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Background: Due to the different infiltration abundance of immune cells in

tumor, the efficacy of immunotherapy varies widely among individuals.

Recently, growing evidence suggested that cuproptosis has impact on

cancer immunity profoundly. However, the comprehensive roles of

cuproptosis-related genes in tumor microenvironment (TME) and in

response to immunotherapy are still unclear.

Methods: Based on 43 cuproptosis-related genes, we employed unsupervised

clustering to identify cuproptosis-related patterns and single-sample gene set

enrichment analysis algorithm to build a cuproptosis signature for individual

patient’s immune cell infiltration and efficacy of immune checkpoint blockade

(ICB) evaluation. Then, the cuproptosis-related genes were narrowed down

using univariate Cox regression model and least absolute shrinkage and

selection operator algorithm. Finally, a cuproptosis risk score was built by

random survival forest based on these narrowed-down genes.

Results: Two distinct cuproptosis-related patterns were developed, with

cuproptosis cluster 1 showing better prognosis and higher enrichment of

immune-related pathways and infiltration of immune cells. For individual

evaluation, the cuproptosis signature that we built could be used not only for

predicting immune cell infiltration in TME but also for evaluating an individual’s

sensitivity to ICBs. Patients with higher cuproptosis signature scores exhibited

more activated cancer immune processes, higher immune cell infiltration, and

better curative efficacy of ICBs. Furthermore, a robust cuproptosis risk score

indicated that patients with higher risk scores showed worse survival
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outcomes, which could be validated in internal and external validation cohorts.

Ultimately, a nomogram which combined the risk score with the prognostic

clinical factors was developed, and it showed excellent prediction accuracy for

survival outcomes.

Conclusion: Distinct cuproptosis-related patterns have significant differences

on prognosis and immune cell infiltration in kidney renal clear cell carcinoma

(KIRC). Cuproptosis signature and risk score are able to provide guidance for

precision therapy and accurate prognosis prediction for patients with KIRC.
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Introduction

Kidney renal clear cell carcinoma (KIRC) is the most common

malignant tumor in renal cell carcinoma (RCC) (1). It is estimated

that over 75,000 cases occur and that 13,000 patients die each year

(2). Although the prognosis of localized KIRC is favorable, the 5-

year overall survival (OS) rate is lower than 10% in metastatic

KIRC (mKIRC) (3). Recently, immunotherapy, especially

immune checkpoint inhibitors (ICB), has achieved brilliant

efficacy in mKIRC individuals (4). The CheckMate 214 clinical

trial has reported that intermediate-risk and poor-risk patients can

benefit more from ICB treatment than targeted therapy (5).

However, only a proportion of patients can produce an anti-

tumor response (6). Hence, it is urgent to find a predictor which

can guide clinicians for ICB application.

The tumor microenvironment (TME) is a complicated tissue

environment, which consists of various immune cells, stromal

cells, and noncellular components (7). Hence, there is a large

heterogeneity in the TME. According to the infiltration levels of

tumor-fighting effector cells and inflammatory cytokines, the

TME can be sorted into inflamed type and non-inflamed type in

brief (8). Meanwhile, several large-scale studies have

demonstrated that the abundance of pre-existing infiltrated

immune cells determines the efficacy of ICB therapy (9–12).

Cuproptosis, a brand-new concept which is defined as

copper-dependent cell death, is accompanied with elevated

mitochondrial-dependent energy metabolism and accumulation

of reactive oxygen species (ROS) (13). Intriguingly, several

studies reported that cuproptosis-related genes, such as ATOX1

and CP, can affect the progression of cancer (14, 15). More

importantly, Voli et al. found that the variation of copper

transporter 1 has influence on the expression of programmed

cell death 1 ligand 1 (PD-L1) and the infiltration quantity of
02
CD8+T cells and NK cells in the TME (16). However, all these

studies merely focused on one or two cuproptosis-related genes

and their roles in the TME. A comprehensive analysis of multiple

cuproptosis-related genes and their roles in assessing the TME,

efficacy of ICB, and prognosis in KIRC is lacking. So, we

systematically correlated cuproptosis-related genes with the

TME as well as their sensitivity to immunotherapy in KIRC for

the first time.
Methods

Data collection and processing

The high-throughput sequencing data of mRNA, clinically

associated data, and survival data of The Cancer Genome Atlas

(TCGA)-KIRC (526 samples) were downloaded from UCSC

Xena (http://xena.ucsc.edu/) (17). The expression matrix of

mRNA was transformed from fragments per kilobase per

million mapped fragments to transcripts per kilobase million.

As an external validation set, the E-MTAB-1980 KIRC cohort

(101 samples) was downloaded from ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/). Furthermore, as our previous

study has reported (18), 46 renal cell carcinoma samples were

collected from our hospital and named the Xiangya-RCC cohort.

Immunotherapy cohorts were downloaded from the study of

Gide et al. (PMID30753825 cohort, anti-PD-1 or combined anti-

PD-1 with anti-CTLA-4) (19), the study of Kim et al.

(PMID30013197, anti-PD-1/PD-L1) (20), the study of Allen et

al. (PMID26359337, anti-CTLA-4) (21), GSE35640 (MAGE-A3

immunotherapy), GSE111636 (anti-PD-1 immunotherapy),

GSE126044 (anti-PD-1 treatment), GSE173839 (anti-PD-L1

treatment), and GSE135222 (anti-PD-1/PD-L1 treatment).
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Unsupervised clustering for cuproptosis-
related patterns

Forty-three cuproptosis-related genes were selected from the

review of Chang et al. (13) (Supplementary Table S1). Consensus

clustering algorithm (maxK = 5, reps = 1,000, pItem = 0.8,

distance = “manhattan”, clusterAIg = “pam”) was employed to

judge the quantity and stability of clusters based on these genes

(ConsensuClusterPlus R package) (22).
Differentially expressed genes and
functional analysis

Limma R package was used to screen differentially expressed

genes (DEGs) between cuproptosis-related patterns, and the

screen criteria were set as |log fold change| >1 and adjusted p-

value <0.05.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis were conducted using Gene Set

Enrichment Analysis (GSEA) algorithm in GSVA R package.

