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Cuproptosis regulator-mediated
patterns associated with
immune infiltration features
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cuproptosis-related signatures
to guide immunotherapy
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Jing Guo1, Wenqian Li1, Yuqi Zhang1, Xiaoqian Bian1,
Wensheng Qiu1* and Shasha Wang1*

1Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China, 2Shandong
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Background: Liver hepatocellular carcinoma (HCC) is a prevalent cancer that

lacks a sufficiently efficient approach to guide immunotherapy. Additionally,

cuproptosis is a recently identified regulated cell death program that is

triggered by copper ionophores. However, its possible significance in tumor

immune cell infiltration is still unclear.

Methods: Cuproptosis subtypes in HCC were identified using unsupervised

consensus cluster analysis based on 10 cuproptosis regulators expressions, and

a cuproptosis-related risk signature was generated using univariate and LASSO

Cox regression and validated using the ICGC data. Moreover, the relationship

between signature and tumor immune microenvironment (TME) was studied

through tumor immunotherapy responsiveness, immune cell infiltration, and

tumor stem cell analysis. Finally, clinical specimens were analyzed using

immunohistochemistry to verify the expression of the three genes in

the signature.

Results: Two subtypes of cuproptosis regulation were observed in HCC, with

different immune cell infiltration features. Genes expressed differentially between

the two cuproptosis clusters in the TCGA were determined and used to

construct a risk signature that was validated using the ICGC cohort. Greater

immune and stromal cell infiltration were observed in the high-risk group and

were associated with unfavorable prognosis. Elevated risk scores were linked

with higher RNA stemness scores (RNAss) and tumor mutational burden (TMB),

together with a greater likelihood of benefitting from immunotherapy.

Conclusion: It was found that cuproptosis regulatory patterns may play

important roles in the heterogeneity of immune cell infiltration. The risk
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.945516/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.945516&domain=pdf&date_stamp=2022-09-29
mailto:wsqiuqd@163.com
mailto:wss_0528@qdu.edu.cn
https://doi.org/10.3389/fimmu.2022.945516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.945516
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2022.945516

Frontiers in Immunology
signature associated with cuproptosis can assess each patient’s risk score,

leading to more individualized and effective immunotherapy.
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Introduction

Liver cancer is an aggressive tumor with poor outcomes (1).

Liver hepatocellular carcinoma (HCC) accounts for more than

80% of all primary liver malignancies for which surgical resection

is currently the most effective treatment (2). Unfortunately,

diagnosis of HCC is frequently delayed leading to unfavorable

outcomes (3). Despite recent significant progress in

immunotherapy and targeted therapy, the five-year survival

rate remains low, at approximately 15% (4). An important

reason for this is that patients with HCC vary in their response

to immunotherapy, and the factors that influence and predict the

response to immunotherapy in HCC remain unclear (5).

Recent research has shown that copper toxicity-mediated

cell death differs from other forms of regulated cell death; this

novel mechanism is termed cuproptosis (6). Copper is both

necessary and potentially toxic for cells. It is an essential cofactor

required by all living organisms to function properly (7–9);

however, high levels of copper accumulation or improper

distribution in the cell can lead to cell death. Imbalances in

copper homeostasis in cells can lead to severe disease in humans,

including tumor development (10, 11). Excess copper has been

linked with various types of cancer, including breast (12–14),

prostate (15–17), colon (18), lung (19), brain (20), and liver (21)

cancer. However, the reasons underlying elevated copper levels

in tumors are unclear. Recent studies revealed the mechanism

associated with copper-mediated cell death. A study by Tsvetkov

et al. showed that cuproptosis is associated with copper binding

to fatty acylated moieties of tricarboxylic acid, resulting in the

abnormal aggregation of fatty acylated proteins and the loss of

iron-sulfur cluster proteins, leading to proteotoxic stress and cell

death (6). These findings suggest a starting point for

investigating the application of cuproptosis in disease

treatment, especially, for tumor therapy.

Copper, as a key trace element, is necessary for the

functioning of the immune system. Copper deficiency

adversely affects immune function and exposes the organism

to microbial infection (22). The immune system requires copper

for a variety of functions. The metal can modulate the activation

of cells associated with innate immunity such as macrophages

and neutrophils during bacterial infection and leukocyte

differentiation, maturation, and migration (23, 24). Copper
02
deficiency may also affect immune cell distribution in tissues

or the maturation pattern of leukocyte populations (25). In

addition, intratumoral copper can regulate PD-L1 expression

and affect tumor immune escape (26). These reports suggest an

association between copper and the modulation of the

immune response.

Here, we used data from the TCGA to investigate

cuproptosis subtypes and correlate these subtypes with

immune-infiltration features. Signature genes associated with

cuproptosis were identified by differential and prognostic

analysis, and a risk signature using these genes was generated.

This cuproptosis-related risk signature identifies specific features

of immune infiltration, permitting the development of

individualized immunotherapy.
Methods

Collection of data

Data on gene expression (fragments per kilobase, FPKM),

mutations, and clinical data were obtained from the Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/

). Patients lacking survival information were not enrolled. Xena

(http://xena.ucsc.edu/) was utilized to obtain copy number

variation (CNV) data and RNA stemness scores (RNAss) for

TCGA samples. Validation was performed using data available

from the International Cancer Genome Consortium (ICGC)

(https://dcc.ICGC.org/projects/LIRI-JP) for 229 HCC patients

with complete information. The 10 cuproptosis regulators

identified by Tsvetkov et al. (6) were used (Table S1). Since

TCGA and ICGC data are publicly available, permission from an

ethics committee was not necessary for this work. Despite this,

the investigation was performed in conformity with the

procedure specifications established by the TCGA and

the ICGC.
Profiling of cuproptosis regulators

Principal component analysis (PCA) using the expression of

cuproptosis regulators was performed on both HCC and normal
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samples with the package “scatterplot3d” in R, with relationships

between the regulators examined using “corrplot”, and the

CNVs of 10 regulators on human chromosomes using “Rcircos”.
Consensus cluster analysis of
cuproptosis regulators

