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Differential expression of
C5aR1 and C5aR2 in innate
and adaptive immune cells
located in early skin lesions of
bullous pemphigoid patients
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Bullous pemphigoid (BP), the by far most frequent autoimmune subepidermal

blistering disorder (AIBD), is characterized by the deposition of autoantibodies

against BP180 (type XVII collagen; Col17) and BP230 as well as complement

components at the dermal-epidermal junction (DEJ). The mechanisms of

complement activation in BP patients, including the generation of C5a and

regulation of its two cognate C5aRs, i.e., C5aR1 and C5aR2, are incompletely

understood. In this study, transcriptome analysis of perilesional and non-

lesional skin biopsies of BP patients compared to site-, age-, and sex-

matched controls showed an upregulated expression of C5AR1, C5AR2, CR1,

and C3AR1 and other complement-associated genes in perilesional BP skin. Of

note, increased expressions of C5AR2 and C3AR1 were also observed in non-

lesional BP skin. Subsequently, double immunofluorescence (IF) staining

revealed T cells and macrophages as the dominant cellular sources of C5aR1

in early lesions of BP patients, while C5aR2 mainly expressed on mast cells and

eosinophils. In addition, systemic levels of various complement factors and

associated molecules were measured in BP patients and controls. Significantly

higher plasma levels of C3a, CD55, and mannose-binding lectin-pathway

activity were found in BP patients compared to controls. Finally, the

functional relevance of C5aR1 and C5aR2 in BP was explored by two in vitro

assays. Specific inhibition of C5aR1, resulted in significantly reduced migration

of human neutrophils toward the chemoattractant C5a, whereas stimulation of

C5aR2 showed no effect. In contrast, the selective targeting of C5aR1 and/or
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C5aR2 had no effect on the release of reactive oxygen species (ROS) from

Col17-anti-Col17 IgG immune complex-stimulated human leukocytes.

Collectively, this study delineates a complex landscape of activated

complement receptors, complement factors, and related molecules in early

BP skin lesions. Our results corroborate findings in mouse models of

pemphigoid diseases that the C5a/C5aR1 axis is pivotal for attracting

inflammatory cells to the skin and substantiate our understanding of the

C5a/C5aR1 axis in human BP. The broad expression of C5aRs on multiple cell

types critical for BP pathogenesis call for clinical studies targeting this axis in BP

and other complement-mediated AIBDs.
KEYWORDS

autoimmune blistering disease, bullous pemphigoid, complement activation,
complement component 5a receptor (C5aR) 1/2, neutrophils, C5a/C5aR axis
Introduction

Bullous pemphigoid (BP) is the most common subepidermal

autoimmune blistering skin disease (AIBD) and primarily affects

the elderly (1, 2). In central Europe and North America, the

incidence is 13 to 42/million/year (3–7). In Northern Germany,

the incidence of BP has recently been prospectively calculated to

be 19.6 patients/million/year (8). BP is characterized and caused

by autoantibodies against the hemidesmosomal BP180 (collagen

type XVII, Col17) and BP230, which are expressed in basal

keratinocytes abutting the dermal-epidermal/epithelial junction

(DEJ) (1, 2). Clinically, BP typically presents with tense blisters,

erosions, and urticarial plaques (9). Autoantibodies against

Col17-NC16A and BP230 can be detected in the sera of

approximately 70-90% and 50-60% of BP patients, respectively

(10, 11) and deposit along the DEJ of skin and adjacent mucous

membranes (12–15). A dense inflammatory infiltrate composed

of mainly eosinophils and lymphocytes with accompanying

macrophages and neutrophils is present in the upper dermis

(16–18). The release of specific enzymes and reactive oxygen

species (ROS) from granulocytes eventually leads to dermal-

epidermal/epithelial separation (19–22).

Of note, the vast majority of BP patients exhibits C3c

deposition along the DEJ (23), suggesting that complement-

dependent pathway activation contributes to lesion formation.

This view is supported by several studies in the neonatal mouse

model of BP. In this model, complement activation, particular of

the classical pathway, was shown to be essential for lesion

formation (24–26). Accordingly, mutated non-C1q-binding

anti-Col17 IgG1 was unable to induce skin lesions in neonatal

COL17-humanized mice. In line, in an adult mouse model, C5-

deficient mice developed only about half of skin lesions after

injection of anti-Col17 IgG compared to wildtype animals (27,

28). In contrast to experimental models of BP, data about the
02
relevance of complement activation in the human disease are

rather scarce. In patients with BP, the intensity of C3 deposits in

the skin and the capacity of sera to fix complement in vitro is

well-established. In fact, the so-called complement fixation test

correlated with disease activity (29, 30). In the same assay, the

C3-fixing capacity of BP sera was abolished by addition of a C1s

inhibitor (31). The same C1s inhibitor partially or completely

abrogated C3c deposition at the DEJ in a phase I study in 4 of 5

BP patients (32).

Treatment of BP is still based on long-term use of systemic or

superpotent topical corticosteroids that may be combined with

potentially corticosteroid-sparing agents such as dapsone,

doxycycline, methotrexate, azathioprine or mycophenoles (33–

37). These regimens are associated with a high number of relapses

and considerable adverse effects and are, in part, responsible for

the increased mortality in BP (38–40). As such, there is a high

medical need for safer and more effective treatment options for

this fragile patient population (41, 42). Among the innovative

treatment concepts, including inhibitors of IL-4R, IL-5R, IL-17,

FcRn, and eotaxin, specifically targeting complement activation

appears to be an attractive approach based on the data obtained in

various mouse models of BP (16, 43–47).

