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Pulmonary resident memory
T cells in respiratory virus
infection and their inspiration
on therapeutic strategies
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and Zhijun Jie1,2*

1Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan
University, Shanghai, China, 2Center of Community-Based Health Research, Fudan University,
Shanghai, China
The immune system generates memory cells on infection with a virus for the

first time. These memory cells play an essential role in protection against

reinfection. Tissue-resident memory T (TRM) cells can be generated in situ

once attacked by pathogens. TRM cells dominate the defense mechanism

during early stages of reinfection and have gradually become one of the most

popular focuses in recent years. Here, we mainly reviewed the development

and regulation of various TRM cell signaling pathways in the respiratory tract.

Moreover, we explored the protective roles of TRM cells in immune response

against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and

influenza. The complex roles of TRM cells against SARS-CoV-2 infection are

also discussed. Current evidence supports the therapeutic strategies targeting

TRM cells, providingmore possibilities for treatment. Rational utilization of TRM

cells for therapeutics is vital for defense against respiratory viruses.

KEYWORDS

immune memory, tissue-resident memory T cells, respiratory syncytial virus,
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Introduction

Being exposed to various stimuli, the host forms an immune defense to protect the

body for the first viral encounter and preserve immunological memory to prepare for

reinfection. Memory T cells are the backbone of this process and are classified as central
Abbreviations: Tissue-resident memory T (TRM) cells; central memory T (TCM) cells; effector memory T

(TEM) cells; dendritic cells (DCs); mediastinal lymph nodes (medLNs); interleukin (IL); Krupple-Like

Factor 2 (KLF2); sphingosine-1-phosphate receptor (S1PR1); eomesodermin (Eomes); transcription factor

1(TCF1); Respiratory syncytial virus (RSV); bronchoalveolar lavage (BAL).
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memory T (TCM) cells and effector memory T (TEM) cells (1).

Generally, TCM cells express chemokine receptor CCR7,

homing molecule CD62L, and Krupple-Like Factor 2 (KLF2),

circulating in the peripheral lymph system for surveillance of

secondary lymphoid organs and recalling of proliferative

responses. Distribution of TCM cells includes peripheral

tissues, immune organs, and lymph nodes (1–3). TEM cells

are mainly located in non-lymphocyte tissues and organs, with

the expression of CCR7 and CD62L being hardly detected. TEM

cells participate in the body circulation and migrate to the

peripheral inflammatory tissues to induce rapid effects (1–3).

Later, resident and self-sustaining memory T cells surviving in

the non-lymphoid tissues, namely TRM cells, were identified by

parabiosis and tissue transplantation experiments (4, 5). Despite

the shared cell marker CD44+ of memory T cells, TRM cells

highly express CD69 and/or CD103 instead of CCR7 and CD62L
Frontiers in Immunology 02
(6, 7). They are the most abundant subset of memory T cells and

reside in the non-lymphoid tissues for a long time, contributing

to rapid and critical protective immune responses (8). In

addition to proliferation, TRM cells secrete cytokines and pass

the signals to other cells like natural killer cells to dominate local

memory responses (9, 10) (Table 1; Figure 1).

TRM cells found in both the upper and lower respiratory

tract play an important role in the localized defense against

respiratory infections. Due to rapid spread through air,

respiratory viruses pose a considerable threat to humans. In

recent years, respiratory viruses have stood on the stage of global

pandemic. Having a deeper understanding of the role of immune

cells in protecting the respiratory tract helps curb the spread of

respiratory disease, casting light on new strategies. In this review,

we summarize the characteristics of TRM cells and their

complicated roles during RSV, Influenza, and SARS-CoV-2
TABLE 1 basic traits of effector memory T cells, central memory T cells and resident memory T cells.

TEM TCM TRM

Location peripheral tissues, immune
organs and lymph nodes.

mainly non-lymphoid tissues and organs non-lymphoid tissues, including lung, intestine,
brain,

Function stimulated by antigen again, it
can rapidly proliferate and
differentiate

participate in the circulation of the body, and can
migrate to peripheral inflammatory tissues to induce
rapid effects

resident in a particular tissue, exerting a rapid
and critical protective immune response in local
tissues

