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Autoimmune diseases are characterized by a significant sex dimorphism, with

women showing increased susceptibility to disease. This is, at least in part, due

to sex-dependent differences in the immune system that are influenced by the

complex interplay between sex hormones and sex chromosomes, with

contribution from sociological factors, diet and gut microbiota. Sex

differences are evident in the number and function of lymphocyte

populations. Women mount a stronger pro-inflammatory response than

males, with increased lymphocyte proliferation, activation and pro-

inflammatory cytokine production, whereas men display expanded regulatory

cell subsets. Ageing alters the immune landscape of men and women in

differing ways, resulting in changes in autoimmune disease susceptibility.

Here we review the current literature on sex differences in lymphocyte

function, the factors that influence this, and the implications for autoimmune

disease. We propose that improved understanding of sex bias in lymphocyte

function can provide sex-specific tailoring of treatment strategies for better

management of autoimmune diseases.

KEYWORDS

lymphocytes, sex, sex-bias, T cells, B cells, estrogen, testosterone
Background

Autoimmune diseases occur in those who are genetically susceptible, with

contributions from environmental and biological factors, resulting in subsequent gene-

environment interactions (1). There is wide disparity in the epidemiology of autoimmune

diseases between males and females, with variation seen in prevalence, age of onset,

phenotype, disease severity, and response to treatment (Table 1) (2–4, 8, 11–13, 16).

Women mount stronger innate and adaptive immune responses than men, which

provides a survival advantage to infectious diseases (32), but also a four times
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increased likelihood of developing autoimmunity (33, 34).

Despite this, sex differences are often not fully investigated or

acknowledged in immunological research and treatment

strategies. Animal models of autoimmune diseases have

historically been predominantly male, resulting in male-biased

data influencing treatment decisions, and dual-sex immunology

studies frequently failing to explore sex differences (35). More

recently, there has been a drive to better understand sex

differences in the immune response and distinguish between

the effects of hormones and genetic factors. This has resulted in

the identification of numerous sex differences in both the innate

and adaptive arms of the immune system.

Lymphocytes play a central role in the development and

progression of autoimmune diseases. Defects in immune

tolerance mechanisms result in the expansion of autoreactive

T cells and autoantibody-producing B cells leading to target

organ damage and dysfunction (36). Hundreds of genes are

differentially expressed between male and female lymphocytes

(37). The X chromosome is significantly bigger and more

complex than the Y chromosome, and contains many genes

relating to immune function, including toll-like receptors

(TLRs), cytokine receptors, and transcription factors (38, 39).

During embryogenesis, X chromosome inactivation (XCI)

randomly silences one of the X chromosomes in females.

Around 15% of genes escape XCI in women, particularly those
Frontiers in Immunology 02
on the short arm which is evolutionarily a more recent addition,

and are therefore expressed bi-allelically (40, 41). Incomplete or

skewed XCI results in over-expression of X immune-related

genes and micro RNAs (mRNA) in female lymphocytes, and is

associated with autoimmune diseases (41–47).

Furthermore, lymphocytes express cell membrane and

nuclear sex hormone receptors, signaling through which can

cause epigenetic and transcriptional changes, thereby regulating

the function of the immune system (48, 49). Nuclear hormone

receptors, upon engagement, can upregulate the expression of

several key immune related genes either directly by binding to

hormone response elements in the promoter region, or

indirectly by binding to transcription factors which then bind

to the gene promoters (49–51). Sex hormone receptors on the

cell membrane can activate cytoplasmic signaling and cause

signal transduction effects viamechanisms such as rapid calcium

fluxes (49–51).

The full extent and implication of the sex differences in

lymphocytes are yet to be fully elucidated. It is essential to

continue to better understand and acknowledge these

differences, in order to advance the knowledge of autoimmune

disease pathophysiology, and to allow the development of

tailored sex-specific therapies. This review focuses on sex

differences in lymphocytes, and the implications this has for

autoimmune disease pathophysiology.
TABLE 1 Sex bias in autoimmune diseases.

Disease Male: Female Average age of onset Disease severity Effect of pregnancy on disease References

Higher prevalence in women

Autoimmune thyroid disease 1: 4-9 F: 41
M: 45

M > F Improves (2, 3)

Rheumatoid Arthritis 1: 2-3 F: 61
M: 62

M < F Improves (4–7)

Multiple Sclerosis 1: 2-3 F: 45
M: 46

M > F Fewer relapses (8–10)

Inflammatory Bowel Disease 1: 1 F: 27
M: 27

M > F No change in relapse rate (11–13)

Coeliac Disease 1: 12 F: 44.5
M 48.9

M < F No change (14, 15)

Systemic Lupus Erythematosus 1: 8 F: 49
M: 58

M > F Worsens (16–18)

Myasthenia Gravis Early-onset: 1: 3
Late-onset: 1.5: 1

F: 51.9
M: 61.3

M < F Improves (19, 20)

Higher prevalence in men

Psoriasis/Psoriatic arthritis 1.4: 1 F: 28.7
M: 32.2

M > F Improves (14, 21–23)

Type 1 Diabetes Mellitus 1.2: 1 F: 6.3
M: 6.1

M < F Worsens complications (24, 25)

Ankylosing Spondylitis 1.1: 1 F: 29.5
M: 27.4

M < F Worsens (26–28)

Myocarditis 3.3: 1 F: 49.0
M: 34.1

M > F Increases risk (29–31)
fr
Bold values in “average age of onset” is the older age of the two. Bold in “disease severity” is the gender with greatest severity.
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Sex bias in T cells

Development and maturation

Sex-dependent differences in the frequencies of T cells

have been reported by multiple independent studies. Females

have been shown to display higher frequencies of naïve T

cells, cluster of differentiation (CD)4 T cells and higher CD4:

CD8 T cell ratios compared to males of the same age (52–55).

