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The emergence of new variants of concern (VOCs) of the SARS-CoV-2

infection is one of the main factors of epidemic progression. Their

development can be characterized by three critical stages: virus mutation

leading to the appearance of new viable variants; the competition of different

variants leading to the production of a sufficiently large number of copies; and

infection transmission between individuals and its spreading in the population.

The first two stages take place at the individual level (infected individual), while

the third one takes place at the population level with possible competition

between different variants. This work is devoted to the mathematical modeling

of the first two stages of this process: the emergence of new variants and their

progression in the epithelial tissue with a possible competition between them.

The emergence of new virus variants is modeled with non-local reaction–

diffusion equations describing virus evolution and immune escape in the space

of genotypes. The conditions of the emergence of new virus variants are

determined by the mutation rate, the cross-reactivity of the immune response,

and the rates of virus replication and death. Once different variants emerge,

they spread in the infected tissue with a certain speed and viral load that can be

determined through the parameters of the model. The competition of different

variants for uninfected cells leads to the emergence of a single dominant

variant and the elimination of the others due to competitive exclusion. The

dominant variant is the one with the maximal individual spreading speed. Thus,

the emergence of new variants at the individual level is determined by the

immune escape and by the virus spreading speed in the infected tissue.

KEYWORDS

viral infection, emergence of variants, immune escape, competition, reaction-
diffusion equations
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1 Introduction

Among many questions raised by the ongoing epidemic

coronavirus disease of 2019 (COVID-19), the emergence of new

variants of the SARS-CoV-2 infection is of primary importance.

The emergence of a new variant of concern (VOC) can be

considered as a stage process. First of all, mutations in the virus

genome in an infected individual lead to the appearance of a viable

variant distinct from the existing variant. Next, this new variant

should replicate faster in the infected tissues in order to

outcompete the previous variant and to produce a sufficient

number of copies to be transmitted to other individuals. Finally,

this new variant should have a larger transmission rate to spread in

the population. In this work, we will develop amathematical model

describing the emergence of new variants/strains in an infected

tissue and of the competition between the variants. Let us note that

virus competition in tissue (culture) and in the population

represent two different processes, and the conditions to win these

competitions are also different. As it was recently shown, in the

competition of two virus variants in cell culture, the variant with a

larger individual spreading speed dominates and eliminates

another one (1, 2). The competition of two virus variants in the

presence of the immune response will be studied in this work, and

the result of this competition will also be formulated in terms of

individual spreading speeds. On the other hand, if two virus

variants spread in the human population, the variant with a

larger transmission rate spreads faster and eliminates another

one (3), assuming that they are mutually exclusive due to the

acquired immunity. Furthermore, the infection transmission rate

for respiratory viral infections correlates with the viral load in the

upper respiratory tract. Spreading speed and the viral load are

different characteristics of viral infections, and they depend on cell

types. As such, the Delta variant of the SARS-CoV-2 infection has

larger spreading speed and outcompetes the Omega variant in the

culture of human lung cells, while it is opposite in the culture of

epithelial nasal cells (1, 4, 5). Moreover, the viral load of the

Omicron variant is larger in the upper respiratory tract providing

its faster transmission rate.
1.1 SARS-CoV-2 variants

SARS-CoV-2 genome is relatively large and contains

approximately 30,000 bases that code for four structural

proteins (spike, nucleoprotein, envelope, and membrane) and

16 non-structural proteins participating in virus multiplication

and interfering with the immune response. Persistent COVID-

19 pandemic provokes mutations and the emergence of

numerous virus variants. Mutations in spike protein,

responsible for virus binding to ACE2 membrane receptors

appear to be most important in the regulation of SARS-CoV-2

pathogenicity. The first critical spike protein mutation was the
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substitution D614G that resulted in higher infectivity and

promoted the spread of the D614G variant worldwide toward

fixation in June 2020 (6).

Among numerous lineages that arise on the D614G variant,

five of them have been classified as the variants of concern (7):

Alpha (B.1.1.7 lineage), characterized by nine spike protein

mutations, was first collected in England in 20 September 2020

and started to spread rapidly in mid-October 2020 to constitute in

January 2021 86% of all SARS-CoV-2 genomes that were

sequenced in England. According to several studies, the Alpha

variant had a high replicative advantage (estimates to be in range

1.43–2.18) with respect to pre-existing variants in the UK (8–10).

Beta (B.1.351 lineage), characterized by three spike protein

mutations, was first collected in May 2020 in South Africa (11).

Gamma (P.1 lineage) was characterized by nearly identical three

mutations as Beta first collected in Brazil in November 2020. It

was estimated that P.1 may be 1.7- to 2.4-fold more

transmissible and that previous (non-P.1) infection (12).

Delta (B.1.617.2 lineage), characterized by two spike protein

mutations, was first collected in October 2020 in India. It spread

in India and then Europe outcompeting the Alpha variant. In an

in vitro study, B.1.617.2 was found to be sixfold less sensitive to

serumneutralizing antibodies from recovered individuals and

eightfold less sensitive to vaccine-elicited antibodies as

compared to the wild-type (WT) Wuhan-1 bearing D614G

(13). This allowed Delta to spread in populations that were

already exposed to earlier variants, and, as consequence, it

constituted more than 97% of all SARS-CoV-2 genomes

sequenced in October 2021 (based on Global Initiative on

Sharing Avian Influenza Data (GISAID) database).

Omicron (Pango B.1.1.529 lineage) is characterized by

multiple mutations in spike protein; three small deletions, one

small insertion, and 30 substitutions with respect to the original

variant. Of these changes, 15 are located in the receptor binding

domain (residues 319–541) (14). It first spread in Gauteng

province of South Africa growing with the doubling time of

approximately 3–4 days and becoming dominant in the province

by the end of November 2021 (15).

Variants Beta, Gamma, and Delta initiated rapid outbreaks,

respectively, in South Africa, Brazil, and India. Mutations, which

determined these three variants, are associated with reduction in

neutralization by convalescent plasma and specific therapeutic

antibodies. The existing vaccines, all developed on the basis of

the wild-type SARS-CoV-2 strain, have smaller efficacy against

these variants, and recovered individuals are prone to

subsequent infections with the new variants (16).
1.2 Modeling of the emergence
of new variants

Virus multiplication in an organism can be considered as

competition between its replication and death. If the replication
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rate exceeds the death rate, the viral load grows providing

infection progression. Both processes can depend on the virus

genotype leading to the emergence and competition of virus

quasi-species (17–20). As such, the behavior of SARS-CoV-2

quasi-species shows complex dynamics depending on time and

the anatomical site (21). The time dynamics of HIV variants

with their competitive exclusion or coexistence are studied in

(19). Introducing viability intervals in the genotype space (or

viability domains in the multidimensional space) where the total

rate is positive, we associate different variants (strain and quasi-

species) to different intervals (22, 23). If the original variant

belongs to one of such intervals, new variants in other intervals

can emerge due to randommutations (diffusion) in the genotype

space. Changes in the virus genome due to mutations can be

advantageous or disadvantageous with respect to its survival and

multiplication. This mechanism of the emergence of new

variants can be modeled with reaction–diffusion equations

with space-dependent coefficients in the genotype space (24).