The gmt fi l e s “c2 . cp .kegg . v6 .2 . s ymbo l s . gmt” and

“h.all.v7.2.symbols.gmt” were downloaded from the molecular

signature database (http://www.gsea-msigdb.org/gsea/msigdb).

|Normalized enrichment score| >1 and adjusted p-value <0.05

were used as criteria for significant enrichment.
Description of the tumor immune
characteristics of KIRC and construction
of the cuproptosis signature

We described the TME of KIRC in five aspects: Firstly, seven

steps of cancer immunity cycle were analyzed by using the

Tracking Tumor Immunophenotype website (http://biocc.

hrbmu.edu.cn/TIP/) (23). Secondly, cell markers of tumor-

infiltrating leukocytes (TILs) were downloaded from the study

of Charoentong (24), and infiltration of TILs was calculated

using single-sample gene set enrichment analysis (ssGSEA)

algorithm. A cuproptosis signature was also generated using

ssGSEA based on 43 cuproptosis-related genes. In order to

eliminate the effects of different algorithms, another three

algorithms for immune cell calculation, including MCP,

Quantiseq, and TIMER, were also applied. Thirdly, the effector

genes of immune cells were gathered from our previous study

(25). Fourthly, 22 inhibitory immune checkpoints were

assembled from the study of Auslander et al. (26). Finally, T

cell inflamed score (TIS) was employed to evaluate the potential

response probability to ICB (25).
Frontiers in Immunology 03
Analysis of scRNA-seq cohort

Seven single-cell RNA sequencing (scRNA-seq) count

matrixes of KIRC were downloaded from the supplemental

material of GSE159115 (27). We then converted the seven

matrixes into Seurat objects using the CreateSeuratObject

function (Seurat R package, version 4.1.1). Single cells with less

than 1,000 UMIs or less than 200 genes or with a value of log10
genes per UMI less than 0.70 or more than 20% mitochondrion-

derived UMI counts were regarded as low-quality cells and filtered

out for further analysis. Based on the top 3,000 variable genes, we

then integrated seven samples into one Seurat object using the

IntegrateData function in Seurat to eliminate batch effects. We

then identified the main cell clusters using the FindClusters

function in Seurat (resolution = 0.4) and visualized these cell

clusters using uniform manifold approximation and projection.

The cell clusters were first recognized using SingleR R package,

and then the cell types were confirmed based on the markers

obtained from previous studies (27, 28).
Construction and validation of the
cuproptosis risk score

A total of 43 cuproptosis-related genes were used to screen

genes possessing univariate prognostic values by univariate Cox

analysis. These prognostic genes were further narrowed down by

least absolute shrinkage and selection operator (LASSO)

regression with minimal lambda (0.05). Subsequently, a

cuproptosis risk score was constructed using the “rfsrc”

function in “randomForestSRC” R package based on the

expression of these genes.

Individuals in the TCGA-KIRC cohort were randomly divided

into training and internal validation cohorts in a 7:3 ratio, while

the E-MTAB-1980 KIRC cohort was set as the external validation

cohort. According to the median value of risk score, we classified

individuals into high-risk group and low-risk group. Kaplan–

Meier (K–M) survival curve and log-rank test were employed to

compare the prognosis difference between two groups by

survminer R package. In additional, tROC R package was used

to estimate the prediction reliability of risk score.
Establishment of a nomogram

Univariate Cox analyses, along with multivariate Cox

analyses, were employed to filter the independent impact

factor in cohorts. Then, rms R package was applied to

establish the nomogram. Subsequently, calibration curves and
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time-dependent receiver operating characteristic curves were

used to estimate the clinical relevance and prediction

accuracy, respectively.
Statistical analysis

T-test or Mann–Whitney U-test was employed to compare

the continuous variables between two groups. Chi-square test or

fisher exact test was used to compare differences between groups

with dichotomous variables. Pearson or Spearman correlation

analysis was conducted to assess the relation between different

factors. P <0.05 was set as criterion for judging a significant

difference. Two-side statistical tests were used. R software

(version 4.1.3) was applied throughout the analysis.
Results

Development of cuproptosis-
related patterns

On the basis of the 43 cuproptosis-related genes, their mRNA

expression levels were compared between tumor tissues and

adjacent normal tissues in the TCGA-KIRC cohort (Figure 1A).

We found that 32 genes showed significant differences on RNA

expression, containing ATOX1, ATP7B, CCS, CD274, CP,

LOXL2, MAP2K2, PDK1, SCO2, SLC31A2, TYR, UBE2D2,

ULK1, VEGFA, and so on. Next, a univariate Cox analysis was

employed to filter cuproptosis-related genes with prognostic value

and found 21 genes with a significant prognostic value (Figure 1B,

Supplementary Figure S1, Supplementary Table S2), including

SCO2, MT2A, DBH, CCL8, MT1G, MT1X, MT-CO2, MT1F and

so on. To explore the interaction probability among cuproptosis-

related genes, a comprehensive correlation analysis was

implemented and found intimate interactions among them

(Figure 1C). Therefore, an unsupervised clustering analysis was

conducted based on cuproptosis-related genes and found two

distinct clusters (Supplementary Figure S2), which were named as

cuproptosis-related patterns. Furthermore, 362 individuals and

164 individuals were divided into cluster 1 and cluster 2,

respectively. As shown in Figure 1D, cluster 1 has a better

survival outcome than cluster 2 (p = 0.019). The distribution of

clinical features (age, gender, tumor grade, and tumor stage) and

the distinct expression modes between two patterns were

displayed in a heat map (Figure 1E).
Expression patterns of cuproptosis-
related genes on the single-cell level

Seven samples from seven KIRC patients were involved in

this analysis. After quality control, a total of 20,900 single cells
Frontiers in Immunology 04
were included for further analysis. As shown in Figure 2A, these

cells could be classified into 15 main cell clusters. Then, these cell

clusters were recognized based on the cell markers reported in

previous studies: cancer cells (“NDUFA4L2” , “CA9”,

“SLC17A3”, and “NNMT”) (Supplementary Figure S3A),

endothelial cells (“KDR”, “PECAM1”, “ESM1”, and “PLVAP”)