The “ConsensusClusterPlus” package in R was employed for

unsupervised consensus cluster analysis (27). The criteria for

clustering were an initial gradual increase in the cumulative

distribution function (CDF) curve, strong intraclass

relationships and weak interclass relationships, and no

unacceptably small sample sizes in any of the groups. The R

packages “ggplot2” and “Rtsne” were used for PCA and t-

distributed random neighbor embedding (t-SNE) analysis,

respectively. Overall survival (OS) in the different clusters was

analyzed with Kaplan-Meier (K-M) curves. Enrichment analysis

of genes was conducted with gene set enrichment analysis

(GSEA, v4.2.1; https://www.gsea-msigdb.org/gsea/downloads.

jsp) (28) and Gene Ontology (GO) using the R package

“clusterProfiler” (29).
Immune infiltration profiles in the
different groups

The relative abundance levels of immune cell types in the

HCC microenvironment were examined by single-sample GSEA

(ssGSEA) (30, 31). Immune cell genomes obtained from

Charoentong et al. (32) were used as markers for the various

cell types. Tumor immune dysfunction and rejection (TIDE;

http://tide.dfci.harvard.edu/) was also used as a marker for

examining immune escape mechanisms and predicting the

response to immunotherapy (33). Higher TIDE scores indicate

a greater likelihood of immune escape, leading to the probability

of reduced treatment efficacy. The degree of infiltration of six

immune cell types associated with the expression of three

differentially expressed genes (DEGs) was determined with the

Tumor Immune Estimation Resource (TIMER) database

(https://cistrome.shinyapps.io/timer/) (34, 35). The “SCNA”

module was utilized to compare infiltration levels between

tumors with different CNVs for specific genes.
Comparison of responsiveness
to immunotherapy

The IMvigor 210 cohort comprising cancer patients treated

with programmed death ligand 1 (PD-L1) inhibitors was used

for the prediction of immunotherapy response (36). These
Frontiers in Immunology 03
samples were categorized based on the patient’s response,

namely partial response (PR), complete response (CR),

progressive disease (PD), and stable disease (SD), with PR and

CR representing immunotherapy response and PD and SD

representing a lack of response. The R package “pRRophetic”

was utilized to compute the half-maximal inhibitory

concentration (IC50) of the drugs with low IC50 values

indicating greater drug sensitivity.
Construction and validation of the HCC
risk signature

Two patient clusters were formed based on the expression of

the 10 cuproptosis-related regulatory genes. Genes expressed

differentially between the clusters were determined with the

empirical Bayesian method in the “limma” package with

significance set as an adjusted P-value < 0.0001. Further DEGs

between HCC samples and adjacent normal tissue were analyzed

to narrow down candidate signature genes (P<0.0001). Finally,

univariate Cox regression as well as least absolute shrinkage and

selection operator (LASSO) analysis (37) were employed to

detect DEGs in the final signature. Risk scores were calculated

for all HCC samples and groups with low-risk and high-risk

were identified in the TCGA cohort based on median risk scores.

The risk score was calculated as:

Risk Score  =o
n

i=0
bi � Gi

where bi denotes the gene coefficient; i and n are the number of

genes in the signature; Gi denotes the gene expression value.

The risk scores for samples in the ICGC set were then

determined using the risk coefficients of the signature DEGs in

the TCGA, and the ICGC samples were allocated two groups

(low risk and high risk) using the risk thresholds observed in the

TCGA. K-M survival curves were utilized to evaluate OS

between the groups. Risk signature sensitivity and specificity

were calculated using receiver operating characteristic

(ROC) curves.
Nomogram construction and verification

In both theTCGAand ICGCcohorts, hazard ratiomodels were

developed using univariate and multivariate Cox regression to

detect independent prognostic variables. A nomogram including

risk scores and other clinicopathological features was then

constructed in the TCGA cohort and one-, three-, and five-year

calibration curves for constructed for accuracy validation. The area

under the ROC curve (AUC) and decision curve analysis (DCA)

were used to evaluate the nomogram’s discriminative power.
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Determination of the relationships
between tumor mutation and
risk signature

The R package “maftools” was used to generate the waterfall

charts for the low- and high-risk groups respectively. Somatic

mutation analysis was used to determine the tumor mutational

burden (TMB) score of each TCGA-HCC patient. Subsequently,

the Pearson correlation analysis was studied to determine the

link between risk score and TMB. The data was further

expressed in scatterplots and boxplots. In addition, boxplots

were generated to demonstrate the differences in immune cell

infiltration between the low- and high-TMB groups,

respectively. The overall survival (OS) rate among these

groups were determined through K-M survival curves.
Comparison of immunohistochemistry in
normal and HCC samples

Immunohistochemical staining was performed with

antibodies against human G6PD (25413-1-AP; proteintech),

CDCA8 (bs-7834R; Boaosen), and Cyclin B1 (bs-0572R;

Boaosen), followed by a pathologist based on the percentage of

positive cells and staining intensity to score sections. Staining

intensity was scored as 0 (negative), 1 (weak), 2 (moderate), or 3

(strong), and the proportion of positive cells expressed was

scored as 1 (0-25%), 2 (26-50%), 3 (51– 75%) or 4 (76–100%).