To obtain insight into the complement system in human BP,

we here comprehensively studied the complement activation in

early skin lesions and in the blood of BP patients. We

determined the expression pattern of C5aR1 and C5aR2 in

early BP skin lesions and assessed systemic complement

activation in plasma of BP patients. We also found strong

upregulation of C5aR1 and C5aR2 in innate and adaptive

immune cells as well as a functional role of autoantibody-

mediated complement activation in this disease. Collectively,

our data point toward an important role for C5aR1 activation in

human BP which makes this receptor an attractive novel

therapeutic target for this fragile patient population.
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Material and methods

Human material

Sera, plasma, and skin samples from patients with BP, patients

with non-inflammatory/non-infectious dermatoses dermatoses,

and healthy individuals were collected at the Department of

Dermatology at the University of Lübeck. The criteria for

inclusion of BP patients were (i) compatible clinical picture

without predominant mucosal involvement, (ii) linear deposits

of IgG and/or C3c at the DEJ by direct IF microscopy of a

perilesional biopsy, (iii) labelling of serum IgG at the epidermal

side of 1 M-NaCl-split human skin by indirect IF microscopy, and

(iv) circulating IgG against BP180-NC16A by ELISA

(Euroimmun, Lübeck, Germany) or against LAD-1 by

immunoblotting with conditioned concentrated medium of

cultured HaCaT cells (48). Disease activity was measured by the

bullous pemphigoid disease area index (BPDAI) (49). EDTA

plasma, serum, and skin biopsies from BP patients were taken

at the time of diagnosis before systemic therapy was initiated. All

BP patients showed a classical BP phenotype with tense blisters

and erosions. Since these samples are taken perilesionally and do

not show fully developed lesions and as such, may reflect the early

phase of the tissue destruction and inflammation, these samples

were referred to as “early BP lesions” throughout the manuscript.

This term does not mean to describe patients with non-bullous,

premonitory, or urticarial BP. As control EDTA plasma, serum,

and skin biopsies were taken from site-, age- ( ± 2 years), and sex-

matched patients with non-inflammatory dermatoses dermatoses

(most ly basa l ce l l or squamous ce l l ca rc inoma) .

Polymorphonuclear leukocytes (PMNs) isolated from blood of

healthy individuals was used for ROS release and chemotaxis

assays. For the ROS release assay, immunoadsorption material of

BP patients diagnosed as described above was employed. Sera and

plasma were stored at -80°C until analyzed. For RNA sequencing

skin samples were stored at -80°C. Paraffin embedded skin

biopsies were utilized to perform immunohistochemistry

analyses. Of note, two separate cohorts of BP patients were

used: the RNA sequencing cohort (perilesional and non-lesional

skin) and the immunohistochemistry cohort (perilesional skin).

The studies were approved by the ethics committee of the

University of Lübeck (18-046, 15-051, and 09-140) following the

Declaration of Helsinki.
RNA sequencing

To provide a detailed profile of complement activation in BP

skin, mRNA expression of complement factors, complement

receptors, and related molecules was analyzed by RNA

sequencing. RNA of punch biopsies of perilesional BP skin

(n=10), site-matched non-lesional BP skin (n=10) taken from
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the same patients at the same timepoint, and site-matched skin

from age- and sex-matched patients with non-inflammatory

dermatoses (n=10), subsequently referred to as control

subjects, was isolated by InnuSPEED Tissue RNA kit (Analytik

Jena, Upland, CA, USA) according to manufacturer’s

instruction. The quality of total RNA was determined using

Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa

Clara, CA, USA). Library preparation was performed by

TruSeq® stranded mRNA library preparation kit (Illumina,

San Diego, CA, USA) using 1 µg of total RNA per sample.

Samples were sequenced on an Illumina NextSeq500 by using

75-bp paired-end reads (Illumina). RNA sequencing data was

analyzed using the OmicSoft Suite (Qiagen, Hilden, Germany)

and aligned to the Human.B38 reference genome using the

OmicsoftGenCode.V33 gene model. Principle component

analysis was applied to assess data quality which was based on

aligned reads with one healthy control sample being identified as

an outlier and removed from the downstream analysis. Finally,

differentially expressed genes were identified between the three

samples groups using pairwise analysis with DESeq (OmicSoft)

as described previously (50, 51).
Immunohistochemistry

Expression of the highly differentially upregulated genes

C5AR1 and C5AR2 was further studied on the protein level by

immunohistochemistry. Punch biopsies of perilesional skin of

BP patients (n=9) and controls (n=4) with non-inflammatory/

non-infectious dermatoses matched for biopsy site, age, and sex

were used. Here, perilesional skin was defined as skin without

subepidermal splitting as verified by H&E-stained sections.

Briefly, formalin-fixed, paraffin-embedded, 6-µm-thick tissue

sections on Superfrost Plus™ slides (ThermoFisher Scientific,

Dreieich, Germany) were deparaffinized in xylene and then

dehydrated with graded ethanol series. Antigenicity was

restored using heat-induced or proteolytic-induced epitope

retrieval. For heat-antigen retrieval, sections were incubated in

citrate buffer solution (pH 6.0) for 10 min in a pressure cooker.

For enzymatic antigen retrieval, sections were subjected to

pepsin digest-ALL 3 solution or proteinase K (both

ThermoFisher Scientific) for 10 min at 37°C. Afterwards, slides

were washed with PBS/0.05% Tween20 and blocked with 5% (v/

v) normal donkey serum (Jackson ImmunoResearch

Laboratories, Suffolk, UK) for 1 h at room temperature (RT).

To identify the cellular site(s) of C5aR expression, we performed

co-staining of rabbit anti-human C5aR1 (#PA5-32683,

ThermoFisher Sc ient ific) or C5aR2 (#PA5-33374 ,

ThermoFisher Scientific) antibody with mouse anti-human

myeloperoxidase (MPO; clone 392105, R&D Systems,

Minneapolis, MN, USA) for neutrophils, mast cell tryptase

(MCT; clone AA1, DAKO, Glostrup, Denmark) for mast cells,

CD3 (clone F7.2.38, DAKO) for T cells, eosinophil peroxidase
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(EPX; clone MM25-82.2, Mayo Clinic, Scottsdale, AZ, USA) for

eosinophils, and CD68 (clone PG-M1, DAKO) for macrophages.

Following overnight incubation at 4°C, slides were washed and

incubated with Alexa Fluor 594-AffiniPure donkey anti-rabbit

IgG (Jackson ImmunoResearch Laboratories) and Alexa Fluor

488 goat anti-mouse IgG (ThermoFisher Scientific) for 1 h at RT.