Conversely, males display higher frequencies of CD8 T cells,

and a higher CD8:CD4 T cell ratio (52–55). These differences

in T cell subset frequencies have been shown to be influenced

by sex hormones (51, 55). For instance, castration of male

mice results in thymic enlargement, increased output of

naïve, CD4 and CD8 T cells, and increase in autoimmune

disease susceptibility, as observed in female mice, indicating

that testosterone has a suppressive effect on lymphopoiesis

(56, 57). These effects of androgens on T cells are observed

largely in early development, as T cells lose expression of

androgen receptors (ARs) upon maturation. In contrast,

estrogen receptors (ERs) continue to be expressed by T cells

at later stages of development (58). The effects of estrogen on

T cell populations are dose dependent. Whereas low doses

have been shown to expand CD4 T cells (59), high doses

(observed during pregnancy) reduce CD4 and CD8 T cell

numbers (60).
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Proliferation, differentiation and function

T cells can be classified into functionally distinct subsets

based on the cytokines they produce. These subsets include

interferon (IFN)-g/interleukin (IL)-2/tumor necrosis factor

(TNF)-a-producing T helper 1 (Th1) cells, IL-4/IL-5/IL-13-

producing Th2 cells, IL-17/IL-22-producing Th17 cells and

regulatory T cells (Tregs) (61). Oestrogen receptors (ER) have

two main subtypes, -a and -b, with differing effects upon the T

cell milieu. Activation of ER-a, but not ER-b, results in thymic

atrophy, drives enhanced T cell activation and proliferation, and

alters T cell subset frequencies (55, 60, 62, 63). In contrast, ER-b
promotes apoptosis via inhibition of B cell lymphoma (Bcl)-2

signaling and inhibits inflammatory genes such as IFN-g (64,

65). ER-a and -b expression also differs between T cell subsets;

both higher in CD4 than CD8 T cells (60, 66).

The Th1/Th2 balance in women shifts with hormonal

changes observed during the menstrual cycle and pregnancy

(Figure 1). Low concentrations of estrogen seen in pre-ovulatory

females leads to upregulation of the IFN-g promoter (67),

interferon regulatory factor 5 (IRF5) (68, 69), TLRs (70), and

T-bet (60, 71, 72). This promotes an expansion of antigen-

specific CD4 T cell responses and a Th1 shift, with increased

production of IFN-g (60, 71, 73). In contrast, during the luteal

phase of the menstrual cycle, when estrogen levels increase, a

Th2 shift is seen, with increased IL-4 and IL-10 and decreased
FIGURE 1

The effects of sex hormones on T cells. Sex hormones bind to nuclear receptors, leading to direct binding to HREs, or indirect effects on gene
promotors through transcription factors. Oestrogen at pre-ovulatory concentrations upregulates T-bet and IRF5 to cause a Th1 shift, and
downregulates AIRE and FoxP3 to reduce Tregs. High-dose estrogen during pregnancy leads to a Th2 shift, via GATA-3, and promotes Treg
expression and PD-1 expression. Testosterone upregulates PPAR-a, and Ptpn-1 leading to reduced Th1 responses, but also suppresses Th2 cytokine
production, and therefore the Th1/Th2 bias is less clear. Testosterone does increase Th17 production, as well as increasing expression of FoxP3 and
AIRE to promote Treg differentiation and increased IL-10 production. AIRE, autoimmune regulator; AR, androgen receptor; ER, estrogen receptor;
FoxP3, Forkhead-box-P3; HREs, hormone response elements; IFN, interferon; IL, interleukin; IRF, interferon regulatory factor; mAR, membrane
androgen receptor; PPAR, proliferator-activated receptor; Ptpn, protein-tyrosine phosphatase; Th, T-helper; Treg, regulatory T cell.
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IFN-g production (74, 75). This Th2 shift has been shown to be

via ER-a driven increase in GATA-3 expression (76). Very high

levels of estrogen and progesterone that occur in pregnancy

further promote Th2 immunity, in order to promote fetal

tolerance, with increased production of IL-10 and reduced IL-

2, IL-12, and IFN-g (77–81). The mechanism of these dose-

dependent effects remain to be elucidated.

There is conflicting data as to the direction of any Th1/Th2

bias in males when compared to females (82–84). On one hand,

some studies have described a predominantly Th1 response in

males, with a more pronounced Th2 response in females (82,

85). When comparing Th1 and Th2 cytokines from 20 women

and 15 men, Escobar and colleagues reported a higher

production of IFN-g and IL-2, mirrored by reduced IL-10 and

IL-4 in men compared to women (82). On the other hand,

several other studies in humans and mice have demonstrated

decreased frequencies of Th1 in males compared to females (60,

84, 86–89). Moreover, testosterone has been shown to upregulate

the expression of peroxisome proliferator-activated receptor

(PPAR)-a (90), and protein-tyrosine phosphatase (Ptpn)-1

(88, 91), both of which inhibit Th1 differentiation. This is

further supported by studies showing that castration of mice

results in upregulation of IFN-g and T-bet expression (91, 92).

The contrasting data may be due to variability between species

and different disease settings (89, 93), as well as partly due to the

dose-dependent effects of estrogen on the Th1/Th2 balance

resulting in a constantly shifting bias between men and

women. To further complicate the picture, androgens have

also been shown to reduce Th2 cytokines IL-4, IL-5, and IL-13

(94–97), and consistently enhance production of IL-10 from T

cells (86, 88, 98, 99).