If we assume that mutations are neutral, that is, they do not

give advantage in virus survival and replication, then, new

variants can appear due to the immune escape. Namely,

antigen-specific T- and B lymphocytes in the adaptive immune

response stimulated by certain antigen are efficient in some areas

around this antigen in the genotype space, but they lose their

efficiency for distant antigens. Random mutations in the virus

genome lead to the emergence of new variances outside of the

area covered by the immune response.

In this work, we will consider the second mechanism where

new virus variants appear due to the interaction of the cross-

reactivity of the immune response and virus escape (Section 4).

It can be modeled with non-local reaction–diffusion equations

for the virus density distribution in the genotype space. Similar

to the emergence of biological species, it is based on competition,

reproduction, and mutations (25, 26). Compared to the previous

studies, we will consider a more detailed and biologically realistic

model including the concentrations of uninfected cells, infected

cells, viruses and the immune response (Section 2).

Let us note that both mechanisms (genotype-dependent

survival/replication rates and immune escape) can be

considered together. We consider them separately in order to

simplify the analysis and presentation. Moreover, a further

investigation of the competition of different variants does not

depend on the mechanism of their emergence.
1.3 Virus competition in cell culture
and tissue

A viral infection spreads in cell culture as a reaction–

diffusion wave (27–30). The wave speed is determined by the

parameters of the model, such as the rate of cell infection, the

replication rate, and the replication delay. The wave speed can

differ for different variants. If two different variants are
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introduced in the same cell culture, then they begin to

compete for uninfected cells. The results of modeling show

that one of them outcompetes and eliminates another one.

The condition of winning the competition can be formulated

in terms of the wave speed: the variant with a larger individual

wave speed wins the competition (1). Comparison with the

experimental data on the time-dependent viral load for the Delta

and Omicron variants of the SARS-CoV-2 infection (4, 5) allows

the determination of the parameters of the model (1, 2). After

that, we can compare the individual wave speeds of the two

variants in different cell cultures and predict the winning variant.

As such, the model predicts that the Delta variant wins the

competition with the Omicron variant in the culture of lung cells

and loses it in the culture of nasal epithelial cells (1). These

conclusions are confirmed by modeling the competition of the

two variants and by the experimental results on their

competition (4).

In this work, we continue to investigate the competition of

virus variants in the case of living tissue instead of cell cultures

considered in the previous works. The main difference is in the

presence of an adaptive immune response mediated by cytotoxic

T lymphocytes killing infected cells and by neutralizing

antibodies produced by B lymphocytes. Let us note that the

antigen-specific adaptive immune response determines virus

dynamics in the genotype space, while the non-specific innate

immune response is less essential from the point of view of the

immune escape and emergence of new variants. For this reason,

and for the sake of simplicity, we restrict ourselves in this work

to the adaptive immune response. Moreover, we will consider a

single variable for the immune cells. The model is introduced in

the next section. We will discuss the basic properties of infection

progression in the host organism in Section 3. The emergence of

new virus variants is studied in Section 4 and virus competition

in Section 5. We conclude the paper with discussion.
2 Model formulation

We consider a reaction–diffusion system of equations for the

concentrations of uninfected cells, infected cells, viruses, and

immune cells. We deliberately consider a minimal model in

order to reveal the main qualitative effects without hiding them

by secondary details (Figure 1). We will discuss the model

assumptions and simplifications below. We begin with the

model of virus evolution in the space of genotypes that will be

used to describe the emergence of new variants (strains and quasi-

species). In this case, the space variable x corresponds to a virus

genotype. The concentration of uninfected cells U(t) does not

depend on the space variable; the concentration of infected cellsW

(x,t) depends on it. Equation (2.1) for uninfected cells U(t)

dU
dt

= k − aUI Vð Þ − s1U (2:1)
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contains the term of their constant production (influx), followed

by the terms describing their infection and death. The infection

rate of uninfected cells is proportional to the total virus

concentration I(V)(t) = ∫
∞

−∞
V(x, t)dx. We consider here the

whole real axis for the mathematical convenience.

Uninfected cells U(t) infected by virus V(x,t) become

infected W(x,t) with the same antigenic characterization x:

∂W
∂ t

= aUV − s 0
2 + s 1

2 J Cð Þ� �
W : (2:2)

The death of infected cells can occur due to their damage by

virus replication or due to the immune response with the rate

proportional to the integral J(C)(t) = ∫
∞

−∞
f(x − y)C(y, t)dy.

Immune cells C(x,t) have the same antigenic characterization x

as virus V(x,t) , and the kernel f(x−y) characterizes the cross-

reactivity of the immune response, that is, the efficacy of immune

cells C(y,t) in the elimination of infected cells W(x,t) .

Virus concentration V(x,t) depends on its antigenic

characterization x. The first term in the right-hand side of

the equation

∂V
∂ t

= D
∂2 V
∂ x2

+ bW − s 0
3 + s 1

3 J Cð Þ� �
V (2:3)

describes its mutation, that is, diffusion in the space of

genotypes, the second term corresponds to its replication in

infected cells, and the last term represents its natural death and

its neutralization by antibodies. For the simplicity of

presentation, we do not introduce an additional equation for

the antibody concentration and suppose that it is proportional to

the concentration of the cells of the adaptive immune response.

As before, we take into account the cross-reaction of the immune

response with the same (or different) kernel.
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The cells of the adaptive immune response C(x,t) depend on

the antigenic characterization x:

∂C
∂ t

= kVt − s4C : (2:4)

We suppose that the rate of their production is proportional to the

virus concentration with time delay related to the clonal expansion

of immune cells, Vt(x,t)=V(x,t−t), with the proportionality

coefficient k=k0C0 including the concentration of naive cells C0

supposed for simplicity to be constant. The second term in the

right-hand side of this equation describes the rate of cell death. In

what follows, we will consider this model without time delay (t = 0)

leaving the case with time delay for further studies.

The system of equations (2.1)–(2.4) represents a simplified

but biologically realistic model that will allow us to study the

immune escape and emergence of new virus variants (Section 4).

