safety of Treg treatment before it is truly implemented in routine

clinical application. We analyzed the infiltrating cells in the liver

and functional T cell subsets in the spleen and peripheral blood

and found that the proportion of CD4+ T cells and CD8+ T cells, as

well as the expression of Foxp3, were significantly increased in the

rejection group. However, Foxp3/CD4 ratio decreased, suggesting

that the content of Treg cells increased in the tolerant group. In
Frontiers in Immunology 09
addition, our data further indicated the important role of Treg cells

in inducing immune tolerance in liver transplantation.

Most scholars believe that PD-1 plays a crucial role in

inducing and maintaining the tolerance of peripheral transplant

(57–59), besides, it is also involved in T cell exhaustion.

overexpression of PD-1 on CD8+ T cells can induce cancer cells

to escape from anti-tumor immune response and promote

transplant tolerance (60–62). Similar to PD-1, TIGIT, a novel

immune checkpoint, which is mainly expressed on NKs, CD8+ T

cells, CD4+ T cells, and Treg cells (63), is well known for its

important role in tumor immunity and autoimmune diseases (64–

66). In transplantation immunity, TIGIT can regulate the severity

of graft-versus-host disease (GVHD) by affecting the function of

Treg cells and the number of donor antigen-reactive T cells (67–

69). However, our results were not consistent with prevailing

thinking. Reactome analysis indicated that DEGs were enriched in

the activation of PD-1 signaling pathway. The expression of PD-1

on CD4+ T and CD8+ T cells in spleen and peripheral blood

showed an increasing trend. And the mRNA expression of LAG3,

HAVCR2(TIM-3), and TIGIT were significantly up-regulated in

the rejection group, while PDCD1 was not. Currently, there are

few studies on the simple application of immune checkpoint

inhibitors (ICIs) in LT patients. Most patients suffer from

malignant tumors or liver cancer before LT (70–73). Therefore,
A B
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FIGURE 6

(A–D) Spleen and peripheral blood of recipient rats in each group was collected on POD 7. The content of CD4+Foxp3+, CD4+PD-1, CD8+PD-
1 T cells were detected by flow cytometry. (E) The serum levels of TNF-b, IFN-g, IL -2 and IL-4 in each group was detected on POD 7. *P<0.05,
**P < 0.01, ***P < 0.001.
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accurate conclusions cannot be drawn about the role of immune

checkpoints in liver transplantation rejection. The mechanism of

immune checkpoints such as PD-1, LAG3, and TIM-3 in liver

transplantation remains to be further studied.

The activation and differentiation of T cells depend on the

selection of costimulatory molecules and the composition of

cytokines in the environment (74). On the one hand, cytokines

secreted by Th1 cells, such as IFN-g, TNF-a, and IL-2, can

adversely affect the graft by recruiting and activating effector T

cells (16, 17, 75). On the other hand, immunomodulatory

cytokines secreted by Th2 cells, such as IL-4 and IL-10, can

induce tolerance to liver allografts (16, 39, 76). Our results

showed that TNF-a, IFN-g, and IL-2 increased in allograft

recipients, while IL-4 decreased. It is consistent with the above

conclusion. Besides, the content of cytokine can also significantly

affect the expression of PD-1/PD-L1 (77, 78). PD-1 expression

was found to be elevated in spleen and peripheral blood, we

speculated that the content of cytokine may also play a part in it.

To sum up, the most important thing is to regulate the balance of

various cytokines and use their advantages and disadvantages to

achieve the maintenance of homeostasis.

There are some limitations to this study. First of all, the sample

size is small. Although the current results show a significant

difference in gene expression between the homogeneic group

and the allogeneic rejection group, future studies still need a

larger cohort and other strains of rats to evaluate its accuracy.

Secondly, our study only proposed the hypothesis of possible

immune-based treatments for LT, which needs to be confirmed in

future proof-of-concept studies and clinical trials.

