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Background: Four RNA adenosine modifications, including m6A, m1A, alternative
polyadenylation, and adenosine-to-inosine RNA editing, have been identified as
potentially valuable in influencing colorectal carcinogenesis, immune infiltration, and
response to drug therapy. However, the regulatory mechanisms and clinical
significance of these four RNA modifications in ovarian cancer (OC) remain unknown.

Methods:We comprehensively described the transcriptional and genetic modifications of
26 RNA modification “writers” in OC and assessed the expression patterns. We identified
two RNA modification subtypes using an unsupervised clustering approach.
Subsequently, using differentially expressed genes (DEGs) in both subtypes, we
calculated RNA modification “writer” scores (RMW scores) to characterize the RNA
modifications of single OC patients. RMW score-related gene expression was
investigated by qRT-PCR. We explored the correlation between RMW score and
clinical features, immune infiltration, and drug sensitivity. We drew a nomogram to more
intuitively and accurately describe the application value of the RMW score.

Results:We found that molecular alterations in “writers” are strongly related to prognostic
and immune-infiltrating features in OC patients. We identified two different clusters of RNA
modifications. According to the immune infiltration characteristics in the two RNA
modification isoforms, cluster A and cluster B can correspond to “hot” and “cold”
tumors, respectively. With the median RMW score, we classified the patients into high-
and low-score subgroups. A low RMW score was associated with good patient prognosis
and lower immune infiltration. In addition, a low RMW score equated with a higher cancer
stem cell index and a lower tumor mutation burden, which to some extent affected the
sensitivity of patients to therapeutic drugs. Seven RMW score-related gene expressions
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were investigated by qRT-PCR in three OC cell lines. Compared to previously known
models, our established RMW score has higher accuracy in predicting patient survival.

Conclusion: A comprehensive analysis of four RNA modification patterns in OC reveals
their potential value in OC prognosis, immune microenvironment, and drug sensitivity.
These results could deepen our knowledge of RNAmodification and yield fresh insights for
new personalized therapeutic strategies.
Keywords: RNA modification “writers”, ovarian cancer, immune infiltration, RMW score, drug sensitivity
INTRODUCTION

Ovarian cancer (OC) is a malignant tumor that grows on the
ovaries, 90%–95% of which are primary (1). Because the ovary is
located in the pelvis, the onset is insidious, and there is no perfect
early diagnosis and identification method. Once symptoms
appear, it is often a late-stage disease (2). Of newly diagnosed
OC patients, 70%~80% can achieve a certain curative effect, but
because OC easily spreads and metastasizes in the abdominal
cavity, most advanced OC patients will still face tumor
recurrence (3). OC has the highest mortality rate among
gynecological malignancies and has become the most
threatening to women’s life and health among all gynecological
tumors (4).

Like epigenetic DNA and histone modifications, RNA
modifications have become important modulators of gene
expression throughout eukaryotic development. So far, several
kinds of RNAmodifications have been recognized, including N6-
methyladenosine (m6A) and N1-methyladenosine (m1A) (5).
These modifications can be installed, removed, and decoded in a
reversible manner via their specific cellular compositions and
perform critical functions in multiple biotic processes (6). All
RNA nucleotides, including adenine nucleotides, guanine
nucleotides, cytosine nucleotides, and uracil nucleotides, are
chemically modified (7). Among them, the modification of
adenine nucleotide (A) is the most common, such as m1A,
m6A, alterative polyadenylation (APA), and adenosine-to-
inosine RNA editing (A-to-I). The RNA epigenetic
modifications on these A bases are very different in catalytic
principle and occurrence position (8–11) and generally do not
compete to occur at the same A base position. However, some
studies have elucidated the negative regulation of m6A
modification on A-to-I editing and its mechanism (12).
Considering the interaction between different RNA
modifications and the fact that these modifications are mainly
regulated by methyltransferases (writers) (13), we set out to study
the regulatory network among the RNA “writers” with the above
four modifications.