Surface
markers

shared CD44+

distinguished CD62L+, CCR7+, KLF2+, CD69-,
CD103-

CD62L-, CCR7-, KLF2+,
CD69-, CD103-

CD62L-, CCR7-,
KLF2-, CD69+, CD103+
FIGURE 1

General distribution of TEM, TCM, and TRM cells in the lungs and their main mode of function. TEM and TCM cells migrate in circulation, while
TRM cells reside in tissues. When stimulated by antigens again, TCM cells rapidly proliferate and differentiate, while TEM cells secrete effector
molecules like granzyme B, similar to CD8+ T cells. TRM cells exert a rapid and critical immune response on local tissues. TCM: central memory
T cells. TEM: effector memory T cells. TRM: tissue-resident memory T cells.
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infection. Several potential preventive and therapeutic strategies

based on TRM cells are discussed.
Development of TRM cells in
respiratory Tract

Once viruses attack the respiratory tract, DNGR1+ dendritic

cells (DCs) preferentially migrate to the mediastinal lymph

nodes (medLNs). These DCs activate naïve T cells to

differentiate into precursor effector T cells (CD8+ T cells),

some of which further migrate to the nasal cavity or lungs and

convert into TRM cells (2, 11). Precursor CD4+ T cells can also

transform into tissue-resident memory T cells. Generally, the

phenotype of pulmonary CD4+ TRM cells is regarded as

CD69+CD103-, while the phenotype of CD8+ TRM cells is

CD69+CD103+ (2). Other phenotypes of TRM cells in

respiratory viruses are summarized in Table 2. Multiple

signaling pathways contribute to the initiation and

maintenance of TRM cells.
Initiation and generation of TRM cells

The initiation and generation of TRM cells involves different

signaling pathways and transcriptional factors that vary in

different tissues. Local antigen stimulation triggers the

initiation of TRM cells in various tissues, including the lungs,

but not in the nasal cavity (36). Cytokines like TGF-b,
interleukin (IL), and TNF-a are also involved in the regulation

of TRM cell development. TGF-b has multiple effects in adaptive

immunity with complex biological activities (37). Pulmonary
Frontiers in Immunology 03
CD103 expression by CD8+ TRM cells relies on TGF-b, which is

regulated by CD1c+ DCs (38). TGF-b, IL-33, and TNF-a can

also inhibit Krupple-Like Factor 2 (KLF2) expression to

downregulate the expression of sphingosine-1-phosphate

receptor (S1PR1), resulting in elevated CD69 expression in

CD8+ TRM cells (39). Furthermore, TGF-b downregulates

other transcription factors in the lungs to promote the

establishment of pulmonary CD8+ TRM cells, such as T-bet,

eomesodermin (Eomes), and transcription factor 1 (40, 41). In

mouse experiments, high expression levels of T-bet, Eomes, and

transcription factor 1 inhibit CD103 expression (41–43).

Expression of CD103 can be stimulated either directly by

Runx3 or Blimp1, which has been proven in the development

of gut TRM cells (44, 50). Since TGF-b is upstream of Runx3 and

Blimp1 in the gut, it might also regulate CD103 in the lungs by

the same pathway. Additionally, transcription factor Bhlhe4 can

also increase the expression of CD103 directly or indirectly via

the recruitment of Runx3 (42, 51).

IL-15 reduces T-bet expression to mediate CD8+ TRM cell

generation together with TGF-b (40). IL-33 and IL-12 increase

Blimp-1 while inhibiting Eomes and TCF-1, promoting the

generation of pulmonary CD8+ TRM cells (45). Additionally,

IL-15 and IL-2 aid in the formation of CD4+ TRM cells in

asthmatic mouse models (52, 54). In addition to ILs, other

regulators shared by CD4+ and CD8+ T cells include low levels

of transcription factors T-bet and Eomes and upregulated Notch

signaling (40, 42, 55, 56). However, the detailed signaling

mechanisms of CD4+ TRM cell generation are still unclear

and more relevant studies are necessary.

Cell environment in situ can also influence TRM cell

formation. Lung macrophages can regulate TRM cell

formation, while their effects according to different
TABLE 2 phenotypes of CD8+ and CD4+ TRM cells in respiratory viruses, as well as cytokines and transcription factors in the regulation of
pulmonary TRM cells.

CD8+ TRM CD4+ TRM

Phenotype

RSV Human CD69+CD103+

Mouse CD69+CD103+
Human CD69+CD103+/-

Mouse CD69+CD103-(CD49d+CD11ahi)

Influenza Human CD69+/-CD103+/-(HLA-DR+, NKG2A+, CD11a+, CD49a+, CD101+, PD-1hi/lo)
Mouse CD69+/-CD103+/-(IFITM3+, PD-1hi, CCR7-, CD11a+, CD49a+, Ly6C-)

Human CD69+CD103+/- (PD-1hi, CD49d+, CD101+)
Mouse CD69+(CD11a+, PD-1+, FR4lo/hi)