(Supplementary Figure S3B), vascular smooth muscle (VSM)

cells (“ACTA2”, “PDGFRB”, “CNN1”, and “MYH11”)

(Supplementary Figure S3C), macrophage cells (“LYZ”,

“CD68”, “CD163”, and “HLA-DRA”) (Supplementary Figure

S3D), T cells (“CD3D”, “CD3E”, and “CD3G”) (Supplementary

Figure S3E), B cells (“CD79A”) (Supplementary Figure S3F), and

mast cells (“TPSAB1”, “CPA3”, and “MS4A2”) (Supplementary

Figure S3G) (27, 28). In addition to cancer cells, two kinds of

normal cell types, including endothelial and VSM cells, and four

kinds of immune cell types, including macrophage, T cells, B

cells, and mast cells, were identified (Figure 2B). We divided

these cell types into cancer cells and non-cancer cells and

compared the expression patterns of cuproptosis-related genes

(Supplementary Figure S4A, Supplementary Table S3). A

majority of cuproptosis-related genes like CP, MT1E, MT1F,

MT1X, VEGFA, and PDK1 were expressed significantly higher

on cancer cells (Figures 2C–H), indicating that cuproptosis

might occur mainly on cancer cells. However, the detailed

mechanism needs to be further explored in vivo and in vitro.
Functional enrichment analysis and
cancer immunity assessment of
cuproptosis-based patterns

On account of significant difference in prognosis between two

patterns, we intended to explore the underlying mechanism.

DEGs were displayed in a heat map and a volcano plot

(Supplementary Figures S4B, C, Supplementary Table S4).

Surprisingly, there were several immune-related genes, such as

ST8SIA6, CNTN1, KCNK2, F13A1, MTRNR2L12, PVALB, MT-

ATP8, and KLK3. Friedman et al. reported that the overexpression

of ST8SIA6 can change tumor growth by suppressing the immune

response (29). Lin et al. demonstrated that a varied expression of

KCNK2 can affect the infiltration of immune cells (30).

Consequently, these findings inferred that cuproptosis-related

patterns link with immune-related pathways.

According to the fold change value of all genes in TCGA-

KIRC between two patterns, GSEA algorithm was employed to

ascertain the detailed enrichment pathways. GO analysis

indicated that the pathways of chemokine activity, chemokine

production, response to chemokine, and positive regulation of

chemokine production were significantly activated in cluster 1

(Figure 3A, Supplementary Table S5). Furthermore, GO analysis

also revealed that the activity of pathways of T cell migration, T

cell activation, T cell differentiation, regulation of T cell

activation, and T cell differentiation in thymus were enhanced
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in cluster 1 (Figure 3B, Supplementary Table S5). KEGG analysis

exhibited that the activities of chemokine signaling pathways

and cytokine–cytokine receptor interaction signaling pathways

were significantly upregulated in cluster 1 (Figure 3C,

Supplementary Table S6). These findings indicated that
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individuals in cluster 1 had a more vibrant tumor-fighting

process than those in cluster 2.

The cancer immunity cycle, containing the initiation of

tumor immunity to killing cancer cells by infiltrated T cells (31,

32), acts a critical part in the TME. It was of great interest to us
B

C

D

E

A

FIGURE 1

Development of cuproptosis-related patterns. (A) Expression of cuproptosis-related genes in tumors and adjacent normal tissues. (B) Prognostic
analysis of cuproptosis-related genes using univariate Cox regression. (C) Correlation analysis among cuproptosis-related genes. The size of the
circle represented the p-value of overall survival, the green and purple dots in the circle meant favorable and risk factor in prognosis, and the
red and blue lines that connected two circles meant positive and negative regulating relationships, respectively. (D) Survival outcome between
two patterns. (E) Distribution of clinical features (age, gender, grade, and stage) and expression matrix of cuproptosis-related patterns. *p < 0.05,
***p < 0.001, ****p < 0.0001; ns, not statistically significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.933241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.933241
whether there are differences in cancer immunity steps

between two patterns. As expected, cluster 1 showed a more

active process than cluster 2, including recognition of cancer

antigen, initiating response of immune cells, T cell recruiting,

and killing cancer cell by TILs (Figure 3D). The outcome can

infer that cluster 1 probably represents an inflamed type of the

TME and produces a better response to immunotherapy (33,

34). Hence, the infiltration levels of various immune cells in the
Frontiers in Immunology 06
TME were compared between two patterns through four

independent algorithms (ssGSEA, MCP, Quantiseq, and

TIMER). Consistently, cluster 1 had a higher infiltration level

of TILs than cluster 2, containing CD4+T cells, CD8+T cells,

myeloid dendritic cells, macrophage cells, monocytes, B cells,

and neutrophils (Figure 3D). The result demonstrated that two

cuproptosis-related patterns represent two types of the TME:

inflamed TME and non-inflamed type.
B

C D E

F G H

A

FIGURE 2

Expression patterns of cuproptosis-related genes on the single-cell level. (A) Fifteen main cell clusters in the scRNA KIRC cohort. (B) Six
recognized cell types based on previous cell markers: cancer cells, endothelial cells, vascular smooth muscle cells, T cells, B cells, and
macrophage cells. (C–H) Selected cuproptosis-related genes were expressed significantly higher in cancer cells: CP, MT1E, MT1F, MT1X, VEGFA,
and PDK1.
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Estimating the infiltration level of TILs
and the efficacy of ICB on individuals by
cuproptosis signature

Although cuproptosis-related patterns played an essential

role on distinguishing the infiltration level of TILs in the whole

cohort, the patterns lacked the ability to evaluate an individual
Frontiers in Immunology 07
patient’s TME status. Consequently, we constructed a

cuproptosis signature based on these 43 cuproptosis-related

genes by ssGSEA algorithm to estimate the abundance of TILs

and the efficacy of ICB for individual patients.