We will discuss model simplifications and limitations in Section

6. When a new variant appears, it starts to spread in the tissue in

the competition with other variants. We will study these

processes in Section 5 with a similar but modified model.
3 Basic properties of the model

In this section, we will establish some basic properties of the

model, such as its stationary points and their stability for the

Ordinary Differential Equations (ODE) system or wave

propagation for the spatial system. They give a general

understanding of infection progression and will be used below

as a basis for a more detailed analysis. We begin the analysis of

viral infection progression with the basic model

dU
dt

= k − aUV − s1U , (3:1)

dW
dt

= aUV − s2W, (3:2)

dV
dt

= bW − s3V (3:3)

for the concentrations of uninfected cellsU, infected cellsW, and

virus V. The right-hand side of equation (3.1) describes the

constant influx of cells, their infection by a virus, and their death.

In the absence of a virus, this equation provides a constant

concentration of uninfected cells in the tissue.
3.1 Infection progression in cell culture

The average life span of epithelial cells is estimated up to

several months (39) being much longer than the multiplicity of
FIGURE 1

Schematic representation of a simplified model of infection
progression and immune response. Virus replicates in infected
cells and infects uninfected cells. Infected cells are eliminated by
cytotoxic T lymphocytes and virus is neutralised by antibodies
produced by B lymphocytes.
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virus assays. Taking into account that cell division is suppressed

in the culture, we can neglect cell influx and death in the model.

Setting k=s1=0 , we divide equation (3.1) by U and integrate

from 0 to infinity:

ln  
Uf

U0

� �
= −a

Z ∞

0
V tð Þdt : (3:4)

Here, U0=U(0),Uf=U(∞) . Next, assuming that W(0)=W(∞)=0 ,

we take a sum of equations (3.1) and (3.2) and integrate

Uf − U0 = −s2

Z ∞

0
W tð Þdt : (3:5)

Finally, assuming that V(0)=V(∞)=0 , and integrating equation

(3.3), we obtain

b
Z ∞

0
W tð Þdt = s3

Z ∞

0
V tð Þdt : (3:6)

We obtain from equations (3.4)-(3.6) the equation with

respect to w=Uf/U0 :

ln  w = R0 w − 1ð Þ, (3:7)

where R0=abU0/(s2s3) is the virus replication number. This

equation has a solution w∈(0,1) if and only if R0>1 . If R0<1 ,

then, the only solution of this equation is w=1 . In this case, Uf=U0

, which means that infection does not develop. Let us note that the

virus replication number is similar here to the basic reproduction

number in the epidemiological model Susceptible, Exposed,

Infected, Recovered (SEIR), and equation (3.7) is also the same.

We can now determine the total viral load VT =
Z ∞

0
V(t)dt

from equation (3.4). In order to obtain a more explicit

expression, let us note that for the values of R0 that are large

enough, the solution w of equation (3.7) is small, w≪1 . Then, ln

w approximately equals –R0, and VT=R0/a . The total viral load

characterizes virus infectivity, that is, the rate of infection

transmission from infected to uninfected individuals (31).
3.2 Infection progression in tissue

Let us now consider system (3.1)–(3.3) with the turnover of

uninfected cells, k,s1≠0 . It has an infection-free equilibrium

point Un=k/s1,W=V=0 and an endemic equilibrium point

Ue =
s2s3

ab
, Ve =

abk
s1s2s3

− 1

� �
s1

a
, We =

abk
s1s2s3

− 1

� �
s1s3

ab
: (3:8)

Along with virus replication number R0 for cell culture, we

now introduce its analog for living tissue

Rv = Un=Ue =
abk

s1s2s3
:

Hence, the endemic equilibrium is positive if and only if Rv>1 .

Furthermore, the same condition provides the instability of the
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normal equilibrium point and infection progression (Figure 2). It

starts with virus outbreak (acute stage) and then converges to the

endemic equilibrium (chronic stage). We do not take into account

here the influence of the adaptive immune response on infection

progression, which can eliminate it after the acute stage.
3.3 Antigen-dependent
infection progression

Taking into account virus density distribution in the

genotype space, we introduce the space variable x and consider

the system of equations

dU
dt

= k − aUI Vð Þ − s1U , (3:9)

∂W
∂ t

= aUV − s2W , (3:10)

∂V
∂ t

= D
∂2 V
∂ x2

+ bW − s3V , (3:11)

where U(t) depends only on time and V(x,t) and W(x,t) depend

also on the space variable x. If we consider this system of

equations on a bounded space interval with no-flux boundary

conditions for V, that is, ∂V
∂ x = 0 at the boundaries of the interval,

then we can integrate it with respect to x and reduce to the

previous space-independent model.
3.4 Adaptive immune response

We consider the previous model (3.1)–(3.3) completed by a

simplified model of the adaptive immune response:

dU
dt

= k − aUV − s1U , (3:12)

dW
dt

= aUV − s 0
2 + s 1

2C
� �

W, (3:13)

dV
dt

= bW − s 0
3 + s 1

3C
� �

V , (3:14)

∂C
∂ t

= kVt − s4C : (3:15)

Here C is the concentration of immune cells. In order to keep the

model sufficiently simple, we consider here only one type of

immune cells and assume that they act on infected cells as

cytotoxic T lymphocytes in equation (3.13) and on the virus

through B cells and neutralizing antibodies in equation (3.14).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bessonov et al. 10.3389/fimmu.2022.945228
In order to determine the stationary points of system (3.12)–

(3.15), we express C,W, and U through V:

C =
K
s4

V ,  W =
1
b

s 0
3 + s 1

3
k
s4

V

� �
V ,

U =
k

aV + s1
:

Hence, there is an infection-free stationary point Un=k/s1,

W=V=C=0 and an endemic stationary point for which V≠0 ,

and it can be found from the equation

1 +
a
s1

V

� �
1 +

s 1
2 k

s 0
2s4

V

� �
1 +

s 1
3 k

s 0
3s4

V

� �
=

abk
s1s 0

2s 0
3
: (3:16)

If the virus replication number Rv =
abk

s1s0
2 s

0
3
is larger than 1,

then this equation has a single positive solution. Let us note that Rv
does not depend on s1

2 and s 1
3 , that is, on infection elimination by

the adaptive immune response. However, the solution of equation

(3.16) depends on these parameters. As it can be expected, it

decreases with the increase of infection elimination.
4 Immune escape and emergence of
new virus variants

In order to simplify the analysis of the model and the

interpretation of the results, we neglect the depletion of host

cells and replace U in equation (2.2) by U0.
4.1 B cells in the immune response

Let us first consider the case where the elimination of

infected cells by the immune cells is neglected, s 1
2 = 0, and the

immune response acts only through B cells and neutralizing

antibodies in the equation for the virus concentration. We obtain

the following system of equations:

∂W
∂ t

= aU0V − s2W, (4:1)

∂V
∂ t

= D1
∂2 V
∂ x2

+ bW − s 0
3 + s1

3 J Cð Þ� �
V , (4:2)

∂C
∂ t

= kV − s4C, (4:3)

where the superscript in s 0
2 is omitted for the simplicity

of notation.