SARS-CoV-2 Human CD69+CD103+/-(HLA-DR+, PD-1+, PSGL-1+)
Mouse CD69+CD103+/-

Human CD69+CD103+/-(HLA-DR+, PD-1+)
Mouse CD69+

References (9, 10) (11–26) (27–29) (30, 31) (11, 17, 32, 33) (27–29)

Development

Generation (+) TNF-a, IL-33, TGF-b, IL-15, Blimp1, Runx3, Bhlhe4, Notch
(-) KLF2, Tcf1, T-bet, Eomes

(+) IL-15, IL-2, Notch
(-) T-bet, Eomes

Maintenance (+) Blimp1, Runx3, Bhlhe4, Notch, CD69
(-) KLF2, T-bet, Eomes, S1PR1, CCR7

(+) IL-7, Notch, CD69
(-) S1PR1

References (34–44) (36, 37, 39, 43, 45–49) (45, 50–52) (34, 45, 49, 53)
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experiments seem inconsistent. In influenza mouse models,

macrophages exert negative effects (46), while human

pulmonary macrophages provide costimulatory signals during

CD8+ TRM cells generation (21). CD4+ T cells and T regulatory

cells expressing T-bet assist in the formation of CD103+

pulmonary CD8+ TRM cells (29, 47).
Maintenance of TRM cells

The distinguishing characteristic of TRM cells is that they

can sustain in non-lymphoid tissue for a long time, acting as the

assault force in secondary infection. Repair-associated memory

depots are the major niche where CD8+ TRM cells are stored in

the lungs (48). Transcription factors play vital roles in the

survival of TRM cells. Runx3 and Blimp1, which inhibit

transcription factor 1, maintain the survival of CD8+ TRM

cells by suppressing egress receptors CCR7 and S1PR1 (49,

57). S1PR1 induces the chemotaxis of sphingosinol-1-

phosphate, mediating the expulsion of T cells from the tissues

(53). Therefore, FTY720, an S1PR1 agonist, is often used in

research focused on TRM cells to inhibit peripheral lymphatic
Frontiers in Immunology 04
circulation (58). KLF2, which promotes S1PR1 expression, is

downregulated after CD8+ TRM cells enter non-lymphoid

tissues (39). Furthermore, CD8+ TRM cells are sustained in a

functional epigenetic state by Bhlhe4 (51). Reduction of T-bet

and Eomes also enhances the maintenance of CD8+ TRM

cells (40).

Additionally, some transcription factors regulating

maintenance are common to both CD4+ and CD8+ TRM cells.

Notch promotes the survival of CD4+ and CD8+ TRM cells (42,

55). CD69 antagonizes S1PR1 and inhibits TRM cells excretion

(59), and research demonstrates that TRM cells cannot sustain

in CD69-/- mice (27). With reference to CD4+ TRM cells, IL-7 is

critical for the maintenance of CD4+ TRM cells in the lungs (60).

Distinct from CD8+ TRM cells, inducible bronchus associated

lymphoid tissue is the major niche for pulmonary CD4+ TRM

cells (61).

Evidently, generation, maintenance, and regulation of TRM

cells in the lungs is complicated (Figure 2; Figure 3; Table 2) and

involves a variety of factors. Additional details are needed

regarding the mechanism of TRM cell regulation to

understand their traits. Thereafter, we can control the

physiological process managed by them to regulate

immunological homeostasis.
FIGURE 2

Development of TRM cells in the lung. On contact with the virus, specific dendritic cells migrate to lymph nodes to communicate with naïve T
cells and activate the generation of effector T cells. Some effector T cells migrate to the lungs and transform into TRM cells by various signaling
pathways. CD8+ TRM cells accumulate in RAMDs and CD4+ TRM cells accumulate in iBALs after formation. To maintain TRM cells in the lungs,
many transcription factors coordinate with each other to achieve overall functionality. TRM, tissue resident memory T cells; RAMDs, repair
associated memory depot; iBALs, inducible bronchus associated lymphoid tissue; APC, antigen presenting cells; Green icons, inhibitory roles;
red icons, facilitating roles.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.943331
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.943331
Basic functions and ‘Workflow’ of
TRM cells

As fundamental components of the immune network, TRM

cells monitor local homeostasis (8). Furthermore, they

participate in the response to external stimuli and internal

abnormalities, maintaining homeostasis (13, 62). TRM cells

patrol colonization site, recognize reinfection antigen or

tumor-associated antigens, secrete pro-inflammatory cytokines,

and release cytotoxic particles to eliminate these antigens (63).