Although upregulation of PPAR-a expression by androgens

suppresses Th1 responses, this has been shown to promote Th17

responses in males compared to females (83, 100). The effects of

estrogen on Th17 responses are less clear, likely due to

differences in estrogen receptor (ER-a vs. ER-b) signaling on

Th17 differentiation and function. ER-a signaling has been

shown to promote Th17 responses, as ER-a deletion inhibits

Th17 differentiation in a mouse model of colitis (101). Moreover,

ER-a signaling has been shown to increase production of IL-17A

by Th17 cells by promoting mitochondrial respiration,

proliferation and by upregulating IL-23R expression (102). In

contrast, ER-b signaling in CD4 T cells has been shown to

suppress Th17 cell differentiation, as well as promote the

induction and maintenance of Tregs (103, 104). Progesterone

also suppresses Th17 differentiation, resulting in reduced Th17

responses during pregnancy (4).

Men display higher frequencies of Tregs compared to

women due to both genetic and hormonal influences (105).

Regulatory protein forkhead box P3 (FoxP3) expression has

been shown to be higher in males due to parental imprinting

effects, with less methylation on the maternal X allele, which is

expressed exclusively in males (106). Additionally, a recent study
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has demonstrated that Treg frequencies are one of the top

features of immune cell profiling that differentiate young post-

pubertal men from women, and that male Tregs have higher

suppressive capabilities due to increased phosphoinositide 3-

kinases (PI3K) signaling (107). The autoimmune regulator

(AIRE) gene, which is critical for Treg development, is

downregulated by estrogen and progesterone and upregulated

by testosterone, thereby resulting in increased thymic expression

of AIRE in males compared to females (108). Furthermore,

androgens also promote increased expression of the FoxP3

(109), whereas ER-a signaling downregulates FoxP3

expression (101).

Treg numbers fluctuate during the menstrual cycle with

maximum expansion in the late follicular phase when estrogen

levels are high and the woman is most fertile (110), in order to

promote tolerance for a potential pregnancy (110). During

pregnancy high levels of estrogen and progesterone further

promote Treg differentiation and upregulation of the

immunosuppressive molecule programmed cell death protein

(PD)-1 (111–117).
Sex bias in B cells

Development and maturation

Females display higher frequencies of B cells than males (55),

along with enhanced B cell survival, maturation and class

switching (118–121). Although both androgens and estrogens

can suppress B cell lymphopoiesis (122), only testosterone

reduces numbers of B cells in the bone marrow (56, 58).

Estrogen promotes hematopoiesis within the liver, which may

lead to autoreactive lymphocytes which escape central tolerance

mechanisms (123). Oestrogen also interferes with negative

selection, resulting in increased survival and expansion of

high-affinity autoreactive B cells (118, 124, 125). Studies using

ER-a and ER-b deficient mice have shown that engagement of

either receptor can affect B cell maturation, but only ER-a
engagement can drive an increase in autoreactive B cells (126).

In contrast to T cells, B cells express more ER-b than -a (127),

however ER-a expression is around four fold higher in B cells

than T cells, with higher expression in females compared to

males (128), suggesting another mechanism by which females

are prone to autoimmunity.
Proliferation, differentiation and function

Testosterone inhibits proliferation and differentiation of B

lymphocytes by reducing B-cell activating factor (BAFF)

production by macrophages and through altering key

modulators of apoptosis including downregulation of B cell

lymphoma (Bcl)-2 and nuclear factor kappa-light-chain-
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enhancer of activated B cells (NFkB) (Figure 2) (49, 129, 130).
Conversely, estrogen enhances B cell proliferation, suppresses

apoptosis, and promotes survival of autoreactive B cells via

increased expression of survival regulators BAFF, Bcl-2, CD22,

and SH2 containing protein tyrosine phosphatase (SHP)-2 (118,

122, 131–133). Oestrogen also increases expression of CD80, a

co-stimulatory signal important for B cell activation (71). In

mouse models of arthritis, higher frequencies of IL-10-

producing regulatory B cells (Bregs) that exhibit immune

suppression have been reported in males compared to females

(134). However, the sex bias in Breg frequency and function

between men and women in health requires further study.
Immunoglobulin production

Grea t e r an t ibody re sponse s and h igher basa l

immunoglobulin (Ig) levels are seen in women (55, 135).

Circulating levels of IgM, and in some studies IgG, are higher

in females than males (136–138), and are even higher in women

with three X chromosomes (139). Higher expression of the X

chromosome encoded gene TLR7 in females results in increased

IgG class-switching and higher TLR7-driven plasma cell

proliferation (140, 141). Oestrogen promotes differentiation of

B cells into antibody-secreting cells, with highest frequencies

observed just before ovulation, when estrogen is at its peak (142).

This is likely an evolutionary attempt to reduce the risk of

infection and maximize the chance of conception. Testosterone

has the opposite effects and lowers antibody production (122,
Frontiers in Immunology 05
135, 143). Moreover, mice with AR-deficient B cells display

increased autoantibody production (130).