The final score was obtained by multiplying the expression ratio

and the signal intensity.
Expression and prognostic analysis of
three DEGs

The expression of three genes differentially expressed

between normal tissues and HCC was analyzed using the

“limma” R package, and the “surv cutpoint” function in

“survminer” was employed to examine the optimal cut-off

expression values for survival. Groups with high and low

expression were established and OS was compared between

groups using K-M analysis.
Statistical analysis

All statistical analysis was conducted using R version 4.1.2

(http://www.R-project.org) and its accompanying packages. The

Kruskal-Wallis test and one-way ANOVA were used to examine

differences between three or more groups. OS comparisons were

conducted using K-M analysis and the log-rank test. Univariate

and multivariate Cox regression analyses were used to calculate
Frontiers in Immunology 04
hazard ratios and identify independent risk factors. The diagnostic

value of risk scores and nomogrammodels was assessed using ROC

curves. P<0.05 was considered to be the criterion for significant

statistical difference.
Results

The landscape of cuproptosis regulators
in HCC

Based on the study by Tsvetkov et al. (6),10 cuproptosis

regulators (7 positive regulators and 3 negative regulators) were

included in this study. The expression of these regulators differed

significantly between normal and HCC tissues. Apart from the

critical regulator FDX1, which was down-regulated in HCC, all

other regulators were up-regulated in tumor tissue in comparison

with controls (Figure 1A). PCA analysis indicated that the

expression of all 10 regulatory genes clearly distinguished

between HCC and normal tissue (Figure 1B). After the division

of the genes into high and low expression groups using

“survminer”, it was observed that low levels of FDX1 were linked

with poor HCC prognosis, while the remaining genes exhibited an

opposite trend (P>0.05 for DLD due to insufficient sample) (Figure

S1). Analysis of co-expression of the regulators indicated that all

had positive regulatory relationships apart from FDX1 where a

negative relationship was observed (Figure 1C). The highest

correlation (0.47) was seen between DLD and PHAR1. The

regulatory network demonstrated both the interactions between

the genes and their potential prognostic significance for HCC

(Figure 1D). The inconsistent findings for FDX1 suggest that it

may be more critical in the regulation of cuproptosis (6). Further

analysis of the genetic basis of cuproptosis using the TMBs and

CNVs of the 10 regulators showed alterations in 5.85% of the 364

samples (16mutations). The highest number ofmutations was seen

in CDKN2 followed by DLD and MTF1 (Figure 1E). CNVs were

common in the 10 genes, with LOSS occurring more frequently

than GAIN. LIAS and GLS showed higher CNV gains, while

CDKN2 exhibited higher loss (Figure 1F). Figure 1G shows the

chromosomal location of the regulators’ CNVs. These findings

marked different levels of these regulatory factors in tumor and

normal tissues, implicating disturbances in cuproptosis regulator

expression in HCC.
Correlations between cuproptosis
clusters and TME features

Patterns of cuproptosis were determined by unsupervised

consensus cluster analysis of cuproptosis regulator expression in

HCC and the results of the consensus clustering (k2–9) were

visualized with a CDF plot (Figures 2A; S2). Examination of the
frontiersin.org
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consensus matrix showed that k=2 was the best option, and that

each sample in the cluster exhibited a strong correlation

(Figure 2A). The HCC patients were, therefore, assigned to one

of two clusters (A or B). The clustering results are shown in Table

S2. PCA (Figure 2B) and t-SNE (Figure 2C) analysis showed that
Frontiers in Immunology 05
there were two discrete directions within the clusters. Furthermore,

we found that the prognosis of these patients was significantly

different, with patients in cluster A showing better OS (Figure 2D).

Multi-GSEA enrichment analysis indicated significant differences

in biological processes between the clusters, specifically, in
B

C D

E

F

G

A

FIGURE 1

Expression of cuproptosis-regulatory genes in HCC. (A) Comparison of expression between normal and tumor tissues (B) PCA of the expression
of the 10 genes. (C) Spearman correlations between genes. The color blue represents negative regulation; the color red represents positive
regulation. (D) Comprehensive network map combining cuproptosis regulator interactions and prognosis. (E) Mutation frequencies of the 10
regulatory genes in 364 HCC s specimens. (F) CNV values for cuproptosis regulators in HCC specimens. (G) Chromosomal locations of CNV
alterations in cuproptosis regulators. *P < 0.05; **P < 0.01; ***P < 0.001. HCC, hepatocellular carcinoma; PCA, principal component analysis;
CNV, copy number variation.
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metabolism, tumor signaling pathways, and immune- and matrix-

related pathways (Figure 2E). The enriched metabolic processes

included those associated with fatty acid, linoleic acid, retinol, and

drug metabolism cytochrome P450 showing greater enrichment in

cluster A. Cluster B showed greater enrichment in the tumor-

associated ERBB, MAPK, TGFb, VEGF, and Wnt signaling

pathways. Pathways related to immune activation were associated
Frontiers in Immunology 06
mostly with cluster B; these included leukocyte transendothelial

migration, Toll-like receptor signaling, and NOD-like receptor

signaling. We then investigated infiltrating immune cells in the

clusters (Figure 2F), finding that the majority of immune cells were

strongly associated with cluster B. At the same time, we also found

that matrix-activated pathways such as focal adhesions, gap

junctions, and tight junctions were enriched in cluster B
B C

D E

F

A

FIGURE 2

Identification of cuproptosis clusters. (A) Consensus matrix based on cuproptosis regulator expression in the HCC cohort at k = 2. (B) PCA of
consensus matrix when k = 2. (C) T-SNE analysis of consensus matrix when k = 2. (D) K-M survival analysis between the two cuproptosis
clusters. (E) Multiple GSEA analysis between the two cuproptosis clusters. (F) Infiltration of immune cells between the two cuproptosis clusters.
*P < 0.05; **P < 0.01; ***P < 0.001. HCC, hepatocellular carcinoma; PCA, principal component analysis; T-SNE, t-distributed random neighbor
embedding; K-M, Kaplan-Meier; GSEA, gene set enrichment analysis.
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(Figure 2E). It has been reported that tumor stromal cells are

involved in immune regulation (38). Stromal cells are able to block

immune cell entry into the tumor parenchyma and can also block

T-cell killing of tumor cells (39). Tumor cells and stromal cells can

induce angiogenesis, thereby promoting tumor metastasis (40).. In

addition, regulatory T cells and CD 56bright NK cells highly

expressed in cluster B can act as immunosuppressive cells to

promote tumorigenic immune escape (41, 42). The results of the

immune microenvironment analysis described above validate the

poor prognosis of cluster B patients. Taken together, we found that

the expression of cuproptosis regulatory proteins in HCC defines

two patient clusters with significantly different immune infiltration

features. Cluster A is an immune-desert phenotype with reduced

immune activity and immune cell numbers while cluster B is an

immune-exclusion phenotype with infiltration restricted to the

peripheral matrix of tumor cells.
Characterization of
cuproptosis-related phenotypes