Contrastingly, signals induced by TRM cells break tissue

homeostasis with hybrid populations of white blood cells. For

instance, independent of circulating immune memory cells, CD4

+ TRM cells are considered the primary reactive immune

memory cells in the early period of asthma in house dust mite

asthmatic mouse model (54). Clearly, functions of TRM cells are

diverse under different circumstances.

TRM cells work mainly in two steps: the first step is

scanning. Long resident memory T cells slowly and randomly

migrate to previously infected tissues. In the inflammatory

tissue, T cells increase their movement five-fold in the mucosa

and bind to fibronectin with integrins CD103 and CD49a, which

are important markers of TRM cells in the lungs (64, 65). Local

immune surveillance against relapse or reinfection is enhanced

by TRM cells scanning the environment (66). On contact with
Frontiers in Immunology 05
the antigen, TRM cells initiate the second step: clearance. In

addition to the direct control of the pathogen, some tissue-

specific CD8+ TRM cells sustain constitutive granzyme B

expression, mediate extracellular toxicity (67, 68), and

eliminate pathogens by non-cytolytic progress (69).

Furthermore, they convey this information to neighboring

cells, stimulating localized memory responses. TRM cell-

dependent parenchymal immunity, including innate and

adaptive immune activation, triggers the induction of locally

protective antiviral status (9, 10).

Overall, TRM cells can settle in a particular niche for a long

time, leading to a rapid and critical protective immune response

in the local tissues. Through the two steps —scan and

clearance — TRM cells are involved in infection protection,

tumor control, and monitoring homeostasis to play various roles

in different diseases.
Role of TRM cells in respiratory
virus infection

Respiratory syncytial virus

Since it was first isolated in Chimpanzee with respiratory

illness in 1957 (70), RSV has evolved as a vast threat to children,
BA

FIGURE 3

Signaling pathways in regulating the generation and maintenance of pulmonary CD8+ TRM cells. Plenty of signaling pathways regulate the
development of CD8+ TRM cells. (A) TNF-a, IL-33, TGF-b, and IL-15 promote the development of CD8+ TRM cells by increasing the expression
of transcription factors such as Runx3, Blimp1, and Bhlhe4, and decreasing the expression of transcription factors such as Eomes, T-bet, and
KLF2. (B) Transcription factors such as Blimp1 and Runx3 inhibit the expression of cell surface receptors CCR7 and S1PR1 to maintain the
presence of CD8+ TRM cells in the lungs. Cell surface marker CD69 can also decrease the expression of S1PR1 to sustain CD8+ TRM cells.
green icons: inhibitory roles; red icons: facilitating roles. dotted line: possible impact.
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adults, and the elderly, especially infants. RSV-associated

hospitalization rates are highest in infants younger than six

months and almost all children get infected with RSV by the age

of two (71). A large systematic study has shown that RSV was

responsible for 2.0% and 3.6% of deaths in children aged 0–60

months and 28 days–6 months, respectively, in 2019 (72).

In an RSV mouse model, Kinnear et al. observed that TRM

cells have a protective effect against RSV (13). Compared with

mice infected with RSV for the second and third time, mice

infected for the first time had significantly lower body weight,

increased viral load, and significantly lower serum anti-RSV

immunoglobulin after infection. Mice infected multiple times

produced numerous antigen-specific CD8+ TRM cells in the

respiratory tract. Researchers then transferred cells from the

respiratory tract of previously infected mice to the respiratory

tract of uninfected mice, which partially rescued the weight loss

in uninfected mice. Airway CD8+ TRM cells decreased weight

loss, viral load, and increased IFN-g, suggesting their protective

effect against RSV infection. In RSV infected healthy adult

volunteers, pulmonary virus-specific CD8+ TRM cells were

observed which accumulated extensively during the recovery

period (12). During infection, the proportion of CD8+ T cells

expressing CD103 was upregulated, peaking on day 10 and

decreasing in the bronchoalveolar lavage (BAL) as the

infection subsided. Enrichment of CD8+ TRM cells in the

airway was associated with mitigated respiratory symptoms,

virus control, and reduced disease severity. This indicates that

CD8+ TRM cells in human lungs defend against severe
Frontiers in Immunology 06
respiratory viral disease. RSV-specific CD8+ T cells in the BAL