Interestingly, the cuproptosis signature was significantly

positively related to major steps of the cancer immunity cycle

both in the TCGA-KIRC cohort and the Xiangya-RCC cohort
B

C

DA

FIGURE 3

Functional enrichment analysis and cancer immunity assessment of cuproptosis-based patterns. (A) Gene Ontology (GO) functional enrichment
analysis of chemokine-related pathways. (B) GO functional enrichment analysis of T cell-related pathways. (C) Kyoto Encyclopedia of Genes and
Genomes functional enrichment analysis of cytokine/chemokine-related signaling pathways. (D) Expression matrix of cancer immunity cycles
and tumor-infiltrating leukocytes between two patterns.
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(Figure 4A, Supplementary Tables S7, S8), including release of

tumor antigen, recognition of tumor cell by T cell, and

recruitment of diverse immune cells (T cell, macrophage,

neutrophil, and Th17). To validate this finding, the

cuproptosis signature was directly associated with infiltration

of TILs in the TCGA-KIRC cohort and the Xiangya-RCC cohort.
Frontiers in Immunology 08
In line with a previous outcome, the cuproptosis signature

showed a significantly positive connection to infiltration of

TILs (Figures 4B, C, Supplementary Tables S9, S10),

containing gamma delta T cell, activated CD8+ T cell,

activated dendritic cell, activated B cell, natural killer T cell,

type 1 T helper cell (Th1 cell), type 2 T helper cell (Th2 cell), and
B C D

A

E

FIGURE 4

Estimated infiltration level of tumor-infiltrating leukocytes (TILs) and efficacy of immune checkpoint blockade on individuals by cuproptosis
signature. (A) Correlation analysis on cuproptosis signature and cancer immunity steps in the TCGA-KIRC and Xiangya-RCC cohorts. *p < 0.05,
**p < 0.01, ***p < 0.001; ns, not statistically significant. (B, C) Correlation analysis on cuproptosis signature and TILs in the TCGA-KIRC and
Xiangya-RCC cohorts. (D) Expression matrix of TILs (CD8+T cell, dendritic cell, macrophage cell, NK cell, and Th1 cell in the high- and low-
score signature groups. (E) Correlation analysis on cuproptosis signature and T cell inflamed score (left) and inhibitory immune checkpoints
(right). The solid and dotted lines represent positive and negative connections, respectively; the thickness of the lines represents the coefficient
of the relations; and the diverse colors of the lines represent the p-values of the relations.
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so on. Meanwhile, we compared the effector genes of main TILs

(CD8+T cell, dendritic cell, macrophage cell, NK cell, and Th1

cell) between high- and low-cuproptosis-signature groups. As

anticipated, the effector genes of TILs were expressed higher in

the high-score signature group (Figure 4D). These findings

demonstrated that cuproptosis signature is capable of assessing

the level of infiltrated immune cells on individuals.

It is widely thought that inflamed TME is the foundation of

producing a response to immunotherapy (35, 36). Therefore,

TIS, which can predict the efficacy of immunotherapy (37, 38)

along with inhibitory immune checkpoints, was further studied.

A total of 18 TLS-related genes and 22 ICB-associated genes

were collected and were used to correlate with the cuproptosis

signature. Collectively, the signature showed significant positive

relations with TIS and inhibitory immune checkpoints

(Figure 4E, Supplementary Tables S11, S12), from which it can

be inferred that the cuproptosis signature has the capacity to

predict the efficacy of immunotherapy.
Direct comparison of ICBs’ efficacy in
multiple immunotherapy cohorts

Despite the fact that we evaluated an individual’s efficacy of

ICB by cuproptosis signature, it is necessary to directly compare

the curative effect of ICB cohorts in the high- and low-score-

signature group. Hence, eight immunotherapy cohorts were

included in our study. In the PMID30753825 cohort, a 93.75%

response rate occurred in the high-score group compared to

37.5% in the low-score group (p < 0.001) (Figure 5A). In the

GSE35640 cohort, the response rate ratio was 50 versus 12.5%

between two groups (p = 0.029) (Figure 5B). Although there

were no significant differences between the two groups in the

other six cohorts (GSE124044, GSE111636, GSE173839,

GSE135222, PMID30013197, and PMID26359337), patients

with a high score showed a better curative effect (Figures 5C–

H). These findings further demonstrated that cuproptosis

signature is qualified to forecast the efficacy of ICB and

provide guidance for the precise application of immunotherapy.
Assessing the prognosis of individuals
using cuproptosis risk score

Then, we developed and validated a robust cuproptosis risk

score for predicting the survival outcome of an individual.

LASSO algorithm was used to select the optimal candidate

genes. As a result, seven candidate genes (SLC31A2, SCO2,

MT2A, DBH, UBE2D3, CCL8, and MT1X) with minimal

lambda (0.05) were chosen from the 43 cuproptosis-associated

genes (Figures 6A, B). Subsequently, the cuproptosis risk score

was built using the “rfsrc” function in “randomForestSRC” R
Frontiers in Immunology 09
package, and the risk score was significantly positively correlated

with cuproptosis signature (Supplementary Figure S5A).

On the basis of the median value of the risk score, individuals

were divided into a high-risk group and a low-risk group. In the

TCGA training cohort, the high-risk group comprised more death

cases and worse survival probability (p < 0.0001) than the low-risk

group (Figures 6C, D). Moreover, the prediction accuracy of the

survival outcomes at 12, 36, and 60 months were 0.84, 0.82, and

0.80, respectively (Figure 6E). In the TCGA internal validation

cohort, the survival status and the survival probability (p =

0.00027) between the two groups were in accordance with the

outcomes of the TCGA training cohort (Figures 6F, G). The area

under the curve (AUC) of the survival outcomes at 12, 36, and 60

months were 0.66, 0.60, and 0.67, respectively (Figure 6H).