m6A is a methylation modification on the 6th nitrogen atom
of adenine (14). m6A methylation is currently the most
important chemical modification found in eukaryotic cells
and plays an important role in various cellular processes,
especially tumor development (15–17). During transcription
m6A deposi t ion occurs in nascent pre-mRNAs by
methyltransferase complexes in the nucleus. Complexes
org 2
inc lude METTL3, METTL14, RBM15, WTAP, and
KIAA1429, among others (18).

m1A is a methylation modification that occurs on the first
nitrogen atom of adenine. A high abundance of m1A modifications
is present on tRNA and rRNA (19, 20). Furthermore, m1A
modifications also occur on mRNA (21). m1A plays a key role in
regulating mRNA translation initiation and elongation, mRNA
stability, and related developmental processes (22). The m1A
“writers” that have been found so far mainly include TRMT10C,
TRMT6, TRMT61A, and TRMT61B (21, 23).

APA is a widespread gene post-transcriptional regulation
process in eukaryotes. Most APAs occur in the 3′UTR region
(24). Through the selection of different polyadenylations in the
3′-UTR region, APA can affect important processes such as
mRNA stability, translation efficiency, and cellular localization
(25). The factors that regulate the formation of APA mainly
include CFI, NUDT21, CPSF, PABPN1 family (CPSF1-4), and
CTSF family (CSTF1-3) protein complexes (11, 24).

A-to-I type RNA editing is a fundamental biological
phenomenon that is widespread in mammals and is considered
a post-transcriptional modification mechanism capable of
generating molecular diversity (26). It regulates protein
translation by recoding, greatly enriching genetic information.
A-to-I type RNA editing not only has an important impact on
the regulation of gene expression but also is intimately linked to
the pathogenesis of many diseases (27, 28). ADAR, ADARB1,
and ADARB2 are the catalytic enzymes that exercise this
important type of RNA modification (29).

The tumor immune microenvironment (TME) refers to the
immediate ecological niche surrounding a tumor, consisting of
various types of cells in the metabolic environment. TME
contains a complex immune cellular environment that includes
cells engaged in the innate immune response, such as natural
killer (NK) cells and dendritic cells, and cells engaged in the
adaptive immune response, such as T and B cells (30, 31). Some
studies have classified tumors into “cold tumors” and “hot
tumors” according to the presence or absence of tumor-
infiltrating lymphocytes (TILs) in the TME. “Hot” tumors are
tumors with infiltrating lymphocytes, whereas “cold” tumors are
the opposite. In general, hot tumors are more immunogenic than
“cold” tumors (32, 33). Recent findings suggest that RNA
modifications are an essential epigenetic regime affecting
tumor immune response and tumorigenesis (34). METTL3
deletion disrupts T-cell homeostasis and differentiation.
METTL3-deficient T cells fail to perform homeostatic
June 2022 | Volume 13 | Article 932876
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proliferation and maintain naïve (35). Four types of RNA
modification “writers” have been shown to form a complex
regulatory network in colorectal cancer to influence immune
regulation and immunotherapy in the TME (36). However,
whether this regulatory network plays an effect on OC TME is
still unknown and needs to be further explored.

In this study, we assessed expression levels and genomic
alterations in 26 “writers” in OC specimens from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases, and we compared expression levels with normal
ovarian samples from the GTEx database. By comprehensively
evaluating the two RNAmodification patterns of OC samples, we
revealed that RNA modification modes are related to not only
tumor immune infiltration, which can correspond to different
immune typing, but also cell proliferation and oncogenic
mechanisms. Patients were then categorized into distinct gene
clusters according to the expression profiles of differentially
expressed genes (DEGs) in two RNA modification clusters.
Considering individual differences in RNA modification, we
calculated the RNA modification score to accurately quantitate
RNA modification patterns in a single OC patient and proved
that this score can correctly predict patient outcomes, immune
characteristics, and treatment efficacy.
MATERIALS AND METHODS