This system has a normal equilibriumW=V=C=0 (no infection)

and an endemic equilibrium

W0 =
aU0

s2
V0, V0 = Rv − 1ð Þ  s 0

3s4

ks 1
3
, C0 =

k
s4

V0,
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where Rv = abU0=(s2s 0
3 ) is the virus replication number. If R0>1,

then the endemic equilibrium is positive.

The linear stability analysis of system (4.1)–(4.3) shows that

this stationary point can become unstable leading to the

emergence of spatial structures (Appendix 1). An example of

the numerical simulations of system (4.1)–(4.3) is shown in

Figures 3, 4. We consider a piecewise constant kernel of the

integral J(C):

f xð Þ = 1
2N

1 , xj j ≤ N

0 , xj j > N
:

(
(4:4)

In this case, the Fourier transform ~f(x) = sin  (Nx)=(Nx) has an
alternating sign. Therefore, instability occurs for the sufficiently

small mutation rate D leading to the emergence of localized

peaks of solution. If the initial condition is given by a localized

function with a narrow support at the center of the interval, then,

new peaks of the solution emerge after some time from both

sides of the initial distribution. From the mathematical point of

view, this dynamic corresponds to the propagation of a periodic

wave. Biologically, they correspond to the emergence of new

virus variants (strains and quasi-species) that represent virus

density distribution in the genotype space localized around

different genotypes.

Let us note that numerical simulations are carried out on a

bounded interval. In order to eliminate the influence of the

boundary, periodic boundary conditions are considered. The

space integrals are taken over the bounded interval. One more

remark concerns the reduction of system (4.1)–(4.3) to a single

equation previously studied in (24). Such reduction can be done
frontiersin.org
FIGURE 2

Dynamics of solutions described by system (3.1)–(3.3). If the virus
replication number Rv is larger than 1, the concentration of
uninfected cells U(t) decreases, while the concentrations of infected
cells W(t) and of virus V(t) first increase and later decrease
converging to the stationary point. All curves are normalized to their
maximum. The values of parameters are as follows: a = 0.2, b =
100, k = 0.01, s1 = 0.1, s2 = 0.65, and s3 = 0.6.
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if we use quasi-stationary approximations for the concentrations

of infected cells and immune cells in equations (4.1) and (4.3).

Then, we express W and C through V and substitute in

equation (4.2).
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4.2 T and B cells

Consider now the case where the adaptive immune response

also acts on the elimination of infected cells through cytotoxic T

lymphocytes:

∂W
∂ t

= aU0V − s 0
2 + s 1

2 J1 Cð Þ� �
W , (4:5)

∂V
∂ t

= D
∂2 V
∂ x2

+ bW − s 0
3 + s 1

3 J2 Cð Þ� �
V , (4:6)

∂C
∂ t

= kV − s4C : (4:7)

Here, the kernels fi(x) of the integrals Ji(C) = ∫
∞

−∞
fi(x − y)C(y, t)dy

can be different. The integrals are taken on a bounded interval in

numerical simulations.

The linear stability analysis of this problem is similar to the

previous one. We do not present it here for brevity. An example

of numerical simulations for two different kernels [both similar

to (4.10)] is shown in Figure 5. The initial condition in this

simulation is a piecewise constant function V(x,0) with the

support at the center of the interval, U(x,0)=U0 , W(x,0)=0 .

Virus concentration spreads from the center of the interval

in both directions as a periodic wave converging to a stationary

periodic in space solution behind the wave. Since the kernels of

the integrals J1(C) and J2(C) are different from each other,

this structure has a double periodicity. The values of

parameters are chosen here for the illustration of instability

and pattern formation.
FIGURE 5

Solution V(x,t) of system (4.5)–(4.7) in consecutive moments of
time. Different colors from blue to red correspond to increasing
time. Initial condition is a piecewise constant function with the
support at the center of the interval. The values of the

parameters are as follows: L = 10,D = 0:005, k = 0:5, a = 1,b =

2,s0
2 = 50:0,s 1

2 = 80,s0
3 = 1,s 1

3 = 8,s4 = 4. The half-supports of
the kernels are N=1 and N=3 .
FIGURE 4

Level lines of the function V(x,t) in Figure 3 on the (x,t)-plane.
The support of the initial condition is located at the center of the
interval. After some time, new peaks of the virus density
distribution emerge from both sides of it. The same values of
parameters as in Figure 3.
FIGURE 3

Solution V(x,t) of system (4.1)–(4.3) illustrating the emergence of

new virus variants for the values of parameters are as follows: L =

10,D = 0:005, k = 0:5, a = 1,b = 2,s0
2 = 50:0,s 1

2 = 80,s0
3 =

1,s 1
3 = 8,s4 = 4, the half-support of the kernel (4.10) N=1 .
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5 Infection spreading in
epithelial tissue

5.1 Two-virus model

Emerging virus variants are characterized by a relatively

narrow distribution in the genotype space. We will now consider

a discrete genotype space with two virus variants in order to

study their competition during infection progression in the

infected tissue. In this case, the space variable x corresponds to

the spatial coordinate in the tissue and not to the virus genotype

considered above. We consider the system of equations for the

concentrations of uninfected cells U(x,t) , two types of viruses

(variants) V1(x,t) and V2(x,t) , two types of infected cellsW1(x,t)

and W2(x ,t) corresponding to these viruses, and the

concentration of immune cells C(t) (Figure 6):

∂U
∂ t

= k − a1UV1 − a2UV2 − s1U , (5:1)

∂W1

∂ t
= a1UV1 − s 0

21 + s 1
21C

� �
W1, (5:2)

∂W2

∂ t
= a2UV2 − s 0

22 + s 1
22C

� �
W2, (5:3)

∂V1

∂ t
= D

∂2 V1

∂ x2
+ b1W1 − s 0

31 + s 1
31C

� �
V1, (5:4)

∂V2

∂ t
= D

∂2 V2

∂ x2
+ b2W2 − s 0

32 + s 1
32C

� �
V2, (5:5)

dC
dt

= k1I V1ð Þ + k2I V2ð Þ − s4C : (5:6)
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In the analysis, this system is considered on the whole real

axis, while in numerical simulations, on a bounded interval

with the no-flux boundary conditions for the virus

concentrations. The integrals I(Vi) = ∫
∞

−∞
Vi(x, t)dx are taken

over the whole axis in the first case and over the bounded

interval in the second case. We suppose that the production of

immune cells occurs in other organs (thymus and lymph

nodes). It is proportional to the total virus concentrations

and does not depend on the space variable. We begin the

analysis of this model with a single virus, and we will determine

its spreading speed and viral load. Then, we will proceed to the

investigation of virus competition.
5.2 Spreading speed for a single virus

We determine in this section the infection spreading speed

for a single virus V1. We begin with the case without the immune

response, that is, k1=0 , and, as a consequence, C=0 in equations

(5.2) and (5.4). Therefore, we consider the following system of

equations

∂U
∂ t

= k − a1UV1 − s1U , (5:7)