Activation-induced cytidine deaminase (AICDA) is required

for somatic hypermutation and class switch recombination,

mechanisms which are important for Ig gene modification in

B-cells and antibody production (144). AICDA is upregulated in

B-cells by estrogen, due to increased expression of homeobox

protein (Hox)-C4, a transcriptional regulator of AICDA (122,

145), explaining the higher antibody production in females to

males. However, during pregnancy, progesterone inhibits

AICDA transcription, with subsequent reduction in somatic

hypermutation and class switch recombination (146), resulting

in reduced antibody production.
Sex bias in lymphocytes in
autoimmune diseases

It is important to consider the implications of sex differences

in lymphocytes within the context of specific autoimmune

diseases. Variation in lymphocyte responses between males

and females influence disease susceptibility and severity in

differing ways dependent upon disease mechanism. Although

less common, some autoimmune diseases have a slight male bias,

such as late onset myasthenia gravis (LOMG) (1.5:1), ankylosing

spondylitis (1.1:1), myocarditis (3.3:1) and type 1 diabetes

mellitus (1.2:1) (see Table 1) (14, 21, 24, 25). Males who do

develop female predominant autoimmune diseases, such as

rheumatoid arthritis (RA) and systemic lupus erythematosus
FIGURE 2

Sex differences in B cells. AR signaling appears to upregulate caspases, and downregulate NF-kB and Bcl2, resulting in increased B cell
apoptosis. Males also demonstrate reduced B cell lymphopoiesis in the bone marrow, reduced proliferation and differentiation of B cells, and
lower antibody production, but higher Bregs. Oestrogen upregulates Bcl-2, SHP-2, Hox-C4, and AICDA, as well as surface expression of TLR7
and CD80. Female B cells demonstrate higher proliferation, survival and maturation, higher pro-inflammatory antibody production, leading to
higher levels of autoreactive B cells. AICDA, Activation-induced cytidine deaminase; AR, androgen receptor; Bcl-2, B cell lymphoma 2; Bregs,
regulatory B cells; Hox-C4, homeobox protein C4; IFN, interferon; IL, interleukin; NF-kB, nuclear factor kappa-light-chain-enhancer of activated
B cells; SHP-2, Src homology region 2 domain- containing protein tyrosine phosphatase; TLR, toll-like receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945762
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dodd and Menon 10.3389/fimmu.2022.945762
(SLE), have lower androgen concentrations than controls, which

likely skews their lymphocyte profile towards autoimmunity

(147–149). Additionally, older men are at higher risk of loss of

central tolerance mechanisms associated with thymic involution,

as seen in LOMG (150). Here we compare and contrast sex

differences identified in four common autoimmune diseases;

SLE, multiple sclerosis (MS), RA, and myasthenia gravis (MG).
Systemic lupus erythematosus

SLE is a systemic autoimmune condition that can affect

multiple organs and tissues and is characterized by

autoantibodies directed towards a wide spectrum of cellular

components, most commonly anti-nuclear antibody (151). It is

a highly heterogeneous disease that can cause symptoms ranging

from malar rash and fever to arthritis and nephritis (152).

The expression of miRNAs and immune related genes

associated with SLE are frequently higher in females, due to

effects of skewed XCI, partial reactivation, DNA demethylation,

and estrogen binding (153–156), contributing to the female

predominance of the disease. Several upregulated miRNAs

target CBL, which increases T cell activation and accelerates T

cell activation-induced cell death (153–156). Mature naïve T and

B lymphocytes from females with SLE display higher expression

of CXCR3, which drives Th1 and Th17 infiltration into the

kidney in lupus nephritis (157, 158), and CD40LG, which

promotes IgG production (43, 159) (160). TLR7 and CXorf21

(also termed TASL; TLR adapter interacting with SLC15A4 on

the lysosome) also escape XCI (140, 141, 161–163), resulting in

higher production of IFN-a, which is critical in driving the

pathogenesis of SLE (164, 165).

Additionally, different types of lupus nephritis appear to be

driven by differing cytokine profiles. Whereas Th1-mediated

inflammation promotes diffuse lupus nephritis, seen more

commonly in males, Th2 responses result in membranous

lupus nephritis, which is more common in females (166, 167).

Skin lesions in lupus, also more common in females, are

triggered by Th2 cells, which subsequently transition to a Th1-

like phenotype as a result of increased TLR7 signaling (168, 169).

Therefore, it may be beneficial to target Th1 responses in males

and TLR7 in females with SLE.

Oestrogen has been shown to accelerate disease in mouse

models of lupus, by driving Th1 and Th2 responses via ER-a
signaling (63, 170–172). Binding of ER-a also leads to

upregulation of TLR8 and IRF5, amplifies production of IFN-

a/b, and promotes survival, expansion and activation of

autoreactive B cells in SLE (63, 68, 171, 173, 174). The

increased production of IFN-a in females has been shown to

increase ER-a expression on murine splenic cells, resulting in a

positive feedback loop that promotes inflammation (128). ER-a
and -b engagement results in a dose-dependent increase in

activation of T cells from SLE patients, with increased
Frontiers in Immunology 06
calcineurin and CD40L expression (175, 176). Overall, it

appears that ER-b has an immunosuppressive effect on disease

(63). This is further supported by a study demonstrating that

patients with SLE have lower ER-b expression, but similar ER-a,
in T cells compared to healthy controls (177).

Whereas estrogen has been shown to accelerate disease,

androgens administered to mouse models of lupus have been

shown to ameliorate disease (174, 178, 179). There are low levels

of androgen and progesterone in bodily fluids of SLE patients

compared to controls, and higher levels of estradiol, possibly due

to increased conversion of androgen precursors to estrogen (147,

1 4 8 ) . S L E - r e l a t e d immun e c omp l e x -m e d i a t e d

glomerulonephritis has been linked to a switch from

predominantly IgM anti-ds DNA, to IgG2a and IgG2b, which

occurs earlier in disease in females than males and can be

delayed by androgen administration (180, 181).

Sex hormone signaling appears to be dysregulated in SLE. In

contrast to promoting Treg differentiation in healthy females,

estrogen exposure in vitro inhibits Treg differentiation in

peripheral blood mononuclear cells (PBMCs) from SLE

patients (148). This may explain the worsening of disease that

is seen with pregnancy in SLE, in contrast to improvements in

most other autoimmune diseases during pregnancy (17). This

reduction in Treg frequencies seen in SLE patients has been

linked to the increased risk of pregnancy-related morbidities,

including fetal loss, growth restriction, preterm birth, and pre-

eclampsia (182).