Data Collection and Processing
The process of this research is illustrated in Figure S1A. Gene
expression data and full clinical descriptions for OC were
retrieved and obtained from GEO and TCGA databases.
Somatic mutation and copy number variation (CNV) datasets
were obtained from TCGA database. This study used three
cohorts, TCGA-OV, GSE9891, and GSE26193, for subsequent
analysis. Only tumor samples were retained for this study.
Duplicate samples from the same patient were removed.
Samples with no follow-up information and incomplete clinical
information were also deleted. For TCGA-OV cohort, after
converting the genes’ fragments per kilobase (FPKM) values to
transcripts per kilobase (TPM), the “normalizeBetweenArrays”
function of the R package “Limma” were applied to perform data
normalization. For the GEO dataset, probe IDs were converted to
gene symbols according to the platform annotation file.
Normalized expression values were log-transformed and scaled
before being used for model validation. The mean value of genes
with multiple probes was used as their expression value (37).
Normalization and removal of batch effects between TCGA-OV
and two GEO datasets were performed using the “ComBat”
algorithm from the “sva” package (38).

Unsupervised Cluster Analysis of RNA
Modification “Writers”
A total of 26 RNA modification “writers” were identified based
on previous research (36). Table S1 shows the details of these
genes. According to these gene expression profiles, the
“ConsensusClusterPlus” package was used to perform an
Frontiers in Immunology | www.frontiersin.org 3
unsupervised cluster analysis of the patients and divided the
samples into two distinct subtypes. For the major parameters in
the “ConsensusClusterPlus” function, the following was set: the
max cluste number (maxK) = 9, proportion of items to sample
(pItem) = 0.8, proportion of features to sample (pFeature) = 1,
cluster algorithm (clusterAlg) = hc/hierarchical, and distance =
spearman. The above process is repeated 1,000 times to ensure
the consistency of the classification (39).

Gene Set Variation Analysis
To explore the biological functions between different RNA
modification patterns, based on the “c2.cp.kegg.v6.2.symbols.gmts”
gene set in the MsigDB database, with two RNA modification
isoforms as phenotypic features, the Gene Set Variation Analysis
(“GSVA”) package was used to determine biological process
differences between different RNA modification (40).

Assessment of Immune Infiltration
The Single-Sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was applied to estimate the immune infiltration of
each OC sample, and an enrichment score was used to indicate
the degree of enrichment of each immune cell (41). The
CIBERSORT algorithm assesses the composition and relative
proportions of tumor-infiltrating immune cells in OC samples
(42). CIBERSORT results are available online (https://gdc.
cancer.gov/about-data/publications/panimmune) (43).
ESTIMATE algorithm was used to compute immune and
stromal scores between subgroups to deduce tumor purity (44).

Correlation Between RNA Modifications
and Other Biological Processes
Rosenberg et al. built a set of gene sets associated with biological
processes, including epithelial–mesenchymal transition (EMT)
markers, DNA damage repair, nucleotide excision repair, and
CD8 T-effector signature (45–47). A correlation analysis of these
biological pathways with RNA modification isoforms and RMW
scores was performed to reveal the potential biological effects of
RNA modifications.

Identification of Differentially Expressed
Genes Between RNA Modification
Isoforms and Functional Annotation
Empirical Bayesian methods in the “limma” package were used
for identifying DEGs of different RNA-modifying isoforms (48).
A total of 1,641 DEGs were screened using adjusted p-value <
0.05 as criteria. “clusterProfiler” was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analysis to explore
the potential biological functions of these DEGs (49).

Construction of RNA Modification
Gene Signature
All OC patients were equally randomized into training and test
groups, and then RNA modification-related RMW scores were
constructed using the training group. First, in the training set, a
univariate Cox regression analysis of 1,641 DEGs identified 10
June 2022 | Volume 13 | Article 932876
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RNA modification “writers”-related genes significantly linked
to prognosis (p < 0.001). The model fit was then minimized
using the least absolute shrinkage and selection operator
(LASSO) regression analysis (50). Finally, by obtaining the
seven central DEGs and their correlation coefficients through
a multivariate Cox regression model, an RNA modification
gene signature, called the RMW score, was constructed.
RMW score = S(Expi * coefi), where Coefi and Expi
represent the correlation coefficient and expression of each
gene, respectively. The sample was categorized into the high
and low groups by median score. The “survminer” package was
applied to perform survival analysis between the two groups
and plot the receiver operating characteristic (ROC) curve to
evaluate the model’s precision.