∂W1

∂ t
= a1UV1 − s21W1, (5:8)

∂V1

∂ t
= D

∂2 V1

∂ x2
+ b1W1 − s31V1 (5:9)

on the whole axis. For the simplicity of notation, we omit the

superscript in the coefficients s 0
21 and s 0

31. We look for its

solution in the form U(x,t)=u(x−ct),V1(x,t)=v(x−ct),W1(x,t)=w

(x−ct), where c is the wave speed. We obtain the following

problem:

cu0 + k − a1uv − s1u = 0, (5:10)

cw0 + a1uv − s21w = 0, (5:11)

Dv00 + cv0 + b1w − s31v = 0, (5:12)

u −∞ð Þ = ue,  w −∞ð Þ = we,  v −∞ð Þ = ve,

u ∞ð Þ = u0,  w ∞ð Þ = 0,  v ∞ð Þ = 0:

(5:13)

Here, u0=k/s1 , the values ue,we,ve are determined in (3.8), and the

prime symbol denotes the derivative with respect to x=x−ct .
We will determine the wave speed c by the linearization

method. We set u=u0=k/s1 and look for a solution of equations

(5.11) and (5.12) in the form

w xð Þ = pe−lx ,   v xð Þ = qe−lx ,   l > 0:
FIGURE 6

Schematic representation of the model with two viruses
competing for uninfected cells. There are two types of infected
cells corresponding to the virus type. Both types of viruses and
infected cells are eliminated by the immune response.
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Substituting these expressions into the equations, we obtain

− clp + a1u0q − s21p = 0, Dl2q − clq + b1p − s31q = 0 :

We exclude p and q and obtain the equation with respect to l:

Dl2 − cl +
a1b1u0
cl + s21

− s31 = 0 :

We set m=lc . Then, from the last equation, we obtain

c2 =
Dm2 m + s21ð Þ

m + s31ð Þ m + s21ð Þ − a1b1u0
:

Since s21s31<a1b1u0 (Rv>1), then the denominator of the

last expression equals 0 for some m=m0>0 , and it is positive

for m>m0. The minimal wave speed c0 is given by the expression

c0 = min
m>m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm2 m + s21ð Þ

m + s31ð Þ m + s21ð Þ − a1b1u0

s
: (5:14)

Let us note that the minimal wave speed depends on

parameters k and s1 through their ratio u0=k/s1 .
In order to take into account the dependence of the wave

speed on the immune response, we express C=k1I(V1)/s4 from
equation (5.6) (for the wave propagation). Then

s21 = s 0
21 + s 1

21C = s 0
21 +

s 1
21k1
s4

I V1ð Þ,

s31 = s 0
31 + s 1

31C = s 0
31 +

s 1
31k1
s4

I V1ð Þ :

(5:15)

Hence, the coefficients s21 and s31 in (5.14) depend on the viral

load I(V1) . We determine it in the next section.
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5.3 Viral load for a single virus

In order to determine analytically viral load I(V1) in problem

(5.10)–(5.13), we set k=0 , s1=0 . Let us note that the viral load

weakly depends on these coefficients if they are small enough,

and the wave speed does not depend on their variation if their

ratio remains constant. In the considered case, ve=we=0 in (5.13).

Dividing equation (5.10) and integrating over the whole axis,

we obtain

c ln  
u0
ue

= aI vð Þ : (5:16)

Next, taking the sum of equations (5.10) and (5.11) and

integrating, we get

c u0 − ueð Þ = s21I wð Þ : (5:17)

Finally, from equation (5.12),

bI wð Þ = s31I vð Þ : (5:18)

The system of equations (5.16)-(5.18) contains three

unknowns: ue, I(v), and I(w). We can reduce it to a single

equation with respect to the variable z=I(v) :

bcu0 1 − e−az=c
� �

= z s0
21 +

k1s 1
21

s4
z

� �
s0
31 +

k1s 1
31

s4
z

� �
, (5:19)

where we use (5.15).

This equation has solution z=0 for all values of parameters.

Furthermore, it has a positive solution if the derivative of its left-

hand side at z=0 exceeds the derivative of the right-hand side.
FIGURE 7

Left: snapshot of the solution of system (5.7)–(5.9). If the virus replication number Rv is larger than 1, infection spreads as a reaction–diffusion
wave with speed c. All curves are normalized to their maximum. Right: wave speed as a function of virus replication rate b for different rates of
the clonal expansion of immune cells. Analytical value for k1 = 0 is obtained by formula (5.14). Numerical values are found from the solution of

system (5.1)–(5.6) (for a single virus) with the values of k1 indicated in the figure. The values of parameters: a1 = 0:1, k = 0,D = 0:001,s1 =

0,s0
21 = s 1

21 = s 1
31 = 0:1,s0

31 = 1,s4 = 0:1.
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This condition has the form Rv>1 . Let us note that the virus

replication number Rv and the condition of the existence of a

positive solution of equation (5.19) do not depend on the

parameters of the immune response. However, if this

condition is satisfied, then the value of the positive solution

depends on the immune response. This means that the immune

response does not stop infection from spreading (if s4>0), but it

decreases the viral load.

Consider first the case without the immune response for

which k1=0 . Since z=I(v) is sufficiently large, such that az/c≫1 ,

then we obtain from equation (5.19):

I vð Þ ≈ bcu0
s 0
21s 0

31
= cRv=a : (5:20)

This analytical formula is compared with numerical

simulations in Table 1. If k1≠0 , then we need to solve the

system of equations (5.14) and (5.19) with respect to c=c0 and

z=I(v). Since it does not admit a simple analytical solution, we use

a combination of analytical and numerical results. Namely, we

solve equation (5.19) with respect to the viral load substituting in

this equation the wave speed determined in direct numerical

simulations of system (5.1)–(5.6) (for a single virus). The

analytical and numerical results are in good agreement with a

slight difference between them due to numerical accuracy.

For k1=0, the analytical value is given by formula (5.20)

where the wave speed is determined by formula (5.14). For

k1=0.1 and k1=1, the analytical value is found from formula

(5.19) where the wave speed is taken from the numerical

simulations. The numerical values of viral load are found by

the direct numerical simulations of system (5.1)–(5.6) with the

values of parameters a1 = 0:1, k = 0,D = 0:001,s1 = 0,s 0
21 =

s 1
21 = s 1

31 = 0:1,s 0
31 = 1,s4 = 0:1.