We next identified 629 cuproptosis-associated DEGs using

the R package “limma”. GO analysis showed enrichment of the

DEGs in immune- and stromal-associated pathways (including

neutrophil mediated immunity, neutrophil activation involved in

immune response, focal adhesion, and cell−substrate junctions),

confirming that cuproptosis is closely associated with the

regulation of the immune microenvironment of the tumor

(Figure 3A). We then further narrowed the range by comparing

gene expression between the normal and HCC groups to obtain

30 DEGs. Univariate Cox regression yielded 27 prognosis-

associated DEGs with HCC patients again divided into two

clusters according to the unsupervised consensus cluster

analysis of the expression of these genes (Figures 3B; S3). The

gene clustering results are presented in Table S3. Differential

expression of most of the cuproptosis regulators was visible

between the clusters (Figure 3C). Additionally, RNAss values

were significantly increased in gene cluster B compared with gene

cluster A (Figure 3D), demonstrating the adverse effects of high

RNAss values on HCC prognosis (Figure 3E). Oncogenic and

immune- and matrix-activated pathways were enriched in cluster

B, while cluster A showed enrichment in metabolic pathways

(Figure 3F). These findings suggest the presence of two

cuproptosis-associated regulatory patterns in HCC.
Development of the cuproptosis-
associated risk signature

The above analysis was performed on a patient population.We

then investigated the precise quantification of cuproptosis patterns
Frontiers in Immunology 07
in individual patients. Using the 27 genes identified in the

univariate analysis (Figure 4A), we performed LASSO to prevent

signature overfitting (Figures 4B, C). The risk signature was finally

constructed using three signature genes (CDCA8, CCNB1, and

G6PD). The risk score assigned to each sample was determined as:

Risk Score = (0.066092028117448) × the CDCA8 expression +

(0.00250484775117196) × the CCNB1 expression +

(0.00581254249797367) × the G6PD expression. This enabled the

HCC patients to be entirely separated into groups with low and

high risk according to the median risk score. The risk score results

are provided in Table S4. PCA showed the clear separation of the

343 HCC patients and 279 DEGs in two independent clusters,

trending in two different directions (Figures 4D, E). The scatter

plots of risk scores and patient survival statistics are presented in

Figures 4F, G. As depicted in the figure, a higher risk score was

related to both decreased survival and greater mortality. The

heatmap (Figure 4H) shows the expression of the three DEGs in

the signature in the TCGA cohort (Figure 4H). K-M curves

indicated higher OS rates in the low-risk group (Figure 4I). To

examine the performance of signature, ROC curves for one-, two-,

and three-year OS were generated, with AUCs of 0.783, 0.725, and

0.686, respectively (Figure 4J). The risk signature’s superiority was

further established by comparing the one-year ROC curves with

other clinicopathological features (Figure 4K). Univariate Cox

regression was employed to examine associations, finding that

stage (HR = 1.804, 95% CI = 1.456–2.234, p < 0.001) and risk

score (HR = 3.935, 95%CI =2.740–5.649, p < 0.001) were related to

OS in the TCGA set (Figure 4L). Multivariate regression verified

that stage (HR = 1.609, 95% CI = 1.274–2.031, p < 0.001) and risk

score (HR = 3.236, 95% CI = 2.176–4.811, p < 0.001) were

independent prognostic factors for OS (Figure 4M).
Validation of the risk signature

The test group samples from the ICGC were divided into

low- (n = 104) and high- (n = 125) risk score groups using the

cutoff values determined in the TCGA cohort. Figures 5A, B

show the risk curves and scatterplots while the heatmap in

Figure 5C illustrates the expression patterns of the three

signature DEGs in the ICGC set. The high-risk group, as

determined in the TCGA cohort, had a worse overall

prognosis (Figure 5D). The AUCs of the ROC curves for one,

two, and three years were 0.757, 0.760, and 0.785, respectively

(Figure 5E), and the AUC of the risk score at one year was larger

than those for other clinical parameters (Figure 5F). Both

univariate and multivariate regression analyses found that the

P-values for both risk score and sex were below 0.05,

demonstrating that signature functioned as an independent

predictor of HCC prognosis in the ICGC set, and further

confirming its reliability in the TCGA set (Figures 5G, H).
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Nomogram creation and validation

To further improve the clinical utility of risk signature, the

identified independent prognostic risk factors, namely, risk score

and stage, were utilized to develop a nomogram for predictingOS in

the TCGA cohort (Figure 5I). The calibration curves at one, three,

and five years showed that the nomogram accurately predicted the
Frontiers in Immunology 08
outcomes of HCC patients (Figure 5J). In addition, the DCA curve

showed that the nomogram had specific advantages over other

clinical parameters (Figure 5K). The AUCs for the ROC curves

suggested that the nomogram, with an AUC of 0.804, was superior

to age (AUC=0.493), sex (AUC=0.508), pathological grade

(AUC=0.490), TNM stage (AUC=0.713), and risk signature

(AUC=0.788) for predicting prognosis inHCC patients (Figure 5L).
B

C

D

E F

A

FIGURE 3

Gene cluster determination. (A) GO enrichment analysis of cuproptosis-related DEGs. (B) Consensus matrix based on cuproptosis-related gene
expression in the HCC cohort at k = 2. (C) Differential expression of cuproptosis regulators in the two clusters. (D) RNAss values of cuproptosis
regulators in the two clusters. (E) K-M survival analysis of cuproptosis regulators in the two clusters. (F) Multiple GSEA analysis between the two
clusters. **P < 0.01; ***P < 0.001. GO, Gene Ontology; DEGs, differentially expressed genes; HCC, liver hepatocellular carcinoma; RNAss, RNA
stemness scores; K-M, Kaplan-Meier; GSEA, gene set enrichment analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945516
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.945516
B C