Taken together, these studies suggest that chromosomal

effects resulting in higher expression of SLE-related genes and

miRNAs, in combination with dysregulated ER-a signaling,

promote T cell activation and autoantibody production,

alongside Treg inhibition. While further studies are required

to better understand mechanisms of sex differences in SLE, there

is sufficient evidence to conclude that alterations in lymphocyte

function contribute to the profound female sex bias in SLE.
Multiple sclerosis

MS causes a wide range of neurological symptoms, and

potentially significant disability, due to inflammation and

demyelination of white matter in the central nervous system

(CNS) (9). Although women are more likely to develop MS, men

are at a higher risk of developing more severe disease (183). MS

and its mouse model experimental autoimmune encephalitis

(EAE) are considered to be myelin protein-specific Th1- and

Th17-mediated diseases (184, 185). Sex differences in cytokine

production have been demonstrated in EAE, with greater Th1

activation seen in females, and increased Th17 responses in

males (83, 186, 187).

Kdm6a is a histone demethylase on the X chromosome that

regulates transcription of numerous genes. It has been identified

as one of the top differentially expressed genes on CD4 T cells
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between males and females, with higher expression in females

due to escape from XCI (107, 188). Mice lacking Kdm6a in CD4

T cells have been shown to display a downregulation of

neuroinflammation, TLR signaling and IL-17 signaling genes,

and are protected from EAE (188), suggesting that this is an

important mechanism to explain the female sex bias in MS.

Both estrogen and testosterone display protective effects in

MS, but via differing mechanisms. Androgen administration to

EAE mice has been demonstrated to protect against disease

through inducing a Th2 bias (86, 87, 189), which is dependent

upon AIRE (108). Unlike what is observed in health, estrogen

administration in EAE inhibits Th1 and Th17 responses via ER-

a binding to suppress disease (103, 104, 190). Oestrogen also

promotes B cell migration away from the target organ by

upregulating the expression of chemokine CXCL13 (191),

which acts through its receptor CXCR5 (widely expressed on

mature B cells (192)). Further beneficial effects of estrogen in MS

include expansion of PD-L1-expressing Bregs as well as

upregulation of PD-1 on Tregs (117, 191), which leads to

further downregulation of Th17 responses (117, 191, 193, 194).

Women with MS display a reduction in the incidence of

relapses during pregnancy, followed by an increased risk of

relapse post-partum (195). In the third trimester, high levels of

estrogen modulate CD4 T cell function by promoting a decrease

in Th17 cells mirrored by an expansion of Tregs (196). This

protective effect is further enhanced by ER-a signaling in Bregs,

potentiating Treg activity (197, 198). Additionally, progesterone

has also been shown to suppress EAE by promoting IL-10

production by B cells (144, 198). In the post-partum period, B

cells from MS patients preferentially develop into plasma cells

(199). Furthermore, activated memory T cells from relapsing MS

patients produce more pro-inflammatory cytokines when

compared to non-relapsing patients and healthy controls

postpartum (200).

To summarize, MS is more common in females that males,

due to genetic effects such as increased expression of Kdm6a.

However, in contrast to its role in SLE, estrogen has

immunosuppressive effects on T and B lymphocytes and

ameliorates disease.
Rheumatoid arthritis

RA is a chronic inflammatory disease that results in pain,

swelling, stiffness and deformity of multiple joints (5). RA is

around three times more common in females than males and has

a peak age of onset around the time of menopause in women, but

occurs towards later life in men (6). The onset of RA is

associated with the post-menopausal and postpartum periods,

suggesting links with falling levels of female sex hormones (6, 10,

201). Of note, men with RA have lower androgen concentrations

and higher estrogen levels than controls (149).
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Nearly all human autoimmune diseases have been linked to

specific human leukocyte antigen (HLA) genes, mainly

haplotypes in major histocompatibility complex (MHC) class

II (202). It is suggested that these haplotypes predispose to

autoimmunity by presenting many peptides, with specific

haplotypes linked to differing cytokine profiles (203). HLA-

DR4 is associated with RA and supports a female sex bias

(134, 204). Female HLA-DR4-transgenic mice display more

robust antigen presentation by B cells than males, and

increased IL-4 and IL-13 production, which further promotes

B cell responses (202, 204). In contrast, HLA-DR4

males produce more anti-inflammatory IL-10 and have

higher numbers of Tregs and Bregs (204). Treg frequencies

decrease following castration of these male mice supporting

immunosuppressive effects of androgens (204).

Oestrogen supplementation to mice with collage-induced

arthritis limits disease development and severity by reducing

IFN-g and TNF-a production, as well as by shifting

autoantibody isotype from IgG2a to IgG1 (205–207). In

addition, estrogen decreases Th17 cells in the joints during

established arthritis by promoting their migration to lymph

nodes, via ER-a-mediated upregulation of CCR6 on Th17 cells

and CCL20 in lymph nodes (206). Androgens also suppress RA,

in part due to inhibition of NF-kB and subsequent reduction in

IL-6 (208, 209).

The T cell co-stimulatory molecule CD2 is involved in T cell

activation, as well as Th17 and Treg differentiation (202). CD2 is

associated with RA and is expressed at higher levels in the RA

synovium and healthy PBMCs of women than men (210). In

addition, it has recently been demonstrated that a polymorphic

ER-binding site regulates expression of surrounding genes,

including CD2, in a sex-specific manner, resulting in sexually

dimorphic T cell responses (202).