Comparison of the results for different values of parameter

k1 shows that the immune response weakly influences the

spreading speed (Figure 7, right), but it has a large influence

on the viral load (Table 1).
5.4 Competition of two variants

Depending on the initial condition, system (5.1)–(5.6) has a

solution with a single virus or both of them. In the latter case,

they compete for uninfected cells. Numerical simulations show

that one of them becomes dominant and eliminates another one

due to this competition.
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5.4.1 Virus competition without
immune response

If we do not take into account the immune response, then

the dominance condition is determined by the individual

spreading speed. We can formulate this result as follows.

In the case without immune response (k1=k2=0), the variant

with a larger individual spreading speed is dominant and

eliminates another one. If the spreading speeds are equal to

each other, then the two variants coexist.

Let us note that in the case without the immune response,

the individual spreading speed is given by formula (5.14). Hence,

we obtain an explicit condition on virus dominance. In

particular, for equal death rates, s 0
21 = s 0

22, s 0
31 = s 0

32, virus

dominance is determined by the product aibi characterizing

the virus multiplication rate. If a1b1>a2b2 , then the first

variant wins the competition and eliminates the second one.

Even a small difference in the values aibi leads to the elimination

of one of the variants. However, if they are sufficiently close to

each other, then, the disappearance of the “loser” is slow.

Previously, this result was obtained in the case of cell culture

(1) where k=s1=0 . It remains valid in the case of cell tissue with

the positive values of these coefficients. Conditions k1=k2=0

mean that immune cells are not produced. A similar result

holds for positive k1 and k2 and zero death rates s 1
ij . Proposition

formulated above is not proven as a mathematical result because

of the limitation of the existing methods of analysis. It is verified

in numerical simulations.

5.4.2 Virus competition with immune response
The previous result may not hold in the presence of the

immune response. Indeed, let us consider the following example.

The first virus variant initiates a weak production of immune cells

(k1=0 in the limiting case), but it is strongly eliminated by the

immune response (large values of s 1
21 and s 1

22). The second variant

has opposite properties: large k2 and s 1
31 = s 1

32 = 0. These

conditions mean that the second virus variant initiates a strong

immune response that does not act on itself, but it strongly acts on

the first variant. For both variants, the individual spreading speed is

not influenced by the immune response, and it is given by formula

(5.14). The results of the numerical simulations of system (5.1)–

(5.6) are presented in Table 2. In the case without the immune

response, the first variant dominates and eliminates the second one

because its individual spreading speed is larger. In the case with the

immune response, the second variant dominates because it is less

sensitive to the immune response.
TABLE 1 Analytical and numerical values of the viral load.

log b k1=0 (analyt/numer) k1=0.1 (analyt/numer) k1=1 (analyt/numer)

3 1540/1540 20.42/20.46 4.36/4.38

3.5 6641/6686 35.12/35.30 7.43/7.45

4 28300/28700 59.49/59.63 12.23/12.45
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The values of the cell infection rates for the two variants are

given in the first column and their individual spreading speeds in

the second column. Without the immune response, the first

variant dominates since its individual speed is larger (third

column). With the immune response, the second variant

dominates since it is less sensitive to the immune response

(fourth column). The values of parameters: b1 = b2 = 1, 000, k =

0,D = 0:001, nsigma_1 = 0,s 0
21 = s 0

31 = 0:1,s 0
31 = s 0

32 = 1,s 1
21 =

s 1
31 = 0:1,s 1

22 = s 1
32 = 0,s4 = 0:1.

If the dominance of one of the virus variants is sufficiently

strong, then another variant completely stops its propagation,

and its concentration vanishes. If the dominance is not strong

enough, the subdominant variant can also propagate but its

concentration and viral load converge to zero (Figure 8).

The dynamics of immune cells depend on their production

and death rates. If s4>0 , then numerical simulations show that

C(t) converges to some limiting value C+ for a large time. In this

case, we can formulate a general result on virus competition in

terms of this value. We consider system (5.1)–(5.5) where C(t) is

replaced by C+ . Then, we can use the previous proposition with

modified death rates s21 , s31 taking into account a constant

concentration of immune cells.
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In the case with immune response, consider the death rates

(5.15) with the limiting value C+ of the concentration of immune

cells. Then the variant with larger individual spreading speed is

dominant and eliminates another one. If the spreading speeds are

equal to each other, then the two variants coexist.

Let us note that the limiting value C+ cannot be found

analytically, although some approximate estimates are possible.

If we neglect the death of immune cells (s4=0), taking into

account the long lifespan of memory cells, then their

concentration monotonically grows, even if the virus

concentration decreases. In this case, infection spreads with a

slowly decaying speed and decreasing viral load.
6 Discussion

New virus variants (strains and quasi-species) emerge due to

their mutations in the process of virus replication. Constantly

appearing new variants compete with each other for uninfected

cells (21) and spread in the host organism. We study these

processes with mathematical modeling and determine the

conditions of the emergence of new virus variants and of their

success or failure in the competition.
6.1 Emergence of new variants

Virus mutation can give selective advantage increasing virus

replication rate or decreasing its death (unrelated to the immune

response) leading to the emergence of new viable variants. If the

mutations are neutral from the point of view of replication and

death rates, they can still be advantageous if they weaken the

immune response (infected cell death and virus neutralization)

and provide immune escape. We develop in this work a new

model of immune escape taking into account virus mutations,

considered as diffusion in the space of a genotype, and cross-

reactivity in the immune response with its efficacy depending on

the genetic distance.

A one-equation model of the emergence of new quasi-

species was studied in (22, 24) with a non-local reaction–

diffusion equation. This model is qualitatively similar to the

model describing the emergence of biological species on the basis

of mutations, reproduction, and intraspecific competition (25,

26). In this work, we suggest a more detailed model of the

emergence of new variants due to the immune escape. The

model takes into account specific features of infection

progression with uninfected cells, infected cells, and virus

concentration with its replication and death.