In summary, the current genomic and cellular profiling study

of rat liver transplantation firstly provides a comprehensive

molecular fingerprint of the immune alterations between the

allogeneic group and the homogeneic group. Our results reveal a

broad spectrum of immune system regulation including significant

changes in T lymphocytes and a variety of cytokines, as well as

maladjustment of immune checkpoints in liver transplantation

rejection, providing a novel and promising insight into the

understanding and induction of self-tolerance in LT.
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64. Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, et al. TIGIT
immune checkpoint blockade restores CD8(+) T-cell immunity against multiple
myeloma. Blood (2018) 132(16):1689–94. doi: 10.1182/blood-2018-01-825265
Frontiers in Immunology 12
65. Ostroumov D, Duong S, Wingerath J, Woller N, Manns MP, Timrott K,
et al. Transcriptome profiling identifies TIGIT as a marker of T-cell exhaustion in
liver cancer. Hepatology (2021) 73(4):1399–418. doi: 10.1002/hep.31466

66. Sato K, Yamashita-Kanemaru Y, Abe F, Murata R, Nakamura-Shinya Y,
Kanemaru K, et al. DNAM-1 regulates Foxp3 expression in regulatory T cells by
interfering with TIGIT under inflammatory conditions. Proc Natl Acad Sci U.S.A.
(2021) 118(21): e2021309118. doi: 10.1073/pnas.2021309118.

67. Zeng Q, Yuan X, Cao J, Zhao X, Wang Y, Liu B, et al. Mycophenolate mofetil
enhances the effects of tacrolimus on the inhibitory function of regulatory T cells in
patients after liver transplantation via PD-1 and TIGIT receptors.
Immunopharmacol Immunotoxicol (2021) 43(2):239–46. doi: 10.1080/
08923973.2021.1891247

68. van der List ACJ, Litjens NHR, Klepper M, Betjes MGH. Expression of
senescence marker TIGIT identifies polyfunctional donor-reactive CD4+ T cells
preferentially lost after kidney transplantation. Front Immunol (2021) 12:656846.
doi: 10.3389/fimmu.2021.656846

69. Zhang D, Hu W, Xie J, Zhang Y, Zhou B, Liu X, et al. TIGIT-fc alleviates
acute graft-versus-host disease by suppressing CTL activation via promoting the
generation of immunoregulatory dendritic cells. Biochim Biophys Acta Mol Basis
Dis (2018) 1864(9 Pt B):3085–98. doi: 10.1016/j.bbadis.2018.06.022

70. Nordness MF, Hamel S, Godfrey CM, Shi C, Johnson DB, Goff LW, et al.
Fatal hepatic necrosis after nivolumab as a bridge to liver transplant for HCC: Are
checkpoint inhibitors safe for the pretransplant patient? Am J Transpl (2020) 20
(3):879–83. doi: 10.1111/ajt.15617

71. Tabrizian P, Florman SS, Schwartz ME. PD-1 inhibitor as bridge therapy
to liver transplantation? Am J Transpl (2021) 21(5):1979–80. doi: 10.1111/
ajt.16448

72. Luo Y, Teng F, Fu H, Ding GS. Immunotherapy in liver transplantation for
hepatocellular carcinoma: Pros and cons. World J Gastrointest Oncol (2022) 14
(1):163–80. doi: 10.4251/wjgo.v14.i1.163

73. Munker S, De Toni EN. Use of checkpoint inhibitors in liver transplant
recipients. United Eur Gastroenterol J (2018) 6(7):970–3. doi: 10.1177/
2050640618774631

74. Toomer KH, Malek TR. Cytokine signaling in the development and
homeostasis of regulatory T cells. Cold Spring Harb Perspect Biol (2018) 10(3):
a028597. doi: 10.1101/cshperspect.a028597.