Altogether, these studies implicate a significant role for

genetic factors, such as HLA type, along with sex hormones

for the sex-specific lymphocyte differences in RA.
Myasthenia gravis

In MG pathogenic autoantibodies cause neuromuscular

junction transmission failure and muscle weakness, which can

be life-threatening (19). Interestingly, the age of onset is a critical

determinant of sex bias in MG. In female predominant early-

onset MG (EOMG; <50 years), there is lymphoid follicular

hyperplasia (LFH) and germinal centers containing numerous

B cell clones within the thymus (150, 211). Thymocytes and

circulating T cells from patients with MG express more ER-a
and -b than controls (66). The upregulation of ERs has been

shown to be a result of increased pro-inflammatory cytokines

IFN-g, IL-1 and TNFa (66), that likely enhance reactivity to

estrogens, and promote B cell responses. Furthermore, estrogen
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exposure in experimental autoimmune MG has been shown to

enhance Th1 responses, and production of IgG2a and IgG2b

autoantibodies, as well as exacerbate disease (212).

In male predominant late-onset MG (LOMG), the thymus is

atrophied, and autoimmunity is thought to result from a lack of

AIRE, along with a loss of muscle-like myoid cells, resulting in a

failure of negative T cell selection to muscle-specific antibodies

(213–215). Thymic involution is known to progress at a faster

rate in males than females, and in LOMG there is a decrease in

naive cell export from the thymus, with a trend to lower export

in males, perhaps in part explaining the male bias to disease

(213, 216).

Genetic studies have also demonstrated sex-specific HLA

alleles to associate with the different subtypes of MG. HLA-B*08

and HLA-DR3 associate with EOMG, with a stronger

association in females (217, 218). In contrast, LOMG is

associated with HLA-B7 and/or HLA-DR2 alleles in males but

not females (218, 219).
Factors that influence sex bias
in lymphocytes

Understanding and acknowledging sex bias needs to be at

the forefront of future immunological research. There are several

additional factors detailed below that should be taken into

consideration, due to their potential influence on sex

differences in lymphocytes.
Hormonal influences

Hormonal effects vary between autoimmune diseases, as

detailed in the previous sections. As such, differences in

exposures to hormonal therapies between the sexes also needs

to be considered in the context of specific autoimmune diseases.

For instance, high-dose estrogen supplementation in female MS

patients reduces IFN-g expression by PBMCs, and results in an

improvement in disease (185). In contrast, in SLE, use of

hormonal contraceptives may increase risk of developing

disease, and hormone replacement therapy use is linked to an

increase in mild-moderate disease flares (220, 221).

Male patients with MS treated with testosterone displayed

reduced CD4 T cells, increased NK cells, reduced IL-2

production from PBMCs, and reduced brain atrophy (222,

223). Gonadotrophin-releasing hormone (GnRH) antagonists,

used in prostate cancer treatment, reduce testosterone levels.

GnRH antagonists block thymocyte proliferative responses and

reduce numbers of CD4 T cells, Tregs and B cells (224–226).

GnRH agonists have also been shown to exert sexually

dimorphic actions in an SLE mouse model, with worsening of
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disease seen only in females, potentially due to gender

differences in the expression of G proteins on immune cells

(227). Worsening of MS in females has also been reported with

their use (228–230).
Ageing

Immunosenescence that occurs with age results in both a

reduced functional capacity of the immune system to protect

against infection as well as enhanced immune-mediated

inflammation, commonly known an “inflammaging” (231,

232). This decline in immune function occurs earlier in men

than women, but the rate of decline is faster in women upon

onset, paralleling changes in sex hormone levels, and making the

sex difference in lymphocytes more divergent (233–236). In

addition to hormonal changes, sex-based differences in the

aging of lymphocytes have been attributed to increased

skewing of XCI in females (237), differences in mitochondrial

dysfunction (238), telomere shortening (239), chromatin

accessibility (233) and demethylation (240).

As T cells age, there is a sex difference in the upregulation of

genes related to inflammaging. Older females display higher

proinflammatory responses and weaker T cell mediated defenses

compared to age-matched males (236, 238). There is an increase

in memory/activated T cells, and an increased CD4:CD8 T cell

ratio, with a greater rate of increase in women (52, 241–243).

Women also demonstrate a later but stronger rise in IL-6 than

men (244). IFN-g transiently increases in the early

postmenopausal period in women (237, 245, 246), before

falling to its lowest level in late menopause (247). In contrast,

IFN-g levels have been seen to either decline or not change with

age in healthy men (232, 246). In older men with inflammatory

or autoimmune diseases however, IFN-g and IL-17 production

by T cells is higher than younger men, which increases with

disease severity, a pattern not seen in older women with the same

diseases (232).

Although females have more antibody-producing plasma

cells than males, this trend has been shown to weaken with age

(235). Further, a subset of dysfunctional B cells known as age-

associated B cells (ABCs), are associated with autoantibody

production and are expanded in elderly females (248–250). It

is proposed that overexpression of TLR7 in females may lead to

accumulation of this autoantibody-producing B cell subset

(251). In patients with SLE, IgD-CD27- double negative (DN)

B cells, which are similar to ABCs, are expanded and display

hyper-responsiveness to TLR7 (252, 253).

Overall, sex-specific changes in lymphocytes with age are

complex and not yet fully understood, however, provide some

explanation as to why autoimmune disease susceptibility differs

between men and women with age.
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Interaction with the target organ

Sex differences have been demonstrated in lymphocyte

interaction with target organs of various autoimmune diseases

(189, 242, 243, 254, 255). These are influenced by sex differences

in target organ structure and cell death pathways, as well as sex

hormone interaction with the target tissue. Despite increased

prevalence of autoimmune disease in women, in many

conditions males appear to be prone to greater target organ

damage. This is demonstrated by increased apoptosis of

thymocytes and thymic atrophy in male rodents than in

females given lipopolysaccharide, which binds to TLR4 on

macrophages to trigger a pro-inflammatory cascade promoting

a Th1 response (256, 257).