of African green monkey were about ten times higher than that

in the blood, showing effector memory (CD95+CD28-)/tissue-

resident memory (CD69+CD103+) T cell phenotype (73). The

dynamics of RSV-specific CD8+ T cells in blood and BAL were

associated with a decrease in the viral titer. Different models

have shown that TRM cells protect the host against

RSV (Figure 4).
Influenza

Influenza has caused several tragic events in the first half of

the twentieth century, killing an estimated 50 million people in

the 18 months after the end of World War I (74). It can present

diverse conditions, ranging from asymptomatic infections and

various respiratory syndromes to fulminant primary viral

pneumonia and secondary bacterial pneumonia, damaging all

organs. Pulmonary CD8+ TRM cells reveal unique traits during

influenza infection. CD8+ TRM cells are recruited through

chemokine (C-X-C motif) receptor 6/chemokine (C-X-C

motif) ligand 16 CXCR6/CXCL16 from the lungs to the airway

to realize ectopic denfence (17). Interestingly, pulmonary virus-

induced CD8+ TRM cells can retrogradly migrate from the lungs

to medLNs, providing long-term regional memory and

recording previous antigen experience to provide protection

during secondary virus attack (75).
FIGURE 4

Roles of TRM cells in RSV, Influenza, SARS-CoV-1 and SARS-CoV-2.In the secondary infection, TRM cells rapidly react to protect the host from
Influenza, RSV and SARS-CoV-1 through secreting important molecules such as IFN-g, TNF-a, and IL-2. It may also have the same effect in
SARS-CoV-2. On the other side, TRM cells could also arouse pathogenic effects when the host is infected with Influenza, which might also
happen in SARS-CoV-2 infection.GZMB: granzyme B. GM-CSF: granulocyte-macrophage colony-stimulating factor. dotted line: possible impact.
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In the medLNs, accumulation of conventional dendritic cells

strengthens T cell initiation during the primary infection and the

protective heterosubtypic immunity responses of the CD8+ TRM

cells (76). Pulmonary TRM cells deposit bronchial-associated

lymphoid tissue in the lung parenchyma and provide cross-

immune protection against different influenza virus strains (25).

Paik et al. (76) demonstrated that mice infected with H3N2 for 3

subsequent weeks could defend against H1N1. These mice

displayed decreased virus load and relieved weight loss

compared with previously uninfected heterologous mice,

suggesting the protective effect of CD8+ TRM cells on

influenza. Moreover, the use of FTY720 did not impair the

heterologous protection, indicating that the protection is

independent of the peripheral circulation and may be

mediated by secreting TNF-a and IFN-g (77). CD4+ TRM

cells also mediate remarkable protection. After influenza

infection, CD4+ TRM cells isolated from the lungs of mice

have been shown to mediate enhanced viral clearance and

survival during fatal influenza infections (34, 78).

However, the viability of TRM cells in human requires

further investigation. Wu et al. (76) found that heterotypic

immunity to influenza declined within six to seven months

after the initial infection. Nguyende et al. discovered that

CD8+ TRM cells were the most susceptible to age among all

subsets of T cells and age was inversely correlated with CD8+

TRM cells in adults (14). This may also explain why older adults

are more likely to develop severe clinical symptoms after

contracting influenza. In essense, the unstability and waning of

CD8+ TRM cells is primarly due to apoptosis (79). Nevertheless,

the decay may be rescued by repeated antigen exposure. Van et

al. clarified that repeated exposure to influenza enhanced the

persistence of lung CD8+ TRM cells and prolonged the

durability of heterologous (80).

Despite these factors, some research has introduced new

regulatory mechanisms for CD8+ TRM cell formation in

influenza. In mouse models, TRM cells selectively maintain

the interferon-induced transmembrane protein IFITM3, a

protein with extensive resistance to viral infection. Expression

of IFITM3 in CD8+ TRM cells enhances resistance to influenza

reinfection and increases CD8+ TRM cell maintenance (24).

Furthermore, secretion of IFN-g and restriction of T-bet

expression are required for CD8+ TRM cell expression, which

is accomplished by CD4+ T cell (29).

In conclusion, TRM cells can migrate to localized areas and

provide long-term regional memory to defend against influenza

(Figure 4). However, their durability is limited and related to age.