Importantly, in the external validation cohort (E-MTAB-1980),

individuals in the low-risk group manifested better survival status

and survival probability (p = 0.0019) in comparison with the high-

risk group (Figures 6I, J). The prediction accuracy of prognosis at

12, 36, and 60 months were 0.82, 0.75, and 0.74, respectively

(Figure 6K). In line with the outcome that patients with a high

cuproptosis risk score exhibited a worse OS, patients with higher

tumor grade and stage had a significantly higher risk score

(Supplementary Figures S5B, C). However, there were no

differences on risk score between different ages and genders

(Supplementary Figures S5D, E). All these results demonstrated

that cuproptosis risk score can precisely foretell the prognosis of a

KIRC individual.
Development of a nomogram for better
forecasting survival outcome in
clinical practice

In order to improve the prediction accuracy of OS in clinical

practice, we developed a nomogram incorporating the cuproptosis

risk score and the essential clinical characteristics. In the TCGA-

KIRC cohort, univariate Cox regression was used to select the

prognostic factors. Except for gender (p = 0.73), other indicators

had a significant prognostic value (p < 0.001) (Figure 7A). Then,

multivariate Cox regression was applied to identify the

independent prognostic factors. Cuproptosis risk score (p <

0.001), age (p = 0.002), and tumor stage (p < 0.001) were

eligible (Figure 7B) and incorporated into a nomogram

(Figure 7C). By means of calibration curves, the predicted

probability values of OS at 1 year (Figure 7D), 3 years

(Figure 7E), and 5 years (Figure 7F) were similar with the actual

probability OS, which demonstrated that the nomogram has a

crucial clinical value. Additionally, we compared the prediction

accuracy between nomogram, cuproptosis risk score, age, and

stage, respectively. The outcome indicated that the nomogram is

the most precise tool to predict OS at 1 year (AUC = 0.87), 3 years

(AUC = 0.84), and 5 years (AUC = 0.82) (Figures 7G–I).
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Discussion

Copper is the essential element for cell proliferation and cell

death. Meanwhile, it is also the necessary cofactor for enzymes

and transporters (39). Dysfunction of copper metabolism will
Frontiers in Immunology 10
cause a cytotoxic effect and an oxidative stress response in

various types of cells (40, 41). Hence, we defined copper-

dependent cell proliferation as cuproplasia. In contrast,

copper-dependent cell death is defined as cuproptosis, whose

mechanism probably is to increase the energy metabolism of the
B C

D E F

G H

A

FIGURE 5

Direct comparison of immune checkpoint blockades’ efficacy in multiple immunotherapy cohorts. (A) Response rates between different
cuproptosis signature groups in the PMID30753825 cohort. (B) Response rates between different cuproptosis signature groups in the GSE35640
cohort. (C–H) Response rates between different cuproptosis signature groups in the GSE126044, GSE111636, GSE173839, GSE135222,
PMID30013197, and PMID26359337 cohorts, respectively.
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mitochondria and the accumulation of ROS (42). More

importantly, recently, cuproptosis was found to have a close

connection with tumorigenesis, progression, and metastasis. Li

et al. demonstrated that the activated cuproptosis-associated axis

(IL-17-STEAP4-XIAP) can turn colon inflammation into cancer

(43). Petris et al. revealed that silenced ATP7A can inhibit the
Frontiers in Immunology 11
progression and metastasis of lung cancer via altering the

activity of LOX family’s enzymes (44). Furthermore, a close

correlation between cuproptosis and infiltration of immune cells

has been found in several studies. Paredes et al. reported that the

mutation of MAP2K1 can change the abundance of macrophage,

mature dendritic cell, regulatory T cell, and cytotoxic
B

C D E

F G H
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A

FIGURE 6

Assessing the prognosis of individuals using the cuproptosis risk score. (A) Coefficients of 21 cuproptosis-related genes with prognostic value.
(B) Cross-validation of parameter selection based on the minimum criteria of LASSO regression model. (C–E) Comparisons of survival events,
Kaplan–Meier (K–M) survival curves, and time-dependent receiver operating characteristic (ROC) curves between different risk score groups in
TCGA training cohort. (F–H) Comparisons of survival events, (K–M) survival curves, and time-dependent ROC curves between different risk
score groups in The Cancer Genome Atlas testing cohort. (I–K) Comparisons of survival events, (K–M) survival curves, and time-dependent
ROC curves between different risk score groups in the external validation cohort (E-MTAB-1980).
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lymphocyte (45). Tan et al. revealed that ceruloplasmin plays an

important role in the immune infiltration of breast cancer (46).

Based on the abundance and location of cytotoxic

lymphocytes in tumor tissue and invasive margin, the TME can

be sorted into inflamed (hot) type and non-inflamed (cold) types
Frontiers in Immunology 12
(47). It is generally thought that the type of the TME has an

important influence on the efficacy of immunotherapy (48, 49)—

for example, van der Burg et al. found that a higher infiltration

level of CD4+T cells and CD8+T cells shows longer overall survival

and recurrence-free survival in patients who accepted anti-PD-1/
B

C

D E F

G H I

A

FIGURE 7

Development of a nomogram for better forecasting survival outcome in clinical practice. (A) Prognostic factors selected by univariate Cox
regression. (B) Independent prognostic factors selected by multivariate Cox regression. (C) The nomogram-predicted overall survival at 1, 3, and
5 years by incorporating independent prognostic factors. (D–F) The calibration curves exhibited the clinical relevance of a nomogram at 1, 3,
and 5 years. (G–I) Time-dependent receiver operating characteristics showed the prediction accuracy of a nomogram, risk score, age, and stage
at 1, 3, and 5 years.
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PD-L1 immunotherapy (50). Rabadan et al. found that converting

the non-inflamed TME of glioblastoma into inflamed TME can

significantly improve the response rate to anti-PD-1 therapy (51).

On the foundation of a set of vital genes and unsupervised

clustering, there are many studies that correlated gene patterns

with prognosis and the TME phenotypes. According to the

expression of 21 m6A regulators, Zhang et al. correlated the

m6A modification patterns with prognosis and the

characteristics of the TME cell infiltration in gastric cancer (52).