Slides were then washed and mounted with DAPI Fluoromount

G (Southern Biotech, Birmingham, AL, USA). Normal rabbit

IgG (Bio X Cell, Lebanon, NH, USA) and mouse IgG1, IgG2a,

IgG2b, and IgG3 (all Biolegend, San Diego, CA, USA) served as

controls. Images were acquired on a Keyence BZ-9000E series

microscope (Keyence GmbH, Neu-Isenburg, Germany) and

analyzed using a BZII analyzer (Keyence GmbH). Cell

numbers were determined by counting fluorescent cells in

relation to DAPI positive cells in 5 visual fields of 2 sections at

40-fold magnification.

The specificity of the C5aR2 antibody was evaluated using a

synthetic C5aR2 peptide (peptides&elephants, Hennigsdorf,

Germany). The synthetic peptide contains the amino acid

sequence (RRLHQEHFPARLQCVVDYGGSSSTEN) of the

immunogen used to generate the anti-C5aR2 antibody (#PA5-

33374, ThermoFisher Scientific). Different amounts of the

peptide (dose range, 0.1-50 µg) were first co-incubated with 10

ng of the anti-C5aR2 antibody for 3 h at RT. The antibody with

and without the peptide was then used to stain randomly

selected perilesional BP skin sections following the standard

protocol. Isotype control antibody as well as C5aR2-specific

antibody co-incubated with a non-relevant peptide (50 µg)

served as controls.
ELISA for complement and
complement-related factors

EDTA plasma and serum from BP patients (n=10 plus one

6-month follow-up of 4 patients) and age- and sex-matched

controls (n=10) was used to determine levels of complement

and complement-related factors as well as the different

complement pathways. Of note, plasma samples were stored

at -80°C within 30 min after venipuncture. 9 of 10 BP

patients, whose serum samples were used for ELISA in our

study, showed C3c deposition along the dermal-epidermal

junction. EDTA plasma samples were subjected to CD55

ELISA (Abcam, Mi l ton , UK) , C5b-9 ELISA (BD

Biosciences, Franklin Lakes, CA, USA), C3a ELISA (Quidel,

San Diego, CA, USA), C5a ELISA (DRG International,

Springfield, NJ, USA), Factor H ELISA (R&D Systems

Europe, Abingdon, UK), and Factor B ELISA (Abcam)

according to the manufacturers’ instructions.

Activities of the classical, alternative, and mannose-binding

lectin pathways were determined in serum by the corresponding

Wieslab® immunoassay following the manufacturer ’s

instructions (SVAR, Malmö, Sweden). In detail, the wells of
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respective pathway. This in combination with the composition

of sample dilution buffer and the level of patient serum dilution

ensured that only the respective pathway was activated. During

the incubation of the diluted patient serum, complement was

activated by the specific coating. Wells were then washed and the

amount of C5b-9 complex formed on the plate surface was

detected with a specific alkaline phosphatase labelled antibody to

the C5b-9 neoantigen formed during formation of the

membrane attack complex. Absorbance was read at 450 nm

(CD55, C5b-9, C3a, C5a, factor H, and factor B) and 405 nm

(pathway assays) using a GloMax plate reader (Promega,

Mannheim, Germany). In addition, the ELISA results were

correlated with the patients’ BPDAI.
Chemotaxis assay

The migration of human PMNs towards C5a was tested

using 6.5 mm transwell plates with 3-µm pore inserts (Corning

Inc., Kennebunk, ME, USA) as described previously (52) with

the following modifications. Isolated PMNs from healthy

volunteers were resuspended to a density of 6×106 cells/ml in

complete RPMI-1640 medium (RPMI-1640 containing 1% fetal

calf serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/

ml streptomycin). The bottom wells were filled with 800 µl of

complete RPMI-1640 medium containing recombinant C5a

(Hycult Biotech, Uden, The Netherlands) at a final

concentration of 12.5 nM. Thereafter, 200 µl of cell suspension

were pre-incubated without or with C5aR (ant)agonists,

including PMX53 (a C5aR1 antagonist, 10 µM) (53), P32 (a

C5aR2 (ant)agonist, 100 µM) (54) or A8D71-73 (a C5aR1/C5aR2

double antagonist, 12.5 µM) (55) at 37°C for 5 min.

Subsequently, cells were seeded on a transwell insert and

incubated for 1 h at 37°C and 5% CO2. Afterward, non-

migrated cells from the transwell insert and migrated cells

from the bottom well were recovered separately. The number

of migrated cells was determined by Cytek Aurora flow

cytometer (Cytek Biosciences, Fremont, CA, USA). Finally, the

percentage of chemotactic PMNs was calculated by dividing the

number of migrated cells by the total number of recovered cells

from the transwell insert and the respective bottom well. As

negative control, isolated PMNs were seeded on a transwell

insert without addition of C5a to the bottom well to correct for

cells that passed the pores due to chemokinesis.
Immune complex-induced reactive
oxygen species release assay

A LumiTrackTM high binding 96-well-plate (ThermoFisher

Scientific) was coated with immune complexes consisting of

recombinant tetrameric form of BP180 NC16A (Euroimmun) at
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a final concentration of 5 µg/ml and 1:10 diluted BP

immunoadsorption material. Human PMNs were purified

from healthy individuals following the Polymorphoprep

protocol (PROGEN Biotechnik, Heidelberg, Germany). After

erythrocyte lysis and centrifugation, cells were resuspended in

chemiluminescence medium (containing RPMI-1640 without

phenol red, 1% fetal calf serum, 1 g/ml glucose, and 25 mM

HEPES). Then, we seeded 200 µl of PMNs (with a density of

1×106 cells/ml) in each well with or without C5aR (ant)agonists,

including PMX53, P32 or A8D71-73 at final concentrations of

0.1-10 µM. PMX-53 and P32 were kindly provided by Dr. Trent

Woodruff, University of Queensland, Australia. As negative

controls, PMNs with or without antigen or antibody were

used. After addition of luminol (Sigma-Aldrich, Hamburg,

G e rmany ) a t a fina l c on c en t r a t i on o f 0 . 2 mM

chemiluminescence was immediately measured by a

luminescence reader (GloMax® Discover System, Promega) for

a period of ∼2 h at 37°C (56).
Statistics

All data were analyzed and plotted using GraphPad Prism

(Version 8, GraphPad Software, San Diego, CA, USA). All data

are presented as mean ± standard error of the mean (SEM). For

comparison of two groups, we used t-test. Unless indicated

otherwise, a two-way ANOVA with Holm-Šıd́ák’s multiple-

comparisons test was performed to determine significance.