D E

F G H

I J K

L M

A

FIGURE 4

Construction of the risk signature. (A) Forest plot of univariate Cox regression results for the 27 DEGs. (B) Cross-validation for selection of
tuning parameters in LASSO regression. (C) LASSO coefficient profiles of candidate DEGs. (D) PCA of samples from high- and low-risk groups.
(E) PCA of DEGs in the high- and low-risk groups. (F) Risk score distribution of HCC patients in the TCGA cohort. (G) Scatter plot of survival
status of HCC patients in the TCGA cohort. (H) Heatmap of the expression of the three signature genes in high- and low-risk populations in the
TCGA cohort. (I) K-M curves of OS in HCC patients in the risk score-based TCGA cohort. (J) ROC curves of prognostic signatures for one, two,
and three years in the TCGA cohort. (K) ROC curves of prognostic signatures and other clinicopathological features for one year in the TCGA
cohort. (L, M) Forest plots of univariate and multivariate Cox regression analyses of prognostic signatures and clinical features in the TCGA
cohort. DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; HCC,
hepatocellular carcinoma; TCGA, the Cancer Genome Atlas; K-M, Kaplan-Meier; OS, overall survival; ROC, receiver operating characteristic.
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Relationships between the risk
signature and immune characteristics,
clinical parameters

A GSEA analysis was next used to investigate physiology-

related differences between the groups (Figure 6A). The results

were consistent with those of the clustering analysis, showing

that many metabolism-related pathways, including those
Frontiers in Immunology 10
associated with fatty acid, cytochrome P450, and retinol

metabolism were enriched in the low-risk group. Tumor-

associated pathways (including the MAPK, NOTCH, and

VEGF pathways) and immune- and matrix-related pathways

(including the Toll-like receptor, B cell receptor, T cell receptor,

chemotaxis factor pathways, and attachment junctions) were

associated with high risk. To confirm the immune characteristics

of the signature, we examined associations between immune
B C

D E F

G H I

J K L

A

FIGURE 5

Independent verification of risk signatures and construction of nomograms. (A) Distribution of HCC patient risk scores in the ICGC cohort.
(B) Scatterplot showing HCC patient OS in the ICGC cohort. (C) Heatmap of the expression of the three signature genes in high- and low-risk
groups in the ICGC cohort. (D) K-M curves for HCC patient OS in the risk score-based ICGC cohort. (E) ROC curves of one-, two, and three-
year prognostic signatures in the ICGC cohort. (F) ROC curves of one-year prognostic signatures with other clinicopathological characteristics
in the ICGC cohort. (G-H) Forest plots of univariate and multivariate Cox regression analyses of prognostic signatures and other
clinicopathological features in the ICGC cohort. (I) Nomogram combining risk signatures and clinical stages for OS prediction in the TCGA
cohort. (J) Calibration plots for nomograms at one, three, and five years. (K) DCA of the nomogram, risk signature, and other clinicopathological
features. (L) ROC curves of the nomogram, risk signature, and clinicopathological characteristics at one year. HCC, hepatocellular carcinoma;
ICGC, International Cancer Genome Consortium; K-M, Kaplan-Meier; OS, overall survival; ROC, receiver operating characteristic; DCA, decision
curve analysis.
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cells and risk scores. This indicated a positive relationship

between risk scores and most immune cells (Figure 6B). Taken

together, it appears that high-risk scores are indeed associated

with increased stromal activity and immune infiltration.

Interestingly, the TIDE analysis indicated that immune escape

was likely to be reduced in the high-risk group after
Frontiers in Immunology 11
immunotherapy (Figure 6C). It was also found that immune

checkpoint levels, including those of PDCD1 and CTLA4, were

raised in the high-risk group, which thus had a greater chance of

benefitting from immunotherapy (Figure 6D). Calculation of the

risk scores of patients in the IMvigor210 set using the TCGA set

risk signature indicated that patients responding (CR/PR) to
B

C D

E F G

H I J

A

FIGURE 6

The correlation between the immunity and risk signature. (A) Multiplex GSEA analysis between groups with high and low risk (B) Correlations
between infiltration of immune cell levels and risk scores. The color blue implies a negative association; the color red denotes a positive
association. (C) TIDE scores in the groups with high and low risk. (D) Expression of immune checkpoints in the groups with high and low risk.
(E) Risk scores in anti-PD1/PD-L1-treated CR/PR samples and SD/PD samples in the IMvigor210 cohort. (F) Risk scores in relation to immune
cell subtypes. (G) RNAss values in the groups with high and low risk. (H) Relationships between risk scores and RNAss values. (I) RNAss values in
deceased and surviving patients. (J) Proportions of deceased and surviving patients in the groups with high and low RNAss. GSEA, gene set
enrichment analysis; TIDE, tumor immune dysfunction and rejection; PR, partial response; CR, complete response; PD, progressive disease; SD,
stable disease; RNAss, RNA stemness scores. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001.)
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anti-PD1/PD-L1 therapy showed significantly raised risk scores