Chen et al. depicted the leukocyte infiltration level in pancreatic

ductal adenocarcinoma using hypoxia- and immune-related

patterns (53). Liu et al. made use of three m5C modified

patterns for assessing the TME and prognosis of patients with

lung adenocarcinoma (54). Based on 46 TNF-related genes, two

distinct clusters were identified and employed to evaluate the

immune characteristics of head and neck squamous cell

carcinoma (55). For KIRC, two m6A-related patterns were

found and used to predict the immune phenotypes and the

efficacy of immunotherapy in our previous study (56). However,

as far as we are concerned, this is the first study that systematically

correlates cuproptosis-related genes with the immune infiltration

level and prognosis in KIRC. We found that cuproptosis-related

patterns are able to distinguish the subtypes of TME and survival

outcome well. In addition, for evaluating the immune infiltration

characteristic on an individual, ssGSEA algorithm was used to

construct a cuproptosis signature, which is qualified to predict the

inflamed level of the TME on an individual. Furthermore,

multiple immunotherapy cohorts were employed to directly

compare the response rate between high- and low-cuproptosis-

signature groups. These findings are crucial indicators for

supplying the precise therapy in KIRC.

More importantly, to predict the survival performance on an

individual, cuproptosis risk score was built and showed accurate

prediction in testing and multiple validating cohorts. Han et al.

developed a cuproptosis-associated lncRNA risk score for

prognosis and TME phenotype prediction in soft tissue

sarcoma (57). However, their risk score was only validated in

the TCGA internal cohort. For KIRC, Xu et al. developed a

glycolysis-related risk score and correlated it with prognosis and

the TME characteristics. Although they found that their risk

score was an independent risk factor, its predictive accuracy in

the validation cohort was unclear (58). Similar to Xu’s study,

Chen et al. and Xing et al. developed and validated a necroptosis

and an autophagy-related risk score on the basis of the 11 related

genes (59, 60). Our risk score built based on seven cuproptosis-

related genes was more convenient for clinical application than

Xing’s 11 autophagy-related genes. While for Chen’s study,

though their risk score was successfully validated in the TCGA

internal validation cohort, the predictive accuracy still needs

further study. Different from most of the risk scores developed

using Cox proportional hazard regression analysis, random

survival forest (RSF) was used to construct a cuproptosis risk
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score, with satisfied reliability and extrapolation. In our previous

study, precision and robustness of cox proportional hazard

regression and RSF have been compared. The outcome

indicated that RSF shows a better performance (61). Similarly,

Yang et al. built prediction model by six different algorithms and

found that RSF was optimal solution with best accuracy (62). It is

considered that the excellent multi-process control property of

RSF is the key. To sum up, cuproptosis risk scores were

constructed by LASSO regression and RSF and validated in

multiple cohorts for the first time. It is valuable for predicting the

prognosis and conducting a precision treatment for a patient.

Inevitably, there are some limitations in the study. First of

all, the follow-up time of the Xiangya-RCC cohort was not

enough, which led to it being unqualified as an external

validation cohort for prognosis. Secondly, both the training

cohort and the validation cohort were retrospective cohorts; it

is necessary to further validate the risk score in prospective

cohorts. Thirdly, the underlying mechanism of cuproptosis in

the TME still needs to be explored in vitro and in vivo.

Conclusion

Distinct cuproptosis-related patterns have significant

differences on prognosis and immune cell infiltration in KIRC.

Cuproptosis signature and risk score are able to provide

guidance for precision therapy and accurate prognosis

prediction for patients with KIRC.
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two patterns; several immune-related genes were marked. *p < 0.05,

**p < 0.01, ***p < 0.001; ns, not statistically significant.
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Visualizing and interpreting cancer genomics data via the xena platform. Nat
Biotechnol (2020) 38(6):675–8. doi: 10.1038/s41587-020-0546-8

18. Guo T, Duan H, Chen J, Liu J, Othmane B, Hu J, et al. N6-methyladenosine
writer gene ZC3H13 predicts immune phenotype and therapeutic opportunities in
kidney renal clear cell carcinoma. Front Oncol (2021) 11:718644. doi: 10.3389/
fonc.2021.718644

19. Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, et al. Distinct
immune cell populations define response to anti-PD-1 monotherapy and anti-PD-
1/Anti-CTLA-4 combined therapy. Cancer Cell (2019) 35(2):238–55.e6.
doi: 10.1016/j.ccell.2019.01.003

20. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al.
Comprehensive molecular characterization of clinical responses to PD-1
inhibition in metastatic gastric cancer. Nat Med (2018) 24(9):1449–58.
doi: 10.1038/s41591-018-0101-z

21. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Sci
(New York NY) (2015) 350(6257):207–11. doi: 10.1126/science.aad0095

22. Wilkerson MD, Hayes DN. ConsensusClusterPlus: A class discovery tool
with confidence assessments and item tracking. Bioinf (Oxford England) (2010) 26
(12):1572–3. doi: 10.1093/bioinformatics/btq170

23. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res (2018) 78(23):6575–80.
doi: 10.1158/0008-5472.Can-18-0689

24. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

25. Hu J, Yu A, Othmane B, Qiu D, Li H, Li C, et al. Siglec15 shapes a non-
inflamed tumor microenvironment and predicts the molecular subtype in bladder
cancer. Theranostics (2021) 11(7):3089–108. doi: 10.7150/thno.53649

26. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust
prediction of response to immune checkpoint blockade therapy in metastatic
melanoma. Nat Med (2018) 24(10):1545–9. doi: 10.1038/s41591-018-0157-9

27. Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, et al.
Single-cell analyses of renal cell cancers reveal insights into tumor
microenvironment, cell of origin, and therapy response. Proc Natl Acad Sci USA
(2021) 118(24):e2103240118. doi: 10.1073/pnas.2103240118

28. Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, et al. Single-cell transcriptome
analysis reveals intratumoral heterogeneity in ccRCC, which results in different
clinical outcomes. Mol Ther J Am Soc Gene Ther (2020) 28(7):1658–72.
doi: 10.1016/j.ymthe.2020.04.023