Their decline is mainly due to self-apoptosis. Despite IFN-g
secretion by CD4+ T cells to upregulate CD8+ TRM cells, CD4+

TRM cells can reversely contribute to vigorous protection of

CD8+ T cells (35). Notably, Goplen et al. (81) disclosed their

pathogenic role in aged mice, contradicting the previous

recognition of CD8+ TRM cells. Aged mice infected with

H1N1 displayed more influenza-specific TRM cells than young
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mice, accompanied by extremely weakened heterologous

immunity, enhanced pulmonary inflammation, and lung

fibrosis. These CD8+ TRM cells were unable to secrete IFN-g
and TNF-a. After exhausting CD8+ TRM cells in the lungs, the

inflammation and fibrosis were relieved. This unexpected

discovery hints to more possibile roles of TRM cells in

pulmonary Influenza infection.
SARS-CoV-2

Since the outbreak of COVID-19 in 2019, SARS-CoV-2

specific and vaccine-induced T-cell immune protection has

become a popular topic of discussion. A previous study

showed that SARS-COV-1-specific CD8+ TRM cells can last

six years after infection, while memory B cells and viral

antibodies cannot be detected in patients recovering from

SARS. In addition to reducing viral load, CD8+ TRM cells

effectively produce a variety of effector cytokines, including

IFN-g, TNF-a, and IL-2, and cytolysate molecules like

granzyme B to provide protection (82).

However, we cannot simply regard TRM cells as defence

against SARS-CoV-2. SARS-CoV-2-specific CD8+ TRM cells

were found in the oropharyngeal lymphoid tissue of children

and adults unexposed to COVID-19, which were functionally

weaker than EBV-specific CD8+ TRM cells, possibly

spearheading an early immune response. Niessl et al. pointed

that preexisting CD8+ TRM cells may induce heterologous

immune responses against COVID-19 (83). The protective role

of lung TRM cells against SARS-CoV-2 has also been observed

by a three-dimensional perfusion model of human lung tissue

(84, 85). Concerning the paired airway and blood samples, Szabo

et al. observed that in patients previously infected with COVID-

19, CD4+ and CD8+ TRM cells have superiority in the lungs,

dominating the airways. Airway T cells expressed upregulation

of TRM cell-related gene markers such as CXCR6. More

importantly, it upregulated the expression of key cytokines

and chemokines, such as IFN-g, suggesting that TRM cells

may protect patients with severe COVID-19 (86). These TRM

cells produce IFN-g in response to in vitro stimulation that

persist for at least 10 months in the lungs of patients in the

covalescent period, highlighting the persistence of TRM cells-

related immunity (87). Dai et al. exhibited that CD8+ TRM cells

decreased by 2.4 times in patients with severe infection

compared to moderate infection with lower expression of

CXCR6, which may protect the lungs in previous experiments

(88). Moreover, CD8+ TRM cells undergo active expansion in

patiens with mild infection, while they perform more naïve

funtions in severely infected patients (89). In patients with

moderate infection, CD8+ TRM cells alleviate inflammation

through CXCR6-mediated virus clearance, while the

expression of CD8+ TRM cells is unstable and reduced in

patients with severe infection, leading to viral replication (88)
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(Figure 4). Furthermore, in contrast to influenza, interferon

response against SARS-CoV-2 induced by CD8+ TRM cells

does not decline with age (14) and nasal CD8+ TRM cells can

last at least two months after virus clearance (31), indicating the

persistence of TRM cells against SARS-CoV-2.

However, other studies have challenged the protective effect

of CD8+ TRM cells during SARS-CoV-2 infection. Roberts et al.

(32) elucidated that though lung-resident T cells can be induced

by SARS-CoV-2, they cannot provide adequate protection

against secondary viral infection. In mice model, transferring

T cells from SARS-CoV-2 infected mice to uninfected mice did

not improve survival after reinfection. This prompts the

unknown efficiency of TRM cells in protecting patients against

SARS-CoV-2 during secondary infection. Additionally, many

patients in the convalescent stage of COVID-19 infection still

experienced respiratory symptoms for months. Vijayakumar et

al. found that compared to healthy individuals, T cell frequencies

in these patients were increased, particularly CD8+ TRM cells by

immuno-proteomic profiling. The heightened number of CD8+

TRM cells was correlated with increased cell death and indicated

persistent airway symptoms, namely decreased forced vital

capacity (90).

This is evidence that TRM cells predominate during COVID-

19 infection. Although some observations of human samples

emphasized the possible protective correlation between TRM

cells and SARS-CoV-2, studies in mice show that the protection

is insufficient. Moreover, exploration of the TRM cells of patients

with severe infection and convalescence with respiratory

symptoms showed association with ongoing lung injury. Roles

of TRM cells in SARS-CoV-2 are complicated. TRM cells at

different disease stages and distinct populations may display

different effects, being potential pathogenic or protective

orchestrators in COVID-19. Furthermore, CD8+ TRM cells

regulate CD4+ T cells to influence immune responses during

SARS-CoV-2 infection. Kaneko et al. showed that decline of Bcl-

6+ T follicular helper cells was responsible for the loss of germinal

centers and accumulation of activated B cells from non-germinal

sources, triggering low efficiency and unsustainable humor

immune responses during acute and severe SARS-CoV-2

infection (91). Transcription factor Bcl-6 is indispensable for the

development of T follicular helper cells and mutually antagonizes

Blimp1 in the process (92, 93). As mentioned above, formation

andmaintenance of CD8+ TRM cells in the lungs requires Blimp1.