(Figure 6E). We then compared HCC samples for differences in

risk scores based on tumor immunophenotyping established by

Thorsson et al. (43). The immunophenotyping of the HCC

samples is presented in Table S5. The Wound Healing

(immune C1) risk score was found to be higher than others,

suggesting that high-risk scores were associated with matrix

activation (Figure 6F). In addition, analysis of tumor stemness

indicated that RNAss was raised in the high-risk group

(Figure 6G) with a positive association between the risk scores

and RNAss (Figure 6H). The RNAss values of the HCC samples

are presented in Table S6. Deceased HCC patients had higher

RNAss values than surviving patients (Figure 6I). The OS values

in the high- and low-RNAss groups were 61% and 73%,

respectively (Figure 6J), indicating both the prognostic

significance of RNAss and the reliability of the risk score

measure. Furthermore, the associations between clinical

features and risk scores are shown in Figures S4A–F. Risk

scores were found to increase significantly with TNM stage

from I to III, T stage from I to III, grade from G1 to G4, and

AFP expression from low to high. The risk scores did not change

significantly in response to age or sex. In addition, boxplots were

used to show the results for 12 drug sensitivities by estimating

IC50 values between the groups. Patient groups at low risk were

significantly more sensitive to Gefitinib, Sorafenib, Nilotinib,

Dasatinib, Erlotinib, and Metformin (Figure S5A–F), in contrast

to high-risk patients who responded to Bleomycin, Doxorubicin,

Gemcitabine, Tipifarnib, Imatinib, and Mitomycin.C (Figure

S5G–K). This has reference significance for guiding the clinical

medication of HCC treatment.
Crosstalk among cuproptosis clusters,
gene clusters, risk signature, and
clinicopathological features

The alluvial map shown in Figure 7A illustrated the crosstalk

among cuproptosis clusters, gene clusters, and risk scores.

Higher risk scores were associated with gene cluster B rather

than gene cluster A (Figure 7B) and the cuproptosis cluster B

also had higher risk scores than cluster A (Figure 7C). The

prognosis was significantly enhanced in both cluster A and gene

cluster A in comparison with their respective B clusters, again

confirming the reliability and consistency of the analysis.

Figure 7D shows a comprehensive heatmap of risk scores in

relation to clinical features (including age, sex, grade, and TNM,

T, N, and M stages), cuproptosis clustering, gene clustering, and

cuproptosis regulator expression. A strong association between

cuproptosis clusters, gene clusters, and risk signatures can

be observed.
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An examination of the correlation
between the risk signature and
genetic mutations

Differences in somatic mutation distribution between low-

and high-risk scores in the TCGA set were investigated with the

“maftools” package. As Figures 8A, B show, the TMB was greater

in the group with the high-risk scores, together with an 88.89%

mutation rate (altered in 144 of 162 samples) versus 80.72% for

the low-scoring group (altered in 134 of 166 samples).

Quantitative analysis confirmed that tumors with high scores

were correlated with higher TMB values (Figure 8C) and that

risk scores and TMB values were significantly positively

correlated (Figure 8D). It has been reported that high TMB is

related to long-term clinical sensitivity to anti-PD1/PD-L1

therapy (44), confirmed by the findings shown in Figures 6C–

E. This suggests that curoptosis-associated variations in tumors

may be critical for the anti-PD-1/PD-L1 therapeutic response.

High TMB values were also linked to reduced immune cell

infiltration in HCC (Figure 8E) while K-M survival curves

showed an association between elevated TMB and worse OS

(Figure 8F), indirectly confirming the effectiveness of the risk

score in the prediction of immunotherapy outcome.
Three DEGs in the risk signature

Finally, we analyzed the three DEGs in the risk signature. The

expression of these geneswas found to significantly raised inTCGA-

HCC samples in comparison with normal tissue (Figures 9A–C).

These results were confirmed by IHC analysis (Figures 9D–F). On

the basis of gene expression, patients in the TCGA were classified

into one of two groups. Low levels of expression were linked to a

better prognosis, thus confirming the results in Figure 5, and all

three genes represented prognostic risk factors for HCC in the risk

signature (Figures 9G–I). Moreover, the DEGs expression was

revealed to be positively associated with immune cell infiltration

using TIMER (Figures S6A–C). Boxplots were used to compare the

immune cell subset distribution with CNVs, and it can be seen that

the greatest differences in arm-level gain in relation to immune

infiltration were with CCNB1 and G6PD, whereas the level of

immune infiltration with arm-level deletion was most significantly

different in CDCA8 (Figures S6D–F).
Discussion

Recent research has shown that the homeostasis of copper is

rigorously regulated and that any imbalance reduces the

organism’s fitness (45). Disruptions to copper homeostasis have
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also been linked with tumor growth and irreversible damage (46).

Thus, the role of copper in vivo has attracted much attention,

specifically in the field of tumor therapy. Cuproptosis is a form of

programmed cell death; the regulation of cuproptosis is complex,
Frontiers in Immunology 13
involving numerous regulatory factors. The role of cuproptosis in

tumor development and its relationship to immunity has not been

fully evaluated. Here, we systematically characterized immune cell

infiltration mediated by cuproptosis, as well as the corresponding
B

C

D

A

FIGURE 7

Relationship cross-links of cuproptosis clusters, gene clusters, risk signatures, and clinical features. (A) Alluvial diagram showing cuproptosis
clusters, gene clusters, risk grouping, and survival status. (B) Risk scores in the cuproptosis clusters. (C) Risk scores in the gene clusters.
(D) Heatmaps showing the integration of cuproptosis clusters, gene clusters, clinicopathological characteristics, and cuproptosis regulators’
expression in relation to risk groups.
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cuproptosis regulatory subtypes. In addition, a cuproptosis-related

risk signature was developed to correlate individual cuproptosis

subtypes with the patient’s sensitivity to immunotherapy,

suggesting the potential usefulness of the signature for

personalized therapy.