Differences were considered as statistically significant at p-

values of *, p≤ 0.05; **, p ≤ 0.01; and ***, p ≤ 0.001.
Results

Early skin lesions of BP patients
comprise upregulated mRNA levels
of complement factors and receptors
including C5AR1 and C5AR2

In order to unravel complement gene expression in BP

patients’ skin RNA sequencing was performed in early BP skin

samples, i.e., in biopsies from perilesional skin. Site-matched

biopsies from non-lesional, i.e., clinically normally- appearing

BP skin, and site-matched skin from age- and sex-matched

controls with non-inflammatory/non-infectious dermatoses

served as controls. Analysis of RNA sequencing data focused

on complement and complement-related genes. Differentially

expressed complement-related genes in (i) BP perilesional skin

vs. control patient skin, (ii) BP non-lesional skin vs. control

patient skin, and (iii) BP perilesional skin vs. BP non-lesional

skin are shown in the heatmap of Figure 1A. Significantly

elevated mRNA expression of C5AR1 (false discovery rate
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(FDR), 0.0007) and C5AR2 (FDR, 0.0035) were found between

perilesional BP skin and control patient skin (Figures 1B, C).

Significantly higher mRNA levels of C5AR2 (FDR, 0.000093)

were also seen in non-lesional BP skin samples compared to

controls (Figure 1C).

We also detected significantly increased mRNA levels of

other complement receptors as well as complement factors and

associated proteins, including CR1, C3AR1, C1QB, C1QC, and

C1QTNF1 (FDR, 0.004; 0.0021; 0.0017; 0.0075, and 0.0078,

respectively), in perilesional BP skin compared to site-matched

skin of controls (Figure S1). No significantly elevated mRNA

levels of CD46 (FDR, 0.4412), CD59 (FDR, 0.7226), and CD55

(FDR, 0.9936) were found in early BP skin lesions compared to

both non-lesional skin and skin of controls (Figure S2).
In early skin lesions of BP patients,
T cells and macrophages predominantly
express C5aR1, whereas mast cells and
eosinophils are the main sources of
C5aR2 expression

To corroborate the RNA sequencing results at the protein

level and identify the cellular sources of C5aR1 and C5aR2,

immunohistochemical staining of C5aR1 and C5aR2 was

performed in perilesional skin of BP patients and site-, age-,

and sex-matched controls. In line with previous reports (16–18),

the inflammatory infiltrate in BP skin lesions was dominated by T

cells, eosinophils, neutrophils, and macrophages (17, 18). To map

the expression sites of C5aRs, double-stainings of C5aR1 and

C5aR2 on perilesional BP skin along with immune cell markers of

these cells, i.e., CD3 (for T cells), eosinophil peroxidase (for

eosinophils), myeloperoxidase (for neutrophils), CD68 (for

macrophages) as well as mast cell tryptase (for mast cells) were

performed (Figure 2). The highest frequency of C5aR1 expression

was observed in macrophages (73%) and T cells (47%),

respectively. The frequency of C5aR1 expression was lower in

eosinophils (42%) and neutrophils (40%). Only 20% of mast cells

stained positive for C5aR1 (Figure 3A). When C5aR1 expression

was quantified in relation to the total C5aR1 expression of all

inflammatory cells, T cells and macrophages appeared as the main

cellular sources accounting for 43.8% and 23.2% of the total

C5aR1 expression, respectively (Figure 3B). Besides, C5aR1 and

C5aR2 expression was also detected on keratinocytes and

endothelial cells (Figure S3).

Since only few studies have addressed the expression of C5aR2

in human tissues, we first set out to validate the specificity of the

anti-C5aR2 antibody. When increasing amounts (0.1, 0.5, 1.0, 5,

25, and 50 µg) of the synthetic C5aR2 peptide, used to generate the

anti-C5aR2 antibody, were added to the chosen dilutions of the

anti-C5aR2 antibody, we found a dose-dependent reduction and a

complete abolishment of C5aR2 staining at 25 µg and 50 µg
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A

FIGURE 1

Transcriptome analysis identified C5AR1 and C5AR2 to be highly upregulated in early bullous pemphigoid (BP) skin lesions. (A) Heatmap of the
complement and complement-related genes. RNA sequencing was performed on perilesional and site-matched non-lesional skin biopsies from BP
patients (n=10) as well as site-matched biopsies from age- and sex-matched control subjects (n=9). Blue-red color bar: blue represents low gene
expression and red high gene expression. (B, C) Box plots indicate the distribution of the relative mRNA expression levels of C5AR1 (B) and C5AR2
(C) in perilesional (purple) and site-matched non-lesional skin biopsies (green) from BP patients compared to the controls (blue). Plots were based on
normalized and log2 transformed FPKM values and the identification of differentially expressed genes was conducted by DESeq2. FPKM, fragments per
kilobase of transcript per million mapped reads; FDR, false discovery rate. *, FDR <0.05, **, FDR <0.01; **, FDR <0.001; n.s., not significant. , ***p ≤

0.0001.
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FIGURE 2

Double immunofluorescence (IF) staining revealed the cellular sources of C5aR1 and C5aR2 in early bullous pemphigoid (BP) skin lesions. IF
staining on perilesional skin of BP patients (n=9) shows colocalization of C5aR1 (red) or C5aR2 (red) and cellular markers (green) on infiltrating T
cells (CD3), macrophages (CD68), eosinophils (eosinophil peroxidase, EPX), neutrophils (myeloperoxidase, MPO), and mast cells (mast cell
tryptase, MCT). Double positive cells appear in yellow. Stainings with isotype antibodies (Isotype) served as controls. DAPI staining of nuclei is
shown in blue. Scale bars, 100 µm.
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C5aR2 peptide, confirming the C5aR2 specificity of the anti-

C5aR2 antibody (Figure S4).