75. Zhang XX, Bian RJ, Wang J, Zhang QY. Relationship between cytokine gene
polymorphisms and acute rejection following liver transplantation. Genet Mol Res
(2016) 15(2). doi: 10.4238/gmr.15027599

76. Chen L, Zheng L, He W, Qiu M, Gao L, Liu J, et al. Cotransfection with IL-
10 and TGF-b1 into immature dendritic cells enhances immune tolerance in a rat
liver transplantation model. Am J Physiol Gastrointest Liver Physiol (2014) 306(7):
G575–81. doi: 10.1152/ajpgi.00283.2013

77. Wang Y, Xi Y, Han F, Liu Y, Li N, Ren Z, et al. Vascularized composite
allograft rejection is delayed by infusion of IFN-g-conditioned BMSCs through
upregulating PD-L1. Cell Tissue Res (2019) 376(2):211–20. doi: 10.1007/s00441-
018-2967-y

78. Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F, et al. The IFN-g/PD-L1
axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-
L1 therapy. J Neuroinflamm (2018) 15(1):290. doi: 10.1186/s12974-018-1330-2
frontiersin.org

https://doi.org/10.3389/fimmu.2021.662134
https://doi.org/10.3389/fimmu.2020.565518
https://doi.org/10.1038/s41598-020-80567-9
https://doi.org/10.1097/TP.0000000000003208
https://doi.org/10.3389/fimmu.2020.612737
https://doi.org/10.2215/CJN.01750218
https://doi.org/10.2215/CJN.01750218
https://doi.org/10.1002/lt.25948
https://doi.org/10.1111/j.1600-6143.2009.02859.x
https://doi.org/10.4049/jimmunol.179.8.5204
https://doi.org/10.4049/jimmunol.179.8.5204
https://doi.org/10.1007/s12032-019-1316-7
https://doi.org/10.1007/s12032-019-1316-7
https://doi.org/10.1002/jcp.27782
https://doi.org/10.1016/j.ccell.2018.02.005
https://doi.org/10.1016/j.ccell.2018.02.005
https://doi.org/10.3389/fimmu.2021.678999
https://doi.org/10.3892/or.2021.7943
https://doi.org/10.1182/blood-2018-01-825265
https://doi.org/10.1002/hep.31466
https://doi.org/10.1073/pnas.2021309118
https://doi.org/10.1080/08923973.2021.1891247
https://doi.org/10.1080/08923973.2021.1891247
https://doi.org/10.3389/fimmu.2021.656846
https://doi.org/10.1016/j.bbadis.2018.06.022
https://doi.org/10.1111/ajt.15617
https://doi.org/10.1111/ajt.16448
https://doi.org/10.1111/ajt.16448
https://doi.org/10.4251/wjgo.v14.i1.163
https://doi.org/10.1177/2050640618774631
https://doi.org/10.1177/2050640618774631
https://doi.org/10.1101/cshperspect.a028597
https://doi.org/10.4238/gmr.15027599
https://doi.org/10.1152/ajpgi.00283.2013
https://doi.org/10.1007/s00441-018-2967-y
https://doi.org/10.1007/s00441-018-2967-y
https://doi.org/10.1186/s12974-018-1330-2
https://doi.org/10.3389/fimmu.2022.947437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Transcriptomic analysis of graft liver provides insight into the immune response of rat liver transplantation
	Introduction
	Materials and methods
	Animals
	Histopathological examination and blood sample testing
	RNA isolation, library construction and&#146;sequencing
	Bioinformatic analysis
	Quantitative real-time polymerase chain&#146;reaction
	Immunofluorescence assay
	Flow cytometry
	Statistical analysis

	Results
	The allogeneic LT group has a higher degree of rejection than the homogeneic&#146;group
	RNA-seq profiling showed allograft rejection involved significant immune&#146;dysregulation
	DEGs functional annotation and enrichment analysis
	Analysis and validation of RNA-seq data
	The cells infiltrating graft liver were increased in the rejection group
	Comparison of cytokine content in peripheral blood

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