RNA Extraction and qRT-PCR
TRIZOL reagent (Thermo Fisher Scientific, Waltham, MA, USA)
was used to isolate total RNA from cell lines, and Revert Aid First
Strand cDNA Synthesis kit (Thermo Fisher Scientific, USA) was
used to synthesize cDNA. GAPDH was chosen as the internal
reference. The relative expression of the target gene was
estimated using the 2−DDCT method. The primer sequences are
listed in Table S2.

Cell Culture
The OC cell lines (SKOV3, HO8910, and OVCAR3) were
purchased from China Center for Type Culture Collection
(CCTCC) and CRC/PUMC (Cell Resource Center, IBMS, and
CAMS/PUMC). The normal ovarian cell line (IOSE) was
obtained from Shanghai Yaji Biotechnology Co., Ltd. All cells
were maintained in Dulbecco’s modified Eagle medium
(DMEM) (Gibco; Thermo Fisher Scientific, Inc.) containing
10% fetal bovine serum (FBS) (Gibco; Thermo Fisher
Scientific, Inc.) in a humidified incubator at 37°C and 5% CO2.

Creation and Validation of Nomogram
The “rms” package was used to integrate clinical characteristics
and risk scores and draw a nomogram to visualize the relationship
between variables in the prediction model (51). The calibration
curve is used to verify the predictive ability of the prediction
model. The closer the curve is to the diagonal, the better the
prediction effect. Decision curve analysis (DCA) assessed the
clinical application of the model by calculating the net benefit rate.

Phenotypes of DNA and
RNA Differentiation
Cancer stem cell scores, including mRNA expression-based
RNAs and DNA methylation-based DNAs, were designed to
gauge cancer stem cell association (52). Scores range from 0 to 1.
The closer the score is to 1, the stronger the degree of stemness
and the lower the degree of differentiation. Both RNA and DNA
scores were obtained from the xena browser (https://
xenabrowser.net/datapages/).

Drug Sensitivity Prediction
The CellMiner database is based on the 60 types of cancer cells
(NCI-60) listed by the National Cancer Institute’s Center for
Frontiers in Immunology | www.frontiersin.org 4
Cancer Research (NCI) (53). The NCI-60 cell line is the most
widely used cancer cell sample population for anticancer drug
testing. The CellMiner database was queried for 22,379 identified
gene expression data and drug sensitivity data (IC50) for 20,503
analyzed compounds in NCI-60 cell lines to analyze the
sensitivity between genes and drugs. Tumor Immune
Dysfunction and Exclusion (TIDE) score is based on the
analysis of T-cell dysfunction under a high level of cytotoxic
T-cell infiltration and T-cell rejection characteristic genes in
immunosuppression, which can effectively predict the effect of
immune checkpoint inhibitor (ICI) therapy. The TIDE score is
composed of two components: dysfunction score and exclusion
score. The higher the TIDE score, the worse the efficacy of ICIs
and the shorter the survival of patients (54). The Genomics of
Drug Sensitivity in Cancer (GDSC) database contains
information on molecular markers of drug sensitivity in cancer
cells, which is important for discovering potential targets for
tumor therapy. The GDSC database can be used to examine the
sensitivity between RMW scores and cancer drugs (55).

Statistical Analysis
Spearman’s and distance correlation analyses were performed to
estimate correlation coefficients between the expression of RNA
modification “writers” and immune infiltrating cells. Wilcoxon’s
test was performed to analyze the variation between the two
groups. Survival curves were drawn using the Kaplan–Meier (K-
M) method, and a log-rank test was performed to determine the
significance of the differences. ROC curve was performed to
verify the validity of the model. p < 0.05 was considered
statistically significant. All data were processed using R
4.0.1 software.
RESULTS

Genetic and Transcriptional Alterations
in RNA Modification “Writers” in
Ovarian Cancer
Altogether, 26 RNA modification “writers” were included in this
study (Table S1) (15, 21, 24, 28, 36). First, we comprehensively
analyzed the somatic mutation status of these “writers” in
TCGA-OC cohort. Overall, 26 “writers” had low mutation
rates in OC. Only 31 of 436 OC patients had RNA-modifying
mutations (7.11%), and only ADAR and ZC3H13 mutations
were present (Figure 1A). Next, we analyzed the CNVs and
revealed that CNVs were ubiquitous in all “writers.” Among
them, the vast majority of “writers”, such as CSAF and ADAR,
showed copy number gain, while WTAP and others showed copy
number loss (Figure 1B). Figure 1C shows the chromosomal
locations of CNV variants in 26 “writers”.