We found that 95% of mast cells and 65% of eosinophils

stained positive for C5aR2, but only 25% of macrophages, 19% of

neutrophils, and 2% of T cells (Figure 3C). Mast cells and

eosinophils showed the highest contribution to the total C5aR2

expression with 38.2% and 33.0%, respectively (Figure 3D). As

expected, skin samples of controls only contained few

inflammatory cells and very lower numbers of C5aR1- or

C5aR2-positive cells (Figure S5).
BP patients exert elevated plasma
levels of C3a, CD55, and components
of the lectin pathway

After having addressed the local complement activation in

the skin of BP patients, we subsequently studied the systemic
Frontiers in Immunology 08
complement activation by measuring classical-, alternative-,

lectin- and terminal pathway activity as well as the

anaphylatoxins C3a and C5a and some complement regulators

in plasma of BP patients with active disease at the time of

diagnosis. Plasma of age- and sex-matched patients with non-

inflammatory skin diseases served as controls.

We found significantly elevated plasma levels of C3a

(p=0.0004) and CD55 (p=0.0091) as well as mannose-binding

lectin-pathway activity (p=0.0208) in BP patients compared to

controls (Figures 4A-C). In contrast, no significant differences

were observed between plasma levels of C5a (p=0.3787), C5b-9

(p=0.1603), factor h (p=0.8148), factor b (p=0.2679), and the

activity of the classical (p=0.1510) and alternative complement

pathways (p=0.2526; Figures S6A-F). When plasma levels of

the complement and complement-related factors as well as the

pathway activities in BP patients were related with the BPDAI

measured at the time when plasma was taken, no significant

corrections were detected (Figures 4D-F, S6G-L).
B

C D

A

FIGURE 3

In early skin lesion of bullous pemphigoid (BP), T cells are the main source of C5aR1, while C5aR2 is predominantly expressed on mast cells and
eosinophils. (A, C) Quantification of C5aR1- (A) and C5aR2-expressing cells (C) in perilesional BP skin samples (n=9) as determined by IF staining
detailed in Figure 2. (B, D) Pie charts show the percentage of C5aR1- (B) and C5aR2-expressing cells (D) in relation to all inflammatory cell
subsets in perilesional skin of BP patients.
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FIGURE 4

Elevated plasma levels of C3a and CD55 as well as elevated serum activity of mannose-binding lectin-pathway (LP) in patients with bullous
pemphigoid (BP). (A-C) The plasma levels of C3a (A), CD55 (B), and serum activity of LP (C) in BP patients (n=10) were significantly increased
compared to age- and sex-matched controls (n=10). (D-F) Plasma levels of C3a (D), CD55 (E), and serum activity of LP (F) in BP patients did not
significantly correlate with disease activity as measured by the bullous pemphigoid disease area index (BPDAI). Differences between groups were
analyzed by unpaired two-tailed t-test. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001.
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Pharmacological targeting of C5aR1
and/ or C5aR2 reduces chemotaxis of
human neutrophils towards C5a

In mouse models of pemphigoid diseases, neutrophils critically

contribute to tissue damage, and complement activation at the DEJ

is a major driver for the infiltration of these cells into the skin (19,

20, 25, 57–59). While C5aR1 has been shown to exert a strong pro-

inflammatory effect in these mouse models, both pro- and anti-

inflammatory effects of C5aR2 have been reported in mouse models

of BP and BP-like epidermolysis bullosa acquisita (28, 52, 59–61).

Thus, we assessed the individual contribution of human C5aR1 and

C5aR2 activat ion for C5a-dependent migration of

polymorphonuclear granulocytes in vitro using cells from healthy

donors (Figure 5A). Consistent with previous data obtained with

mouse neutrophils (28, 52), the C5aR1 inhibitor PMX53 (53)

markedly reduced the migration of the neutrophils towards C5a

as compared with untreated cells (p=0.0008; Figure 5B),

demonstrating a critical role for C5aR1 in C5a-mediated

chemotaxis. Similarly, the C5aR1/C5aR2 dual antagonist A8D71-73

(55) significantly reduced C5a-mediated chemotaxis (p=0.0177;

Figure 5B). To assess the individual contribution of C5aR2 to

C5a-induced chemotaxis we next treated neutrophils with the

C5aR2-specific agonist P32 (54). In contrast, the C5aR2 agonist

did not impact on the C5a-driven chemotaxis (p=0.9935;

Figure 5B), suggesting that the contribution of C5aR2 to C5a-

mediated chemotaxis of human neutrophils is minor.
Inhibition of C5aR1 or C5aR2 does not
affect the Col17-anti-Col17 IgG immune
complex-mediated ROS release from
normal human leukocytes

Previous findings demonstrated bidirectional cross-talk

between C5aR1 and FcgRs (62). To test a potential impact of

C5aR1 on IgG immune complex-driven FcgR activation on human

leukocytes, we determined the release of reactive oxygen species

(ROS) from human leukocytes. This assay determines ROS release

from human leukocytes in response to stimulation with immune

complexes of recombinant human Col17 and human anti-Col17

IgG, mimicking leukocyte binding at the DEJ in BP patients. The

C5aR1 inhibitor PMX53, the C5aR2 agonist P32, and the C5aR1/2

inhibitor A8D71-73 did not affect the IgG immune complex-driven

ROS release of human leukocytes (Figure 6), suggesting that the

ROS release from Col17-anti-Col17 IgG-stimulated human

leukocytes occurs independently of the C5a/C5aR axis.
Discussion

A convincing body of evidence for the pathogenic relevance

of complement activation has previously been provided in
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various mouse models of pemphigoid diseases, including BP

(24, 25, 27, 28, 60, 61, 63, 64). In particular, a central role of

C5aR1 has been identified in these models (28, 60, 61, 65)

supported by findings in other autoimmune disorders such as

anti-myeloperoxidase glomerulonephritis, autoimmune uveitis,

and psoriasis (66–68). The ample data about complement-

mediated tissue destruction in mouse models of BP contrast

with the scarcity of studies about the role of complement

activation in patients suffering from BP. This is even more

surprising since the labelling of C3c at the DEJ is a diagnostic

hallmark of BP and found in 83-98% of patients (12, 23, 69, 70).