A virus exploration of the genetic space can occur in two

different modes. The first one can be characterized by a uniform

filling of the genetic space without preferential genotypes. From

the mathematical point of view, this case corresponds to the

propagation of a traveling wave with a stable uniform equilibrium
TABLE 2 Competition of two virus variants with or without the
immune response.

a1/
a2

speed 1/
speed 2

competition
k1=k2=0

competition k1=0,
k2=0.1

0.11/
0.1

0.158/0.154 V1 spreads, V2 stops V1 stops, V2 spreads
FIGURE 8

Snapshot of normalized spatial distributions of virus concentrations.
The first virus spreads together with the second one, but its maxim
concentration and viral load converge to zero. Their respective
maximal values are as follows: V1 = 10−31 and V2 = 768.5. The values
of parameters: a1 = 0.15, a2 = 0.1, b1 = b2 = 1,000, k = 0, D = 0.001,

k1 = 0, k2 = 0.1, s1 = 0, s0
21 = s0

31 = 0:1, s0
31 = s0

32 = 1, s 1
21 = s 1

31 =

0:1, s 1
21 = s 1

32 = 0, s4 = 0.1.
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behind the wave. The second mode is characterized by the

periodic emergence of new variants characterized by a localized

density distribution around some preferential genotypes. This case

corresponds to the propagation of periodic waves with a

stationary periodic spatial structure behind the wave. In the case

of biological species, the second mode gives some evolutionary

advantage because the total biomass increases (32). This question

is not yet studied for this new model of virus evolution. Another

important question concerns the genetic characterization of the

emerging variants. In the case of advantageous mutations, new

variants emerge in specific locations of the genetic space with the

best ratio replication/death. The situation is different for neutral

mutations. The location of new peaks of the virus density

distribution is determined by the initial condition (initial

variant) and the properties of the cross-reactive immune response.

The model of virus evolution suggested in this work can be

further developed with a more detailed description of virus

replication and of the immune response. Let us note that we

studied in this work the emergence of new virus variants taking

into account either only B cells in the immune response or the

combination of B cells and T cells. The case of T cells only can be

considered by the same method. We expect that it can also give

the instability and the emergence of structures.
6.2 Spreading speed

Viral infection spreads in the infected tissue as a reaction–

diffusion wave (see (33) and the references therein). It is

characterized by two main parameters: the spreading speed

and viral load. There are different methods developed in the

theory of reaction–diffusion equations to determine the

spreading speed, that is, the speed of reaction-diffusion waves

(see (32) and the references therein). In the monostable case,

where the wave connects an unstable equilibrium with a stable

equilibrium, the traveling wave is not unique. It is shown for

various models, including the scalar equation and the monotone

systems of equations that waves exist for all values of the speed

greater than or equal to some minimal speed c0 (33). The wave

with the minimal speed is more interesting for applications

because it describes the asymptotic behavior of solutions for a

large class of realistic initial conditions (with a finite support).

The minimal speed can be estimated by the linearization

method first suggested in (34) for the scalar equation and then

used for many different models. The idea of the method is to study

the system linearized around the unstable equilibrium and to look

for its exponentially decaying positive solution. It appears that

such solutions exist for the values of the speed greater than or

equal to some speed c* . In general, c*≤c0 , and equality between

them or strict inequality depend on a particular problem. In some

analytical studies and in numerical simulations, it shown that

c*=c0 , that is, the linearization method gives the minimal wave

speed (33), although, in some other cases, c* is strictly less than c0 .
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In this work, we verify with numerical simulations that these two

values coincide: c0 found numerically converges to the analytical

value c* as numerical accuracy is increased.

Thus, the analytical formula allows us to determine the

infection spreading speed in the tissue. This result is important

by itself and for a further comparison of different virus variants.
6.3 Viral load

In the case of a space-independent model, total viral load VT

is understood as the integral of virus concentration over time,

VT = ∫
∞

− 0
V(t)dt. In the biological literature, it is related to the

area under curve, and it characterizes virus infectivity. In the

case of a space-dependent problem, we determine instantaneous

viral load VX(t) as the integral of virus concentration with

respect to the space variable, VX(t) = ∫
∞

−∞
V(x, t)dx. After

that, the total viral load can be determined as the time integral

of the function VX(t) . According to dynamics of the total viral

load, infection progression in cell culture has three consecutive

stages: decay due to time delay in virus replication, explosive

growth when infected cells begin to produce new viral particles,

and a constant viral load (or slow growth) during infection

spreading (35).

An instantaneous viral load I(v) during infection spreading

can be explicitly determined through the parameters of the model

(Section 5.3). It has a particularly simple form in the case without

the immune response, I(v) = bcu0=(s 0
21s 0

31). This expression

depends on the wave speed c. The increase of a and b increases

the wave speed and viral load, while the increase of s 0
21 and s 0

31

decreases both of them. However, if we change a and b in such a

way that their product remains constant, then the wave speed c in

(5.14) does not change, but viral load I(v) does change. From this

point of view, we can state that the spreading speed and viral load

are two different and independent characteristics. Although they

are expressed through the same model parameters, their values

may not correlate, and a high (or low) wave speed can be

associated with a high or low viral load. This difference is quite

important in the understanding of viral infections, although it is

not sufficiently well elucidated in the existing literature.
6.4 Symptoms and infectivity

The infection spreading speed determines the part of tissue

infected with a virus and, as a consequence, tissue damage.

Therefore, spreading speed is correlated with the severity of

symptoms. On the other hand, spreading speed in the upper

respiratory tract (URT) determines the duration of the

incubation period, while the viral load in the URT determines

the infection transmission rate in the population (infectivity).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bessonov et al. 10.3389/fimmu.2022.945228
Experimental results on the Delta and Omicron variants of the

SARS-CoV-2 infection in the cultures of human epithelial (nasal)

and lung cells (4, 5) allow the determination of model parameters

(1). After that, modeling can be used to determine the spreading

speed and the viral load. Modeling results show that the spreading

speed of the Omicron variant is larger than that of the Delta variant

in the epithelial cells and smaller in the lung cells. This confirms

more severe symptoms of the Delta variant and a smaller

incubation period of the Omicron variant. A larger total viral

load in the culture of nasal cells corresponds to its higher infectivity.

According to the results presented in this work, the infection

spreading speed in tissue is the same as in cell culture, if adaptive

immune response is not taken into account. Furthermore, we

showed that immune response weakly influences the spreading

speed. Therefore, the conclusion about the larger spreading

speed of the Omicron variant in the upper respiratory tract

and smaller in the lungs, compared to Delta, remains valid. On

the other hand, adaptive immune response strongly decreases

the value of viral load. However, it becomes fully efficient

approximately 6–7 days postinfection. Therefore, it is not so

essential from the point of view of infectivity rate.
6.5 Virus competition

Once new virus variants emerge, they begin to compete

between each other for the host cells. This process can be more

efficiently studied if we consider a discrete set of variants and not

a continuous genotype variable as before. The main properties of

this competition can be elucidated in the case of two variants. It

was shown in (1) that virus competition in cell culture is

determined by their respective spreading speeds: a virus with a

larger individual speed becomes dominant and eliminates

another one. This result is in agreement with the experimental

data on the competition of Delta and Omicron variants in the

cultures of epithelial and lung cells (4).