To reveal whether genetic variation in these “writers” in OC
interferes with gene expression, we compared these “writers”
expressions in normal and OC tissues. Compared with normal
tissues, the number of “writers” with increased, decreased
expression was approximately equal in OC samples, and the
difference in expression of these genes in both tissues was
June 2022 | Volume 13 | Article 932876
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essentially statistically significant (Figures 1D, E). Previous
studies have shown a coordination or inhibitory relationship
between the four RNA modifications (12). These grooming
functions are not completely independent, and the protein–
protein interaction (PPI) network diagram shows the
interrelationships that exist between these “writers”
(Figure 1F). Subsequently, after further analysis, we found that
there is a certain correlation between CNV changes and the
expression of “writers.” CNV increases in genes such as CPSF1,
KIAA1429, METTL3, and PCF11 were often accompanied by
decreased expression levels, whereas ADAR, TRMT61A, and
CSTF1, among others, showed the opposite. Likewise, “writers”
with CNV loss also showed increased or decreased expression
levels (Figures 1B, D). These results suggest that expression
Frontiers in Immunology | www.frontiersin.org 5
levels of RNA modification “writers” are affected by CNV, but
CNV is not the only factor affecting gene expression (56); other
factors, including multiple epigenetic modifications, also largely
regulate gene expression (57).

The above analysis shows that the expression and genetic
changes of RNA modification “writers” in normal and OC are
highly heterogeneous, implying that RNA modification “writers”
play a certain role in the occurrence and pathogenesis of OC.
Determination of RNA Modification
“Writers” Patterns in Ovarian Cancer
To better characterize RNA modifications in the development of
OC, we integrated samples from TCGA-OC and GSE9891
A B

D

E F

C

FIGURE 1 | Genetic and transcriptional alterations of RNA modification “writers” in ovarian cancer (OC). (A) The mutation frequency of 26 RNA modification “writers” in
436 OC patients from The Cancer Genome Atlas (TCGA) cohort. (B) Frequencies of copy number variation (CNV) gain, loss, and non-CNV among RNA modification
“writers.” (C) Locations of CNV alterations in RNA modification “writers” on 23 chromosomes. (D) Expression distributions of 26 RNA modification “writers” between
normal and colorectal cancer (CRC) tissues. (E) Heatmap showing expression profiles of 26 RNA modification “writers” in OC and normal tissues. (F) The protein–protein
interaction (PPI) network of RNA modification “writers”. Adjusted p-values were shown as ns, not significant; **p<0.01; ***p<0.001.
June 2022 | Volume 13 | Article 932876
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cohorts and used them for further analysis. The Kaplan–Meier
analysis revealed that 14 “writers” expression levels correlate
with OC survival (p < 0.05, Figure S1B). Subsequently, we
analyzed the relevance of expressions between “writers” and
discovered a general agreement between positive and negative
relationships (Figure 2A). The expression of “writers” was
significantly correlated not only within the same category but
also across different categories. Interestingly, the negative
correlations between the expression of PCF11, PABPN1,
METTL3, and other “writers” were relatively strong. The
opposite is true for TRMT10C, CPSF3, and RBM15B. Likewise,
the synthesis of “writers” interactions and prognostic value were
demonstrated in the RNA modification network (Figure 2B).
Therefore, the crosstalk among “writers” may largely influence
RNA modification patterns in OC.

Subsequently, according to 26 “writers” mRNA expression
profiles, we employed a consensus clustering algorithm to
Frontiers in Immunology | www.frontiersin.org 6
classify OC samples and divided the entire cohort into two
clusters, including cluster A (n = 321) and cluster B (n = 340)
(Figures 2C, S2A, B). Principal component analysis (PCA)
showed that cluster A and cluster B could be well
distinguished based on this classification (Figure 2D). The
heatmap illustrates the possible relevance of the expression of
RNA modification “writers” to some clinical traits (Figure S2C).
Moreover, the K-M analysis revealed a more significant survival
advantage for cluster B (p = 0.032, Figure 2E).