The study initially evaluated the expression levels, somatic

mutations, and CNVs of 10 cuproptosis regulators, observing that

all of the regulatory genes were shown to be expressed differently in

tumor and control tissues. The highest mutation frequency was seen

in CDKN2A. In addition, the copy numbers of most of the

cuproptosis regulators were altered. This suggests that

dysfunctional expression of these regulator genes may play an
Frontiers in Immunology 14
essential role in HCC. Unsupervised consensus cluster analysis of

the regulators identified two distinct subtypes in HCC, termed

cuproptosis clusters A and B. Surprisingly, GSEA enrichment

analysis found that cluster A was mainly related to metabolic

processes, while cluster B was enriched in various oncogenic and

immune- and stromal-related signaling pathways. Stromal cells are

documented to play immunomodulatory roles in tumors (47, 48),

are able to prevent the entry of immune cells into the tumor

parenchyma (49) and, even if T cells do enter the tumor

microenvironment, stromal cells can surround them and prevent

an effective immune response (50). Further analysis showed that

cuproptosis cluster B was correlated with significant infiltration of
B

C D
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A

FIGURE 8

Associations between risk signatures and gene mutations. (A, B) Mutation frequencies in the groups with high and low risk (C) TMB values in the
groups with high and low risk (D) Association between risk scores and TMB. (E) Infiltration of immune cell in the groups with high and low TMB.
(G) K-M curves for OS in the groups with high and low TMB. *P < 0.05; **P < 0.01; ***P < 0.001. TMB, tumor mutational burden; K-M,
Kaplan-Meier.
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immune cells, including regulatory cells such as regulatory T cells

and CD 56bright NK cells. These findings suggest that cuproptosis

cluster B contains a large number of immune cells, but activity may

be suppressed by stromal and immune regulatory cells. K-M survival

analysis showed that cluster B was linked with a poorer prognosis,

possibly due to tumor escape resulting from immunosuppression.

To quantify the cuproptosis regulatory subtypes in

individual tumors, a risk signature based on three DEGs was
Frontiers in Immunology 15
developed as a scoring system for individual HCC patients in the

TCGA cohort. Both K-M survival and ROC curve evaluations

verified the signature’s accuracy and reliability for predicting

patient prognosis. In addition, we independently verified the

signature using gene expression and clinical data from the ICGC

database. The signature served as an independent prognostic

variable in both the TCGA and ICGC cohorts, as demonstrated

by multivariate Cox regression. A nomogram using a
B C
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FIGURE 9

Expression of the three signature DEGs and their impact on prognosis. Expression of CCNB1 (A), CDCA8 (B), and G6PD (C) in tumor and normal
samples (GEPIA). IHC analysis of CCNB1 (D), CDCA8 (E), and G6PD (F) expression in tumor and normal samples. K-M survival analysis between
high- and low-expression groups of CCNB1 (G), CDCA8 (H), and G6PD (I).*P < 0.05;****P < 0.0001. DEGs, differentially expressed genes.
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combination of the risk signature and clinical features was found

to be more effective than other clinical features, greatly

improving the clinical utility of the signature.

In our study, three DEGs were identified as cuproptosis-related

signature genes. Glucose-6-phosphate dehydrogenase (G6PD) is a

rate-limiting enzyme in the pentose phosphate pathway and is

involved in energy generation through the maintenance of reduced

NADPH co-enzyme levels (51). Because of its key metabolic role,

G6PD is also involved in tumor pathogenesis where it has been

reported to modulate proliferation (52, 53), metastasis (54),

chemoresistance (55, 56), immune activation (57, 58), and tumor

ferroptosis (59). Cell division cycle-associated 8 (CDCA8) forms

part of the chromosomal passenger complex (CPC) and is

necessary for the stabilization of the mitotic spindle. Disruption

of cell cycle regulation is a hallmark of tumor development (60).

CDCA8 levels are elevated in a variety of tumor types where it has

been implicated in the growth and tumor progression (61–64).

Cyclin B1 (CCNB1) belongs to the cyclin family and is the

regulatory component of cyclin-dependent kinase 1 (65, 66). It

has important functions in cell cycle regulation and dysfunctional

expression promotes the development of various cancer types,

including colon (67–69), cervical cancer (70), and kidney cancer

(71). CCNB1 overexpression leads to unplanned entry into the cell

cycle, uncontrolled cell proliferation, and tumorigenesis (69, 72–

74). Studies have also shown that copper can affect the expression of

G6PD and CCNB1, confirming a possible link between DEGs and

cuproptosis (75, 76).

Although immunotherapy is effective for HCC (77), its

efficacy has not proved consistent due to an incomplete

understanding of the immune microenvironment and its

variations in individual patients. It is thus necessary to

determine which patients are most likely to react to

immunotherapy. Here, it was found that the two risk-score

subgroups had distinct immune infiltration characteristics with

greater infiltration and matrix activity seen in patients with higher

risk score. These patients also had lower TIDE scores, suggesting

that they were more likely to be sensitive to immunotherapy and

less likely to show immune escape (78). Another important result

was that there was higher expression of immune checkpoints in

this group. And these genes may be targeted by immunotherapy

to determine the clinical response of patients (79). The accuracy of

the cuproptosis-related risk signature for predicting the response

to immunotherapy was confirmed by analysis in the IMvigor210

cohort. In addition, we found differences in TMB values between

the groups and demonstrated an association between the risk and

TMB scores. It has been reported that higher non-synonymous

mutational burdens in tumors result in the formation of greater

numbers of neoantigens, leading to greater immunogenicity and

enhancing the immunotherapy response (80). This was an

additional confirmation of the likelihood that high-risk patients

will respond to immunotherapy. These findings indicate that the

risk score is both reliable and effective for evaluating cuproptosis-

modulating subtypes in individual patients and can also be applied
Frontiers in Immunology 16
effectively to determining the degree of immune cell infiltration

and providing guidance for immunotherapy.
Conclusion

In conclusion, our study identified two patterns of

cuproptosis regulation based on the expression of 10

cuproptosis regulators that are important contributors to the

heterogeneity of immune cell infiltration. The cuproptosis-

related risk signature, which is closely associated with the

prognosis, immune cell infiltration characteristics, and

sensitivity to immunotherapy in HCC patients, can quantify

the risk of individual patients, providing new directions for

individualized anti-tumor immunotherapy for HCC patients.
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SUPPLEMENTARY FIGURE 1

Curves of K-M for OS in the groups with high and low expression of 10
cuproptosis regulators. (A) FDX1; (B) LITP1; (C) LIAS; (D) DLD; (E) DLAT; (F)
PDHA1; (G) PDHB; (H) MTF1; (I) GLS; (J) CDKN2A. K-M Kaplan-Meier, OS
overall survival

SUPPLEMENTARY FIGURE 2

Cuproptosis clustering. (A–G) Consensus matrix based on cuproptosis
regulator expression in the HCC cohort at k = 2 - 9. (H) Consensus CDF
plots for cuproptosis clustering. (I) The area under the CDF curve relative

changes for cuproptosis clustering

SUPPLEMENTARY FIGURE 3

Gene clustering (A–G) Consensus matrix based on cuproptosis-related

gene expression in the HCC cohort at k= 2-9. (H) Consensus CDF plots
for gene clustering. (I) The area under the CDF curve relative changes for

gene clustering. HCC hepatocellular carcinoma, CDF cumulative

distribution function

SUPPLEMENTARY FIGURE 4

Comparison of risk scores within different grades or between different

classifications of clinicopathological features. (A) Stage; (B)T; (C) Grade;
(D) AFP expression; (E) Sex; (F) Age.