In MS, male sex is a risk factor for poor outcome and

increased brain atrophy (183). This is likely to be, in part, due to

sex differences in miRNA expression within the brain (258, 259),

differences in blood-brain barrier permeability (254), and the

ability of estrogen to exhibit neuroprotective effects (260).

Studies in hypoxic brain injury and stroke have demonstrated

differences in Treg responses, and their effects upon cerebral

infiltration and brain injury between men and women, resulting

in Treg-mediated neuroprotection in females but increased

neurodegeneration in males (255, 261).

In contrast to MS, female patients with RA on TNF-a
inhibitors display lower remission rates in comparison to

males (34, 262). This may be explained by the higher

expression of CD2 in the synovium of females; in vitro

deletion of CD2 has been shown to reduce the damaging

effects of TNF-a on synovial cells (210, 263). In addition,

there is thought to be a male-biased benefit of anti-TNF-a-
driven reduction in the peripheral conversion of steroid

precursors to estrogen in synovial tissues in RA (264–266),

levels of which correlate with inflammation (149). Finally,

synovial secretion of IL-6 and IL-8 positively correlate with

the expression of ER-a and ER-b, but not AR (267), suggesting

that estrogen signaling might contribute to synovial

inflammation in females.
Differences in the innate immune system

Differences in the innate immune system perpetuate the

more robust immune responses seen in females. Neutrophils

and macrophages have higher phagocytic activity in females

than males (268), and female antigen presenting cells are

more efficient at presenting peptides (269). Testosterone

reduces expression of TLR4, reduces synthesis of TNF, and

increases BAFF, IL-10, IL-12 and TGF-b production from

macrophages (88, 129, 270, 271). Low dose estrogen activates

dendritic cells (DCs) (272, 273), whereas (272, 273)high dose
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estrogen increases DC tolerance, reduces proinflammatory

cytokine production and increases IL-10 and TGF-b mRNA

expression (274). Sex differences in the complement system

have also been demonstrated, including increased activity of

the alternative pathway in males (275, 276), contrasting to a

greater dependence on the lectin pathway in females (277).

Female mice have been shown to display reduced

susceptibility to complement-mediated damage, possibly

due to differences in terminal pathway components (278).

It is therefore unclear why complement-mediated diseases

are more common in women, but this may contribute

towards the increased male-susceptibi l i ty to target

organ damage.
Gut microbiome

Mouse studies have shown that differences in the gut

microbiome, with influence from sex hormones, contribute to

sex differences in the immune response. This has been well

summarized in a recent review (279). Conflicting data exists in

human studies, in which it is harder to account for the multiple

confounding factors. However, sex differences have been shown

in the gut microbiome in numerous studies, with influence from

sex hormones (280–282). Thus, its influence upon autoimmune

disease and mechanisms to modulate this requires

further investigation.
Other factors

In addition to genetic and hormonal factors, sex differences

in exposure and response to environmental factors including

sociological differences, psychological stress, diet, obesity,

vitamin D, smoking, and viral infections may also impact

upon the sex differences in lymphocytes (283–288). It is likely

that these factors contribute towards the increasing incidence

seen in autoimmune diseases by 3 to 9% each year (1).

Women are more likely to develop cross-reactive T and B

cells to foreign stimuli such as cigarette smoking, viruses, and

dietary peptides, which can act as triggers for autoimmune

disease (289–291). Females are also more likely to be obese,

with higher amounts of leptin produced by their adipocytes. This

promotes pro-inflammatory Th1 responses and inhibits Tregs

(292–294). In patients with MS, the immunomodulatory effects

of vitamin D were found to be greater in females than in males

including inhibition of T cell proliferation, reduction in IFN-g
and IL-17, and an increase in Tregs and IL-10-secreting cells

(295). Additionally, an independent study also showed that

vitamin D promotes Treg differentiation and can ameliorate

EAE in an estrogen-dependent manner (296).
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Conclusion

The influence of sex chromosomes, modulated by direct and

indirect effects of sex hormones, contributes to sex differences in

lymphocyte populations and their functions. Although the

contribution of these differences to specific autoimmune

diseases remains to be fully understood, it is apparent that

they contribute to the disparities in disease susceptibility,

severity, and response to treatment between men and women.

It is therefore important to acknowledge these differences in

lymphocytes when evaluating treatment strategies, or disease

biomarkers, as a step towards personalized medicine for

individuals with autoimmune diseases. Future research aimed

to further elaborate the sex bias in the immune response could

provide novel tailored treatment strategies for improved

management of autoimmune diseases.
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Estrogen enhances susceptibility to experimental autoimmune myasthenia gravis
by promoting type 1-polarized immune responses. J Immunol (2005) 175:5050–7.
doi: 10.4049/jimmunol.175.8.5050

213. Chuang W-Y, Ströbel P, Bohlender-Willke A-L, Rieckmann P, Nix W,
Schalke B, et al. Late-onset myasthenia gravis - CTLA4(low) genotype association
and low-for-age thymic output of naïve T cells. J Autoimmun (2014) 52:122–9. doi:
10.1016/j.jaut.2013.12.006

214. Marx A, Hohenberger P, Hoffmann H, Pfannschmidt J, Schnabel P,
Hofmann H-S, et al. The autoimmune regulator AIRE in thymoma biology:
autoimmunity and beyond. J Thorac Oncol (2010) 5:S266–72. doi: 10.1097/
JTO.0b013e3181f1f63f

215. Aarli JA. Late-onset myasthenia gravis: a changing scene. Arch Neurol
(1999) 56:25–7. doi: 10.1001/archneur.56.1.25

216. Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging:
morphological, radiological, and functional overview. Age (2014) 36:313–51. doi:
10.1007/s11357-013-9564-5

217. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk
for myasthenia gravis maps to a (151) Pro!Ala change in TNIP1 and to human
leukocyte antigen-B*08. Ann Neurol (2012) 72:927–35. doi: 10.1002/ana.23691
Frontiers in Immunology 15
218. Janer M, Cowland A, Picard J, Campbell D, Pontarotti P, Newsom-Davis J,
et al. A susceptibility region for myasthenia gravis extending into the HLA-class I
sector telomeric to HLA-c. Hum Immunol (1999) 60:909–17. doi: 10.1016/S0198-
8859(99)00062-2

219. Newsom-Davis J, Willcox N, Schluep M, Harcourt G, Vincent A, Mossman
S, et al. Immunological heterogeneity and cellular mechanisms in myasthenia
gravis. Ann N Y Acad Sci (1987) 505:12–26. doi: 10.1111/j.1749-
6632.1987.tb51279.x

220. Holroyd CR, Edwards CJ. The effects of hormone replacement therapy on
autoimmune disease: rheumatoid arthritis and systemic lupus erythematosus.
Climacteric (2009) 12:378–86. doi: 10.1080/13697130903025449

221. Sanchez-Guerrero J, Karlson EW, Liang MH, Hunter DJ, Speizer FE,
Colditz GA. Past use of oral contraceptives and the risk of developing systemic
lupus erythematosus. Arthritis Rheum (1997) 40:804–8. doi: 10.1002/
art.1780400505

222. Sicotte NL, Giesser BS, Tandon V, Klutch R, Steiner B, Drain AE, et al.
Testosterone treatment in multiple sclerosis. Arch Neurol (2007) 64:683.
doi: 10.1001/archneur.64.5.683

223. Gold SM, Chalifoux S, Giesser BS, Voskuhl RR. Immune modulation and
increased neurotrophic factor production in multiple sclerosis patients treated with
testosterone. J Neuroinflamm (2008) 5:32. doi: 10.1186/1742-2094-5-32

224. Morale MC, Batticane N, Bartoloni G, Guarcello V, Farinella Z, Galasso
MG, et al. Blockade of central and peripheral luteinizing hormone-releasing
hormone (LHRH) receptors in neonatal rats with a potent LHRH-antagonist
inhibits the morphofunctional development of the thymus and maturation of the
cell-mediated and humoral immune responses. Endocrinology (1991) 128:1073–85.
doi: 10.1210/endo-128-2-1073

225. Jacobson JD, Nisula BC, Steinberg AD. Modulation of the expression of
murine lupus by gonadotropin-releasing hormone analogs. Endocrinology (1994)
134:2516–23. doi: 10.1210/endo.134.6.8194477

226. Page ST, Plymate SR, Bremner WJ, Matsumoto AM, Hess DL, Lin DW,
et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-gamma
expression, and NK cells: a physiological role for testosterone and/or its
metabolites. Am J Physiol Endocrinol Metab (2006) 290:E856–63. doi: 10.1152/
ajpendo.00484.2005

227. Jacobson JD. Gonadotropin-releasing hormone and G proteins: Potential
roles in autoimmunity. Ann New York Acad Sci (2006) 917:809–18. doi: 10.1111/
j.1749-6632.2000.tb05446.x

228. Sakurai K, Shinohara K, Imai T, Yamano Y, Hasegawa Y. Severe multiple
sclerosis manifesting upon GnRH agonist therapy for uterine fibroids. Intern Med
(2020) 59:3093–6. doi: 10.2169/internalmedicine.4839-20

229. Confavreux C, de Sèze J, Brassat D. Increased risk of multiple sclerosis
relapse after in vitro fertilisation. JNNP (2012) 83(8):796-802. doi: 10.1136/jnnp-
2012-302235

230. Torkildsen Ø, Holmøy T, Myhr K-M. Severe multiple sclerosis reactivation
after gonadotropin treatment. Mult Scler Relat Disord (2018) 22:38–40.
doi: 10.1016/j.msard.2018.02.031

231. Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How
sex and age affect immune responses, susceptibility to infections, and response to
vaccination. Aging Cell (2015) 14:309–21. doi: 10.1111/acel.12326

232. Goetzl EJ, Huang M-C, Kon J, Patel K, Schwartz JB, Fast K, et al. Gender
specificity of altered human immune cytokine profiles in aging. FASEB J (2010)
24:3580–9. doi: 10.1096/fj.10-160911

233. Márquez EJ, Chung C-H, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A,
et al. Sexual-dimorphism in human immune system aging. Nat Commun (2020)
11:751. doi: 10.1038/s41467-020-14396-9

234. Anderson CL, Beever CL, Penaherrera MS. The dynamics of X-inactivation
skewing as women age. Genetics (2004) 66(4):327–32. doi: 10.1111/j.1399-
0004.2004.00310.x

235. Huang Z, Chen B, Liu X, Li H, Xie L, Gao Y, et al. Effects of sex and aging
on the immune cell landscape as assessed by single-cell transcriptomic analysis.
Proc Natl Acad Sci U.S.A. (2021) 118(33):e2023216118. doi: 10.1073/
pnas.2023216118

236. Marttila S, Jylhävä J, Nevalainen T, Nykter M, Jylhä M, Hervonen A, et al.
Transcriptional analysis reveals gender-specific changes in the aging of the human
immune system. PloS One (2013) 8:e66229. doi: 10.1371/journal.pone.0066229

237. Yasui T, Maegawa M, Tomita J, Miyatani Y, Yamada M, Uemura H, et al.
Changes in serum cytokine concentrations during the menopausal transition.
Maturitas (2007) 56:396–403. doi: 10.1016/j.maturitas.2006.11.002
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