The present study, therefore aimed at providing a detailed

picture of local and systemic complement activation in BP

patients and expression of complement receptors in skin lesions.

In an initial set of experiments, expression of complement

factors in early BP skin lesions was studied by transcriptome

analysis. Significantly higher mRNA levels of C5AR1 and C5AR2

were found in early BP skin lesions from perilesional skin

biopsies compared to site-matched biopsies of age- and sex-

matched controls. Furthermore, significantly higher mRNA

levels of two other complement receptors, CR1 and C3AR1, as

well as the complement components C1QB, C1QC, and

C1QTNF1 were observed as compared with skin of control

subjects. Of note, elevated expression of C5AR2 (FDR,

0.000093, Figure 1C) and C3AR1 (FDR, 0.0491, Figure S1B)

was also observed in non-lesional BP skin compared to site-

matched skin of controls. The latter results indicate that some

components of the complement systems are activated even in

macroscopically normal-appearing skin and may reflect an

extremely early time point of skin inflammation shortly after

IgG autoantibody binding to the DEJ. The relevance of

upregulated expression of C3AR1 in non-lesional BP skin is

yet unclear. In light of recent findings which associated C3

upregulation in trigeminal ganglions with itch in a chemical-

induced mouse model of allergic contact dermatitis, it is

tempting to speculate that the early upregulation of C3AR1

triggers itch sensation in BP (71), in particular as pruritus is

present in nearly all BP patients and is not limited to areas with

visible skin lesions (9). In line with this finding, elevated plasma

levels of C3a were observed in BP patients in comparison to age-

and sex-matched controls. Increased C3a levels have previously

been observed in pruritic but not non-pruritic hemodialyzed

patients (72). The previous finding that C3-deficient mice were

susceptible to blister formation upon injection of anti-Col17 IgG

argues against a direct contribution of this complement

component in the development of visible skin inflammation

and lesions of BP (73), but does not exclude its involvement in

itch sensation. Interestingly, the expression level of C5AR2 in

non-lesional BP skin was similar to perilesional BP skin and

significantly increased compared to site-matched skin of

controls. Based on the anti-inflammatory effect of C5aR2 in

the mouse model of BP (28) this may be interpreted as a

counterregulatory mechanism to reduce C5aR1-mediated
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attraction of neutrophils. Indeed, anti-inflammatory mediators

and cells including IL-10 and pro-resolving lipid mediators as

well as regulatory T cells have already been described in BP

(11, 74).

Furthermore, elevated mRNA levels of C1QC, C1QB, and

C1QTNF1 were observed in early BP skin lesions pointing

towards a complex local network of activated complement
Frontiers in Immunology 11
factors in BP. This view is supported by data for complement

regulatory proteins. These proteins regulate the enzymatic

cascades, assembly of the membrane attack complex, and

homeostasis of the complement system. Complement

regulatory proteins include CD46 (membrane cofactor

protein), CD59 (protectin), CD35 (CR1), and CD55 (decay

accelerating factor) (75, 76), among others. Dysregulation of
B

A

FIGURE 5

Pharmacological inhibition of C5aR1 significantly reduced the C5a-directed chemotaxis of normal human polymorphonuclear leukocytes
(PMNs). (A) Flow cytometric gating strategy to identify human PMNs. Cells collected from the top insert and the bottom well of the transwells
were pre-gated (area within the outline) using FSC-H vs. FSC-A to exclude cell debris, residual erythrocytes, and doublets. (B) Percentage of
chemotactic PMNs in an in vitro migration assay towards C5a using transwell inserts. Chemotaxis of PMNs was induced by C5a in the presence
of the C5aR2 agonist P32 (100 µM), the C5aR1 inhibitor PMX53 (10 µM), and the dual C5aR1/2 antagonist A8D71-73 (12.5 µM). Data were
normalized to untreated cells. Cells not stimulated with C5a served as negative control. Results are compiled from four independent
experiments with PMNs from different donors (n=4) and presented as mean ± SEM of migrated cells (percentage). Statistical analysis was
performed using two-way ANOVA with Sidak’s multiple comparisons test. n.s., not significant; *, p ≤ 0.05; **, p ≤ 0.01, ***, p ≤ 0.001.
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B

C

A

FIGURE 6

CaR1 and C5aR2 (ant)agonists have no effect on the reactive oxygen species (ROS) release from normal human polymorphonuclear leukocytes
(PMNs) after stimulation with immune complexes (IC) of human Col17 and anti-Col17 IgG. PMNs of healthy volunteers (n=6) were activated with
immobilized ICs of human Col17 and anti-Col17 IgG with or without the C5aR1 antagonist PMX53 (A), the C5aR2 agonist P32 (B), and the dual
C5aR1/2 antagonist A8D71-73 (C) at three different concentrations (0.1, 1, and 10 µM). ROS release was tracked for 2 h and the AUC (cumulative
values) of luminescence were calculated. Data were normalized to positive control (IC-stimulated PMNs). PMNs without or with antibody (anti-Col17
IgG) or antigen (Col17) served as negative controls. Results were pooled from six independent experiments with PMNs from different donors (n=6)
and are presented as mean ± SEM. Data were analyzed using two-way ANOVA with Holm-Šıd́ák’s multiple-comparisons test. n.s., not significant;
AUC, area under curve.
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complement regulatory proteins directly affects the progression

of several autoimmune diseases, such as systemic lupus

erythematosus and rheumatoid arthritis (77). Here, we

revealed increased mRNA levels of CR1 but not of CD46,

CD55, and CD59 in perilesional BP skin. CR1 exerts a dual

function as a phagocytic receptor for C3b-opsonized pathogens

and a regulator of the C3/C5 convertases and co-factor for factor

I to cleave C3b into iC3b, C3c, and C3dg. Its upregulation may

point toward a counter-regulatory measure to control the

amplification loop of the alternative pathway at the DEJ,

where IgG immune complexes have bound and activated the

complement cascade. Previous studies in BP reported

downregulated CD55 expression (75), whereas CD46 levels

were significantly enhanced in sera and blister fluids of BP

patients, but its mRNA level was downregulated in BP skin

lesions (78).