The dominance condition expressed in terms of the

individual spreading speed remains valid in living tissue with

the immune response, although the value of the concentration of

immune cells cannot be determined analytically. Thus, virus

dominance is determined by the individual spreading speed and

not by viral load. These are two different infection

characterizations that may not be correlated.

Virus dominance is also related to the emergence of new

variants. In particular, since Omicron loses the competition with

Delta in the culture of lung cells, it is unlikely that it could

emerge in the lungs of a chronic patient.
6.6 Model limitations and perspectives

We have deliberately considered in this work a simplified

model of the immune response without taking into account
Frontiers in Immunology 13
various cytokines (e.g., interferon and interleukin), cells (e.g.,

antigen-presenting cells and regulatory T cells), processes (e.g.,

innate immune response and inflammation), and the

involvement of different organs and tissues of the host

organism. On the other hand, the model is biologically

realistic, and it qualitatively describes the main features of

viral infection and immune response. This simplification of

the model allows us to obtain sufficiently simple, sometimes

analytical results that admit clear biological interpretation. More

detailed models can be considered in future investigations. In

particular, the combination of adaptive and innate immune

responses can provide a better understanding of the dynamics

of virus quasi-species.
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Appendix 1. Linear stability analysis

Linearizing system (4.1)–(4.3) about the point (W0,C0,V0)

under the assumption that it is positive, we obtain the linear system

∂W
∂ t

= aU0V − s2W ,

∂V
∂ t

= D
∂2 V
∂ x2

+ bW − s0
3V + s 1

3C0

� �
V − s 1

3V0J Cð Þ,

∂C
∂ t

= kV − s4C :

We look for the solution of this system of equations in the following

form:

W x, tð Þ = peixxelt ,   V x, tð Þ = qeixxelt ,

C x, tð Þ = reixxelt :

The eigenvalues l can be found from the equation

det  (A − lE) = 0, (6:1)

where

A =
−s2aU00b −s 0

3 − s 1
3C0 − Dx2 −s 1

3V0
~f xð Þ

0 k −s4

 !
,

E is the identity matrix, and ~f(x) is the Fourier transform of the

function f(x). We have

det  (A − lE) = − s2 + lð Þ s4 + lð Þ s 0
3 + s 1

3C0 + Dx2 + l
� �

+ abU0 s4 + lð Þ − s2ks
1
3V0

~f xð Þ :

Set

Fx lð Þ = − s2 + lð Þ s4 + lð Þ s 0
3 + s 1

3C0 + Dx2 + l
� �

+ abU0 s4 + lð Þ :

Then equation (6.1) can be written as follows:

Fx lð Þ = s2ks
1
3V0

~f xð Þ : (6:2)

Let us note that F0(0)=0 and F0(l)<0 for l>0 . Therefore, if Rv>1,

then the right-hand side of equation (4.8) for x=0 is positive

(~f(0) = 1), and it cannot have non-negative real solutions. This

conclusion is in agreement with stability of the endemic

equilibrium for Rv>1 . However, if ~f(x) becomes negative for

some x , then equation (6.2) can have a positive solution.

Substituting l=0 in this equation (stability boundary), we obtain

~f xð Þ = −
Dx2

s 0
3 R0 − 1ð Þ :
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If the function f(x) becomes negative for some x , Rv>1 and

D is sufficiently small, then this equation has a solution. In this

case, the homogeneous in space stationary solution loses its

stability leading to the emergence of a stationary periodic in

space solutions.
Appendix 2. Numerical
implementation

The system of equations (5.1)-(5.6) is solved numerically by

the finite difference method with a uniform space grid

xi=idx (i=1,...,I) , where dx is the space step. The values Un+1
i ,

V1i
n+1,V2i

n+1,W1i
n+1, and W2i

n+1 at time step n+1 are found by

the formulas:

Un+1
i =

Un
i + kDt

1 + Dt a1V1in + a2V2in + s1ð Þ ,

W1i
n+1 =

W1i
n + a1U

n+1
i V1i

nDt
1 + Dt s 0

21 + s 1
21C

nð Þ ,

W2i
n+1 =

W2i
n + a2U

n+1
i V2i

nDt
1 + Dt s 0

22 + s 1
22C

nð Þ :

Equations (5.4) and (5.5) are approximated by a three-point

implicit finite difference scheme:

V1i
n+1 − V1i

n

Dt
= D

V1i + 1n+1 − 2V1i
n+1 + V1i − 1n+1

(Dx)2
+ b1W1i

n+1

− s 0
31 + s 1

31C
n� �
V1i

n+1

(and similar for the second equation). This equation,

together with the homogeneous Neumann boundary

condition, is solved by the Thomas algorithm for the

inversion of the corresponding tridiagonal matrix .

Finally, the equation for the concentration of immune

cells is approximated by the following finite difference

equation:

Cn+1 =
Cn + k1I Vn+1

1

� �
+ k2I Vn+1

2

� �� �
Dt

1 + s4Dt
  :

Note that each next finite difference equation uses the values

from the (n+1)th step found in the previous equations. The

order of the equations can be changed. The accuracy of

numerical simulations was controlled by decreasing time and

space steps and by the comparison with the analytical results

when they are available.

Numerical implementation was carried out with

programming language Python 3.8 and graphical library

matplotlib 3.3.2.
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Appendix 3. The values of
parameters

Some values of parameters were determined in (1, 35) by

fitting the experimental data in (4, 5) on the Delta and Omicron

variants of SARS-CoV-2 infection. In the study of the emergence

of new variants, the values of parameters were chosen to provide

the instability of the homogeneous in space solution.

Parameter Meaning Value References
a Cell infection rate (1/hour/

virion)
a = 0.01

(10−4 - 0.1)
(1, 35, 36)

b Virus replication rate (virion/
cell/hour)

b = 103 − 106 (1, 35, 36)

k Stim. of immune cells by antigen
(1/virion/hour)

k = 10−6 −
10−5

ETW (*)

k Influx of epithelial cells (cell/
hour)

0.001 - 0.01 (37)

s1 Death rate of uninfected cells (1/
hour)

0.001 (37)

s 0
2 Death rate of infected cells (1/

hour)
0.001 - 0.1 (1, 35, 36)

s 1
2 Cell elimination by imm.

response (1/cell/hour)
0.1 ETW

s 0
3 Virus death rate (1/hour) 0.1 - 1 (1, 35, 36)

s 1
3 Virus elimination by imm.

response (1/cell/hour)
1 ETW

s4 Death rate of immune cells
(1/hour)

0.01-0.01 (38)
Frontiers in Im
munology
(*) ETW - estimate/this work.
Bold values indicated death rate of infected cells.
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Sensitivity analysis is carried out in a recent work (39) for a

more complete model with the innate and adaptive immune

responses (different questions were investigated).
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