SUPPLEMENTARY FIGURE 5

Comparison of drug sensitivity between groups with high and low risk.

(A) Gefitinib; (B) Sorafenib; (C) Nilotinib; (D) Dasatinib; (E) Erlotinib;
(F) Metformin; (G) Bleomycin; (H) Doxorubicin; (I) Gemcitabine;

(J) Tipifarnib; (K) Imatinib; (L) Mitomycin.C.

SUPPLEMENTARY FIGURE 6

The relationship between the three DEGs in the signature and immunity
and copy number. (A–C) Correlation between expression of gene and

infiltration of immune cell. (D–F) Association of gene copy number
alterations with infiltration of immune cells. *P < 0.05; **P < 0.01;

***P < 0.001. DEGs differentially expressed genes
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ceruloplasmin and copper levels in patients with primary brain tumors. Klinische
Wochenschrift. (1984) 62(4):187–9. doi: 10.1007/BF01731643

21. Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM.
Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics and
oncogenesis-part 1: Acetyl-CoA, acetogenesis and acyl-CoA short-chain
synthetases. Front Physiol (2020) 11:580167. doi: 10.3389/fphys.2020.580167

22. Muñoz C, Rios E, Olivos J, Brunser O, Olivares M. Iron, copper and
immunocompetence. Br J Nutr (2007) 98 Suppl 1:S24–8. doi: 10.1017/
S0007114507833046

23. Djoko KY, Ong CL, Walker MJ, McEwan AG. The role of copper and zinc
toxicity in innate immune defense against bacterial pathogens. J Biol Chem (2015)
290(31):18954–61. doi: 10.1074/jbc.R115.647099

24. Festa RA, Thiele DJ. Copper at the front line of the host-pathogen battle.
Plos pathogens (2012) 8(9):e1002887. doi: 10.1371/journal.ppat.1002887

25. Percival SS.Copper and immunity. Am J Clin Nutr (1998) 67 (5
Suppl):1064s–8s. doi: 10.1093/ajcn/67.5.1064S

26. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral
copper modulates PD-L1 expression and influences tumor immune evasion.
Cancer Res (2020) 80(19):4129–44. doi: 10.1158/0008-5472.CAN-20-0471

27. Wilkerson MD, Hayes DN. ConsensusClusterPlus: A class discovery tool
with confidence assessments and item tracking. Bioinf (Oxford England) (2010) 26
(12):1572–3. doi: 10.1093/bioinformatics/btq170

28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci USA (2005)
102(43):15545–50. doi: 10.1073/pnas.0506580102

29. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An r package for comparing
biological themes among gene clusters. Omics: J Integr Biol (2012) 16(5):284–7. doi:
10.1089/omi.2011.0118

30. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC,
et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer. Immunity (2013) 39(4):782–95. doi: 10.1016/
j.immuni.2013.10.003

31. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from
transcriptomics data. Cancer immunology immunother: CII (2018) 67(7):1031–40.
doi: 10.1007/s00262-018-2150-z

32. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

33. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat Med
(2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

34. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol
(2016) 17(1):174. doi: 10.1186/s13059-016-1028-7

35. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server
for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res (2017)
77(21):e108–e10. doi: 10.1158/0008-5472.CAN-17-0307

36. Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F. Integrated
genomic analyses of ovarian carcinoma. Nature. (2011) 474(7353):609–15.
doi: 10.1038/nature10166

37. Crown WH. Potential application of machine learning in health outcomes
research and some statistical cautions. Value Health J Int Soc Pharmacoeconomics
Outcomes Res (2015) 18(2):137–40. doi: 10.1016/j.jval.2014.12.005

38. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune
set point. Nature. (2017) 541(7637):321–30. doi: 10.1038/nature21349

39. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m6A regulator-mediated
methylation modification patterns and tumor microenvironment infiltration
characterization in gastric cancer. Mol cancer. (2020) 19(1):53. doi: 10.1186/
s12943-020-01170-0

40. Moserle L, Casanovas O. Anti-angiogenesis and metastasis: a tumour and
stromal cell alliance. J Internal Med (2013) 273(2):128–37. doi: 10.1111/joim.12018

41. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al.
Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during
tumour progression. Br J cancer. (2019) 120(1):16–25. doi: 10.1038/s41416-018-0333-1
Frontiers in Immunology 18
42. Tian Z, Gershwin ME, Zhang C. Regulatory NK cells in autoimmune
disease. J autoimmunity (2012) 39(3):206–15. doi: 10.1016/j.jaut.2012.05.006

43. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al.
The immune landscape of cancer. Immunity. (2018) 48(4):812–30.e14. doi:
10.1016/j.immuni.2018.03.023

44. Barroso-Sousa R, Keenan TE, Pernas S, Exman P, Jain E, Garrido-Castro
AC, et al. Tumor mutational burden and PTEN alterations as molecular correlates
of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin
Cancer research: an Off J Am Assoc Cancer Res (2020) 26(11):2565–72. doi: 10.1158/
1078-0432.CCR-19-3507

45. De la Iglesia R, Valenzuela-Heredia D, Andrade S, Correa J, González B.
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