The complement genes with the most striking difference in

mRNA expression between early BP skin lesions and skin of

control subjects were C5AR1 and C5AR2. The anaphylatoxin C5a

exerts its effector functions through binding to its two receptors,

namely C5aR1 (CD88) and C5aR2 (GPR77, C5L2) (79). C5aR1

exerts a proinflammatory role in several autoimmune diseases,

whereas the role of C5aR2 is still enigmatic, with both immune-

activating and immunosuppressive functions in inflammatory

disease models such as allergic contact dermatitis and allergic

asthma (80–84). Therefore, we subsequently studied the

expression of C5aR1 and C5aR2 in early BP skin lesions, i.e.,

skin biopsies taken directly adjacent to a blister or erosion but

without microscopic split formation, by immunohistochemistry.

Strong expression of both complement receptors were observed in

early BP lesions compared to site-matched skin of age- and sex-

matched controls. To address whether the increased expression of

C5aR1 and C5aR2 is due to increased expression of the receptors

on individual cells or rather increased cell numbers, the

percentage of C5aR1 and C5aR2 expression cells was calculated.

By double immunohistochemistry, we identified T cells and

macrophages as the dominant cell types expressing C5aR1 and

mast cells and eosinophils as the main cell types expressing

C5aR2. Our findings align with the previous observation that

C5aR1 and C5aR2 are expressed on human monocytes, but

contrast with Arbore et al., who reported resting and activating

T cells to preferentially express C5aR2 and only to a low extent

C5aR1 in vitro (82, 85). In skin lesions of BP patients, T cells are

the main producers of IL-17A (16–18, 86), a cytokine that has

been shown to be essential for blister formation in the antibody

transfer adult mouse model of BP (16). Macrophages, mast cells,

and eosinophils are pivotal for lesion formation in the neonatal

and local mouse models of BP, respectively (65, 87, 88). The

importance of C5aR1 on mast cells for blister formation has been

described in the neonatal mouse model of BP (65), however may

be questioned for the human disease, since in the present study

only 20% of mast cells expressed C5aR1 and mast cells only

contributed to about 5% of C5aR1 expression in early BP lesions.
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In addition, expression of C5aRs was also detected on

keratinocytes and endothelial cells. Induction of C5aR1 mRNA

in keratinocytes under different inflammatory conditions has

previously been described (89). A more recent study reported

high expression of C5aR1 on keratinocytes in perilesional BP skin

without further investigating the functional role of C5aR1 on these

cells (45).

In addition to delineating the complex network of complement

activation in early skin lesions of BP patients, we were interested in

the systemic complement activation in BP patients. We found

elevated plasma levels of C3a, CD55, and lectin pathway activity

compared to age- and sex-matched controls. These data are in

agreement with a previous report of the significant correlation of

sCD46 and C3a in BP sera (78). In contrast, another study failed to

show elevated plasma levels of C3a in BP patients (31). This

discrepancy may be explained by our effort to freeze all BP

plasma samples within 30 min after venepuncture. The lack of

correlation between plasma levels of C3a, CD55, and lectin pathway

activity with disease activity as measured by BPDAI leads us to

conclude that local complement activation in the skin rather than in

the circulation is of pathogenic relevance in patients with BP. The

discrepant findings of the elevated levels of systemic C3a without a

parallel increase of C5a and C5b-9 may be explained by the notion

that C3a plasma levels are generally much higher than C5a levels.

The rapid degradation process as well as the about 100-fold lower

C5a levels compared to C3a levels render finding significantly

different C5a levels in BP per se more difficult. Although BP is

known to be mainly driven by the classical pathway (25, 27), we

here observed an activation of the lectin pathway, whereas no

significant activation of the classical pathway was found. Of note,

the participants in the current study have already established BP.

Hence, it is conceivable that, as shown inmice, the classical pathway

of complement activation is the disease-initiating pathway, while

the lectin pathway may serve as driver of continued complement

activation during established disease. Clearly, further research will

be necessary to clarify the role of lectin pathway activation in the

development of BP.

It has been demonstrated that C5a initiates inflammation

not only through its role as a cell activator and chemoattractant

but also via its effects on FcgRs, suggesting an intriguing

crosstalk between C5a and FcgR. Using an acute immune

complex pulmonary hypersensitivity model, C5aR activation

was found to be necessary to initiate neutrophil recruitment

and a proinflammatory FcgR response (90, 91). Moreover,

interaction between neutrophilic C5aR and FcgRIIa was shown

to be essential for disease progression in a humanized mouse

model of inflammatory arthritis (92). In the last two sets of

experiments, we addressed the functional relevance of

complement activation and its pharmacological targeting in

two well-established in vitro assays (52, 56). It is known from

mouse models of pemphigoid diseases that neutrophils play an

important role in the pathogenesis of these diseases, particularly

by releasing ROS (28). Hence, we here analyzed the effect of C5a-
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C5aR interaction on neutrophils as one of the main producers of

ROS. A specific inhibitor of C5aR1, a dual inhibitor of C5aR1

and C5aR2, and a C5aR2 agonist did not alter the ROS release

from normal human leukocytes after stimulation with human

Col17-anti-Col17 IgG immune complexes. These results indicate

that ROS release from immune complex-stimulated human

leukocytes occurs independently of the C5a/C5aR axis.