We assume that by upregulation of Blimp1, CD8+ TRM cells

inhibit Bcl-6 to impede the generation of T follicular helper cells,

affecting humoral immunity in severe COVID-19. More studies

are needed to verify this hypothesis and patients with different

SARS-CoV-2 infection conditions should also be considered. An

update on recognition of long SARS-CoV-2 T cell immunity is

needed for more research on the absolute roles of TRM cells in

SARS-CoV-2.
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Application in preventive and
therapeutic strategies

Till date, there are no drugs that efficiently cure the

abovementioned respiratory viruses. Thousands of researchers

work on the research and development of treatment. Although B

cells eliminate the virus faster in the form of neutralizing

antibodies, T cell immunity-related theraputic strategies can

maintain long-term protection, and TRM cells largely

contribute to immunity in situ.

The study and exploration of TRM cells highlights that the

site of vaccine injection is critical, and nasal mucosal

vaccination may become the trend to curb the replication of

respiratory viruses. TRM cells are required for vaccine-induced

influenza associated T cell immunity (94). Morabito et al.(95)

investigated a murine cytomegalovirus vector vaccine

expressing RSV M-protein. Compared with intraperitoneal

injection, intranasal inoculation triggered a large amount of

CD8+ TRM cells, mediating early viral clearance over time. A

similar result was observed during influenza vaccine research

(96). Mucosal immunity in the respiratory tract also

encourages the application of inhaled vaccine. Aerosol

inhalation of two doses of Ad5-nCoV, an aerosolised

adenovirus type-5 vector-based COVID-19 vaccine, induced

production of benign neutralization antibodies with well

to lerance and consumed less vaccine dosage than

intramuscular injection (97). Inhalation vaccine can both

improve compliance to the medication and reduce the cost of

vaccination. Enhancement of local mucosal immunity prevents

infection and blocks tramsmission at the point of virus

invasion, making it safer and more convenient for promotion

in population.

TRM cells mediate superior protection in heterotypic

infection, highlighting their potential as a universal vaccine

target. For production of large amounts of TRM cells, Bosnjak

et al. utilized a prime-boost protocol on a novel modified

vaccinia virus Ankara (MVA)-SARS-2-spike vaccine

candidate to induce immune responses, which alleviated

weight loss, increased clinical score, and decreased viral titers

in rodents (98). Furthermore, Lei et al. developed a

recombinant RBD vaccine against variants of concern for

intranasal administration, which not only induced and

maintained high IgG levels, but also enhanced mucosal

immunity, including lung TRM cells (99). In particular,

humoral immunity and TRM cells attained by intranasally

delivered SARS-CoV−2 DNA vaccine efficiently suppresses the

wild type and Beta variant, providing persistent protection

(100). Remarkably, in the absence or with low expression of

virus-neutralizing antibody, systemic or pulmonary CD4+

TRM cells and protective CD8 T cells defended effectively

against the Beta variant, without lung immunopathology (101).
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Vaccines targeted at TRM cells are promising for successful

prevention of reinfection.

Various combination adjuvants may also improve efficiency

by stimulating or maintaining TRM cells. As mentioned above,

conventional dendritic cells enhance the protection induced by

TRM cells. Wakim et al. developed an antibody targeted

inoculation method to present the antigen only to respiratory

dendritic cells, facilitating the generation of protective

pulmonary TRM cells against influenza (102).

Several TRM cells stimulators, such as IL-1b and zymosan,

were used in conjugation with with vaccine, which proved to be

more effective in influenza mice models. IL-1b was used as an

adjuvant in recombinant adenovirus vector encoding

hemagglutinin and nuclear protein in mice. Abundant TRM

cells were accumulated and weight loss and virus copies in mice

were mitigated. IL-1b and local antigen resulted in activation of

key checkpoints in TRM cell formation, including epithelial cell

activation, expression of chemokines and adhesion molecules,

and recruitment of lung-derived CD103+ DCs (103). Without

the antigen, only the adjuvant usually cannot drive the

generation of TRM cells. Notably, zymosan promoted the

differentiation from effector T cells to TRM cells passing by

antigen. When used in combination with injectable influenza

vaccine, intranasal zymosan significantly increased influenza-

specific pulmonary TRM cells (104).