29. Friedman DJ, Crotts SB, Shapiro MJ, Rajcula M, McCue S, Liu X, et al.
ST8Sia6 promotes tumor growth in mice by inhibiting immune responses. Cancer
Immunol Res (2021) 9(8):952–66. doi: 10.1158/2326-6066.Cir-20-0834

30. Lin X, Wu JF, Wang DM, Zhang J, Zhang WJ, Xue G. The correlation and
role analysis of KCNK2/4/5/15 in human papillary thyroid carcinoma
microenvironment. J Cancer (2020) 11(17):5162–76. doi: 10.7150/jca.45604

31. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity
cycle. Immunity (2013) 39(1):1–10. doi: 10.1016/j.immuni.2013.07.012

32. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune
set point. Nature (2017) 541(7637):321–30. doi: 10.1038/nature21349

33. Giraldo NA, Becht E, Remark R, Damotte D, Sautès-Fridman C, Fridman
WH. The immune contexture of primary and metastatic human tumours. Curr
Opin Immunol (2014) 27:8–15. doi: 10.1016/j.coi.2014.01.001

34. Liu Z, Han C, Fu YX. Targeting innate sensing in the tumor
microenvironment to improve immunotherapy. Cell Mol Immunol (2020) 17
(1):13–26. doi: 10.1038/s41423-019-0341-y

35. Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer
immunotherapy targets based on understanding the T cell-inflamed versus non-T
cell-inflamed tumor microenvironment. Adv Exp Med Biol (2017) 1036:19–31.
doi: 10.1007/978-3-319-67577-0_2

36. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, et al. An
immune-active tumor microenvironment favors clinical response to ipilimumab.
Cancer Immunol Immunother CII (2012) 61(7):1019–31. doi: 10.1007/s00262-011-
1172-6

37. Owonikoko TK, Dwivedi B, Chen Z, Zhang C, Barwick B, Ernani V, et al.
YAP1 expression in SCLC defines a distinct subtype with T-cell-Inflamed
phenotype. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer (2021) 16
(3):464–76. doi: 10.1016/j.jtho.2020.11.006
Frontiers in Immunology 15
38. Romero JM, Grünwald B, Jang GH, Bavi PP, Jhaveri A, Masoomian M, et al.
A four-chemokine signature is associated with a T-cell-Inflamed phenotype in
primary and metastatic pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer
Res (2020) 26(8):1997–2010. doi: 10.1158/1078-0432.Ccr-19-2803

39. Michalczyk K, Cymbaluk-Płoska A. The role of zinc and copper in
gynecological malignancies. Nutrients (2020) 12(12):3732–53. doi: 10.3390/
nu12123732

40. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: Probing their
chemistry and biology with molecular imaging. Chem Rev (2008) 108(5):1517–49.
doi: 10.1021/cr078203u

41. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ.
Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol
Cell Res (2021) 1868(2):118893. doi: 10.1016/j.bbamcr.2020.118893

42. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M,
et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci (New
York NY) (2022) 375(6586):1254–61. doi: 10.1126/science.abf0529

43. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation
mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-
STEAP4-XIAP axis. Nat Commun (2020) 11(1):900. doi: 10.1038/s41467-020-
14698-y

44. Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A,
et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes
tumorigenesis and metastasis. Proc Natl Acad Sci United States America (2019) 116
(14):6836–41. doi: 10.1073/pnas.1817473116

45. Paredes SEY, Almeida LY, Trevisan GL, Polanco XBJ, Silveira HA, Vilela
Silva E, et al. Immunohistochemical characterization of immune cell infiltration in
paediatric and adult langerhans cell histiocytosis. Scandinavian J Immunol (2020)
92(6):e12950. doi: 10.1111/sji.12950

46. Chen F, Han B, Meng Y, Han Y, Liu B, Zhang B, et al. Ceruloplasmin
correlates with immune infiltration and serves as a prognostic biomarker in breast
cancer. Aging (2021) 13(16):20438–67. doi: 10.18632/aging.203427

47. Galon J, Bruni D. Approaches to treat immune hot, altered and cold
tumours with combination immunotherapies. Nat Rev Drug Discovery (2019) 18
(3):197–218. doi: 10.1038/s41573-018-0007-y

48. Meurette O, Mehlen P. Notch signaling in the tumor microenvironment.
Cancer Cell (2018) 34(4):536–48. doi: 10.1016/j.ccell.2018.07.009

49. Zemek RM, De Jong E, Chin WL, Schuster IS, Fear VS, Casey TH, et al.
Sensitization to immune checkpoint blockade through activation of a STAT1/NK
axis in the tumor microenvironment. Sci Trans Med (2019) 11(501):14–27.
doi: 10.1126/scitranslmed.aav7816

50. Kortekaas KE, Santegoets SJ, Tas L, Ehsan I, Charoentong P, van Doorn HC,
et al. Primary vulvar squamous cell carcinomas with high T cell infiltration and
active immune signaling are potential candidates for neoadjuvant PD-1/PD-L1
immunotherapy. J Immunother Cancer (2021) 9:e003671. doi: 10.1136/jitc-2021-
003671

51. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al.
Immune and genomic correlates of response to anti-PD-1 immunotherapy in
glioblastoma. Nat Med (2019) 25(3):462–9. doi: 10.1038/s41591-019-0349-y

52. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m(6)A regulator-
mediated methylation modification patterns and tumor microenvironment
infiltration characterization in gastric cancer. Mol Cancer (2020) 19(1):53.
doi: 10.1186/s12943-020-01170-0

53. Chen D, Huang H, Zang L, Gao W, Zhu H, Yu X. Development and
verification of the hypoxia- and immune-associated prognostic signature for
pancreatic ductal adenocarcinoma. Front Immunol (2021) 12:728062.
doi: 10.3389/fimmu.2021.728062

54. Liu T, Hu X, Lin C, Shi X, He Y, Zhang J, et al. 5-methylcytosine RNA
methylation regulators affect prognosis and tumor microenvironment in lung
adenocarcinoma. Ann Trans Med (2022) 10(5):259. doi: 10.21037/atm-22-500