Besides, a previous study demonstrated that ROS production

by eosinophils, detected here as the main cellular source of

C5aR2, also requires FcgR activation (93). Therefore, it also

possible that eosinophils may release ROS independently of the

C5a/C5aR interaction, similar to neutrophils. Even though

neutrophils did not appear as main source of C5aR expression,

C5a generation from immune complex-stimulated neutrophils

and C5a-mediated priming effects via C5aRs may allow

neutrophils to generate ROS in response to immune complexes.

Subsequently, we demonstrated that the C5aR1 inhibitor

and the dual C5aR1/C5aR2 inhibitor significantly reduced the

chemotaxis of human neutrophils towards C5a, while no effect

was seen with the C5aR2 agonist. These findings are in line with

previous data obtained with cells from C5aR1- and C5aR2-

deficient mice (28). Of note, neutrophils from C5aR2-deficient

mice showed a decreased chemotaxis towards C5a, a finding that

aligns with the reduced disease activity observed in C5aR2-

deficient mice in the passive transfer mouse model of EBA, while

in the passive transfer mouse model of BP, C5aR2-deficient mice

developed significantly more skin lesions (28, 52). This

discrepancy may be explained, at least in part, by different Fcg
receptors used in these models. In experimental BP, tissue

destruction is mediated by FcgRIV and FcgRIII, whereas in the

antibody transfer mouse model of EBA, it is restricted to FcgRIV
(94, 95).

Collectively, our study highlights the complex network of

complement activation in early BP skin lesions with

upregulation of several complement factors, most strikingly of

the two C5a receptors C5aR1 and C5aR2. Pathogenic relevant

complement activation in BP primarily occurs in the skin and

not in the circulation. Our neutrophil-based functional data

suggest a minor contribution of C5aR2 to C5a-driven

chemotaxis of cells; therefore, inhibition of C5aR1, in

particular will be a promising therapeutic strategy for

moderate and severe BP. Considering the complex network of

complement activation in BP and the recent findings by Seiler

et al., in the antibody-transfer mouse model of epidermolysis

bullosa acquisita (52), it is well possible that C5aR2 also has a

relevant role in the initiation of tissue destruction in BP. As such,

the successful phase III study and the recent FDA-approval of

the C5aR1 inhibitor avacopan in ANCA-associated vasculitis

(96) and a promising phase II study with the LTB4/C5a inhibitor

nomacopan in BP (unpublished), that led to the initiation of a

phase III trial, may pave the way for effective complement-

related therapies for this disease.
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SUPPLEMENTARY FIGURE 1

mRNA levels of complement receptor and complement-associated
genes are enhanced in early bullous pemphigoid (BP) skin lesions. (A-E)

Dot-plot graphs depicting the relative RNA expression levels of
differentially expressed genes, including CR1 (A), C3AR (B), C1QB (C),
C1QC (D), and C1QTNF1 (E) between the three clinical groups: site-
matched skin of age- and sex-matched controls (n=9), site-matched BP

non-lesional skin (n=10), and BP perilesional skin (n=10). Plots were based

on normalized and log2 transformed FPKM values and the identification of
differentially expressed genes was conducted by DESeq2. FPKM,

fragments per kilobase of transcript per million mapped reads; FDR,
false discovery rate; *, FDR <0.05; n.s., not significant.

SUPPLEMENTARY FIGURE 2

mRNA levels of CD46, CD59, and CD55 are not significantly altered in

early bullous pemphigoid (BP) skin lesions compared to both non-lesional
BP skin and skin of controls. (A-C) Dot-plot graphs depicting the relative

mRNA levels of complement regulatory genes, including CD46 (A), CD59
(B), and CD55 (C) between the three clinical groups: site-matched skin of

age- and sex-matched controls (n=9), site-matched BP non-lesional skin
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(n=10), and BP perilesional skin (n=10). Plots were based on normalized
and log2 transformed FPKM values and the identification of differentially

expressed genes was conducted by DESeq2. FPKM, fragments per
kilobase of transcript per million mapped reads; FDR, false discovery

rate; *, FDR <0.05; n.s., not significant.

SUPPLEMENTARY FIGURE 3

Immunofluorescence staining showed expression of C5aR1 (A) and

C5aR2 (B) on epithelial cells and vascular endothelial cells. DAPI staining

of nuclei is shown in blue. Scale bars, 100 µm.

SUPPLEMENTARY FIGURE 4

The specificity of the anti-C5aR2 antibody was validated by coincubation
with increasing amounts of a C5aR2 peptide. Sections of randomly

selected BP skin were stained with isotype control antibody (A), anti-
C5aR2 antibody alone (B), and anti-C5aR2 antibody plus increasing
amounts of the C5aR2 peptide (RRLHQEHFPARLQCVVDYGGSSSTEN),

i.e. 0.1 (C), 0.5 (D), 1 (E), 5 (F), 25 (G), and 50 µg (H), respectively. A
dose-dependent inhibition of the IF staining was seen with the increasing

C5aR2 peptide amounts indicating a high specificity of the anti-C5aR2
antibody. Incubation of the anti-C5aR2 antibody with 50 µg of an

irrelevant control peptide did not alter the IF staining (data not shown).

Data are representative of results obtained from three experiments. Scale
bars, 100 µm.

SUPPLEMENTARY FIGURE 5

In site-matched skin biopsies of age- and sex-matched control patients

(n=4), only few inflammatory cells were detected with low expression of
C5aR1 (A) and C5aR2 (B).

SUPPLEMENTARY FIGURE 6

Plasma levels of C5b-9, C5a, factor h, and factor b as well as serum activity
of the classical (CP) and alternative complement (AP) pathways in patients

with bullous pemphigoid (BP) and controls. (A-F) Plasma levels of C5b-9

(A), C5a (B), factor h (C), and factor b (D) as well as serum activity of the CP
(E) and the AP (F) in BP patients (n=10) and age- and sex-matched

controls (n=10) did not show significant differences. (G-L) Plasma levels
of C5b-9 (G), C5a (H), factor h (I), and factor b (J) as well as serum activity

of the CP (K) and the AP (L) in BP patients did not significantly correlate
with diseases activity as measured by the bullous pemphigoid disease area

index (BPDAI). Differences between groups were analyzed by unpaired

two-tailed t-test. n.s., not significant.
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