However, there are some complications with treatments

based on TRM cells. Firstly, the existence of TRM cells is not

stable enough to maintain permanent protection. Using an

adenovirus expressing influenza nucleoprotein, Uddback et

al. demonstrated that CD8+ TRM cells in the lungs could

sustain for at least a year post vaccination (105). Other than

apoptosis, retrocedent migration into medLNs may also

explain why TRM cells decrease overtime as described

previously, which hinders protect ion in the lungs.

Apparently, the existence of TRM cells is dynamic.

Maintenance of protective TRM cells in situ is worth

exploring. Secondly, the balance between protective and

pathogenic roles of TRM cells is unknown. The switching

point at which TRM cells change from protective to

pathogenic is unknown, especially in the elderly.

TRM cells have supreme value in the treatment of

respiratory viruses. In addition to vaccines, new drugs

targeted at TRM cells have also been released. Pretreated FC-

fused IL-7 protects mice from fatal influenza infection

depending on tissue-resident memory-like T cells in the

lungs, and lasts for several weeks (106). Utilizing the unique

advantages of TRM cells, such as persistence in tissues and

remarkable ability to undertake heterotypic immunity, a

portable, and highly protective vaccine inducing TRM cells

against multiple pathogens can be developed in the future.

Moreover, devotion to clinical administration is a big step for

vaccines and drugs based on TRM cells.
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Concluding remarks

TRM cells are persistent in non-lymphoid tissues and act as

a sentinel in reinfection immunity, responding to infection more

quickly. A variety of signaling pathways regulate the generation

of TRM cells. However, little is known about the regulation of

CD4+ TRM cells. Regarding the traits, TRM cells are usually

limited in situ and migrate localizedly in traditional opinion. As

stated above, CD8+ TRM cells move to the airway and medLNs

to induce effective protection, breaking the stereotype.

Nevertheless, TRM cells perform effector-like functions in

many tissues and maintain their state without antigen to

provide powerful protection (107, 108). Therefore, they are

often regarded as terminal differentiation of effector cells,

which is actually a semblance. TRM cells expand in the skin

and mucosa on contact with the antigen (109, 110), which is

quite different from terminally differentiated effector memory

(TEMRA) cells. TEMRA cells also reside in situ, providing

steady protection during SARS-CoV-2 infection (111), while

TRM cells display more plasticity and instability. A recent study

showed that reactivational TRM cells in intestine rejoin the

lymphoid circulation and have the potential to differentiate into

TCM and TEM cells (112, 113). While the phenomenon has not

been observed in the lungs, experiments aimed to reconfirm the

unstability of TRM cells are still ongoing.

Specifically, TRM cells have different populations. For

instance, CD4+ TRM cells have distinct subsets, including

Th1, Th2, and Th17 TRM cells (114). Influenza-specific

CD4+ TRM cells characterize as Th1-like TRM cells secreting

IFN-g and IL-2 and contribute to enhanced protection against

influenza (15, 34, 115). Th1 TRM cells provide protection

against influenza reinfection and influenza matrix protein

ectodomain (M2e)-specific Th17 TRM cells are stimulated

through intranasal immunization with M2e adjuvanted with

CTA1-DD, generating strong protection against influenza (15,

116). Conversely, in the BAL collected from patients with

severe COVID-19, Th17 TRM cells persisted even after virus

clearance. These Th17 TRM cells expressing IL-17A and

granulocyte-macrophage colony-stimulating factor are

potentially pathogenic cytokines and can interact with lung

macrophages and cytotoxic CD8+ T cells, influencing lung

injury (117). Little is known about Th2 TRM cells in

respiratory virus infection. Th2 CD4+ TRM cells in the

peritoneum mediated protective immunity against helminths

in mouse intestinal Heligmosomoides polygyrus infection

(118). A key research question that needs to be addressed is

whether distinct TRM subsets play different roles in reinfection

of the same pathogen.

TRM cells exhibit consolidated protection against RSV and

influenza, and probable effects on SARS-CoV-2. Consistently,

therapeutic strategies targeting TRM cells are good and

promising choices to cope with respiratory viruses. This
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illustrates the bright future of vaccines based on TRM cells in

response to respiratory virus. Considering their diverse roles, we

may adopt antagonism when TRM cells turn pathogenic. For

instance, employing CpG, an agonist of Toll-like receptor, and

Il685458, a Notch pathway inhibitor, can ease the airway

inflammation caused by formalin-inactivated vaccine, which

once failed in prevention of exacerbation of lung disease (119,

120). We believe that insightful application of TRM cells is key to

protective mucosal immunity generated by future universal

vaccine candidates.
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