55. Long Q, Huang C, Meng Q, Peng J, Yao F, Du D, et al. TNF patterns and
tumor microenvironment characterization in head and neck squamous cell
carcinoma. Front Immunol (2021) 12:754818. doi: 10.3389/fimmu.2021.754818

56. Li H, Hu J, Yu A, Othmane B, Guo T, Liu J, et al. RNA Modification of N6-
methyladenosine predicts immune phenotypes and therapeutic opportunities in
kidney renal clear cell carcinoma. Front Oncol (2021) 11:642159. doi: 10.3389/
fonc.2021.642159

57. Han J, Hu Y, Liu S, Jiang J, Wang H. A newly established cuproptosis-
associated long non-coding RNA signature for predicting prognosis and indicating
immune microenvironment features in soft tissue sarcoma. J Oncol (2022)
2022:8489387. doi: 10.1155/2022/8489387

58. Xu F, Guan Y, Xue L, Huang S, Gao K, Yang Z, et al. The effect of a novel
glycolysis-related gene signature on progression, prognosis and immune
microenvironment of renal cell carcinoma. BMC Cancer (2020) 20(1):1207.
doi: 10.1186/s12885-020-07702-7
frontiersin.org

https://doi.org/10.1158/0008-5472.Can-20-0471
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.3389/fonc.2021.718644
https://doi.org/10.3389/fonc.2021.718644
https://doi.org/10.1016/j.ccell.2019.01.003
https://doi.org/10.1038/s41591-018-0101-z
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1158/0008-5472.Can-18-0689
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.7150/thno.53649
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1073/pnas.2103240118
https://doi.org/10.1016/j.ymthe.2020.04.023
https://doi.org/10.1158/2326-6066.Cir-20-0834
https://doi.org/10.7150/jca.45604
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1038/nature21349
https://doi.org/10.1016/j.coi.2014.01.001
https://doi.org/10.1038/s41423-019-0341-y
https://doi.org/10.1007/978-3-319-67577-0_2
https://doi.org/10.1007/s00262-011-1172-6
https://doi.org/10.1007/s00262-011-1172-6
https://doi.org/10.1016/j.jtho.2020.11.006
https://doi.org/10.1158/1078-0432.Ccr-19-2803
https://doi.org/10.3390/nu12123732
https://doi.org/10.3390/nu12123732
https://doi.org/10.1021/cr078203u
https://doi.org/10.1016/j.bbamcr.2020.118893
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41467-020-14698-y
https://doi.org/10.1038/s41467-020-14698-y
https://doi.org/10.1073/pnas.1817473116
https://doi.org/10.1111/sji.12950
https://doi.org/10.18632/aging.203427
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1016/j.ccell.2018.07.009
https://doi.org/10.1126/scitranslmed.aav7816
https://doi.org/10.1136/jitc-2021-003671
https://doi.org/10.1136/jitc-2021-003671
https://doi.org/10.1038/s41591-019-0349-y
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.3389/fimmu.2021.728062
https://doi.org/10.21037/atm-22-500
https://doi.org/10.3389/fimmu.2021.754818
https://doi.org/10.3389/fonc.2021.642159
https://doi.org/10.3389/fonc.2021.642159
https://doi.org/10.1155/2022/8489387
https://doi.org/10.1186/s12885-020-07702-7
https://doi.org/10.3389/fimmu.2022.933241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.933241
59. Xing Q, Ji C, Zhu B, Cong R, Wang Y. Identification of small molecule drugs
and development of a novel autophagy-related prognostic signature for kidney renal
clear cell carcinoma. Cancer Med (2020) 9(19):7034–51. doi: 10.1002/cam4.3367

60. Chen W, Lin W, Wu L, Xu A, Liu C, Huang P. A novel prognostic predictor
of immune microenvironment and therapeutic response in kidney renal clear cell
carcinoma based on necroptosis-related gene signature. Int J Med Sci (2022) 19
(2):377–92. doi: 10.7150/ijms.69060
Frontiers in Immunology 16
61. Li H, Liu S, Li C, Xiao Z, Hu J, Zhao C. TNF family-based
signature predicts prognosis, tumor microenvironment, and molecular
subtypes in bladder carcinoma. Front Cell Dev Biol (2021) 9:800967.
doi: 10.3389/fcell.2021.800967

62. Yang L, Wu H, Jin X, Zheng P, Hu S, Xu X, et al. Study of cardiovascular
disease prediction model based on random forest in eastern China. Sci Rep (2020)
10(1):5245. doi: 10.1038/s41598-020-62133-5
frontiersin.org

https://doi.org/10.1002/cam4.3367
https://doi.org/10.7150/ijms.69060
https://doi.org/10.3389/fcell.2021.800967
https://doi.org/10.1038/s41598-020-62133-5
https://doi.org/10.3389/fimmu.2022.933241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.933241
Glossary

KIRC kidney renal clear cell carcinoma

TME tumor microenvironment

ICB immune checkpoint inhibitors

OS overall survival

RCC renal cell carcinoma

ROS reactive oxygen species

CTR-1 copper transporter 1

PD-1 programmed cell death 1

PD-L1 programmed cell death 1 ligand 1

CTLA-4 cytotoxic T lymphocyte-associated antigen-4

MAGE-
A3

Melanoma antigen family A-3

TCGA The Cancer Genome Atlas

DEGs differentially expressed genes

FC fold change

GSEA gene set enrichment analysis

NES normalized enrichment score

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

TIP Tracking Tumor Immunophenotype

ssGSEA single-sample gene set enrichment analysis

TIS T cell inflamed score

LASSO least absolute shrinkage and selection operator

K–M Kaplan–Meier

ROC receiver operating characteristic

AUC area under curve

TILs tumor infiltrating leukocytes

MCP microenvironment cell populations

Quantiseq quantification of the tumor immune contexture from human RNA-
seq data

TIMER tumor immune estimation resource

NK cell nature killer

Th1 cell type 1 T helper cell

scRNA-
seq

single-cell RNA sequencing

VSM vascular smooth muscle

m6A N6-methyladenosine

TNF tumor necrosis factor

RSF random survival forest
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