Immune Signatures of Distinct RNA
Modification Clusters
To gain insight into the potential biological meaning of two
clusters, we conducted GSVA on two clusters. As can be seen
from Figure 3A, some immune activation-related pathways are
abundantly enriched in cluster A, including NK cell-mediated
cytotoxicity and NOD-like and Toll-like receptor signaling
A B

D

E

C

FIGURE 2 | Patterns of RNA modification and clinical characteristics divided by consistent clustering. (A) Heatmap shows positive (red) and negative (blue)
correlations among RNA modification “writers” in ovarian cancer (OC). (B) Interactions among RNA modification “writers” in OC. (C) Unsupervised clustering of RNA
modification “writers” and Consensus matrix heatmaps for k = 2. (D) Principal component analysis (PCA) showing a remarkable difference in transcriptomes between
different modification patterns. (E) Kaplan–Meier curves for the two RNA modification patterns of OC patients.
June 2022 | Volume 13 | Article 932876
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pathways, indicating that these “writers” may be linked to
immune activation. Therefore, we next explored the role of
“writers” in OC TME. First, we performed ssGSEA in OC to
assess immune infiltration in these clusters according to immune
cell-specific marker gene expression levels. We found that cluster
A was very rich in immune infiltration, with a significantly
higher degree of infiltration than cluster B. Innate and adaptive
immune cells including T and B cells, macrophages, and NK cells
were significantly enriched in cluster A (Figure 3B). We then
evaluated the correlation among the two RNA modification
isoforms and 22 immune cell subpopulations with the
CIBERSORT algorithm. Surprisingly, we found no difference
between the two subtypes in most immune cell infiltrations
(Figure S2D). This may be due to different algorithms.
Furthermore, we employed the ESTIMATE algorithm to infer
the proportions of immune cells and stromal cells in both
Frontiers in Immunology | www.frontiersin.org 7
subtypes and calculate tumor purity. The results showed that
stromal cells and immune cells were significantly more abundant
in cluster A, which also indicated that the tumor purity of cluster
A was relatively low (Figure 3C). Based on these analyses, we
found that the two RNA modification patterns have completely
different immune infiltration characteristics. Among them,
cluster A roughly corresponds to “hot” tumors, characterized
by more activated immune cell infiltration and better response to
immunotherapy, while cluster B corresponds to “cold” tumors,
characterized by few infiltrating immune cells and a weak
response to immunotherapy. However, cluster A with this
immune signature did not have a matching survival
advantage (Figure 2E).

To explore the expression characteristics of immune-related
genes, we next analyzed the link between the immune checkpoint
and HLA genes in both clusters. Immune checkpoint analysis
A B

D

E

F

C

FIGURE 3 | Biological characteristics and tumor immune microenvironment (TME) cell infiltration in two RNA modification patterns of ovarian cancer (OC). (A) Gene Set
Variation Analysis (GSVA) analyzed the biological pathways between two modification patterns. (B) 23 TME cells’ infiltration abundance of two RNA modification patterns. (C)
Correlations between two RNA modification patterns and TME score. (D) The RNA expression levels of HLA genes in samples from two patterns. (E) Expression levels of
CTLA4, PD-1, PD-L2, and PD-L1 in two modification patterns. (F) Differences in interstitial activation pathways of two RNA modification patterns. Adjusted p-values were
shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
June 2022 | Volume 13 | Article 932876
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revealed that, with the exception of PD-1, the remaining single
genes, including PD-L1, CTLA-4, and PD-L2, were more highly
expressed in cluster A (Figure 3D). Notably, all differentially
expressed HLA genes were the highest in cluster A (Figure 3E).
In addition, we further analyzed the correlation of known
biological processes with the two isoforms in order to better
characterize RNA modification patterns. The results showed that
most biological processes were more prominent in cluster A, but
pathways related to mismatch repair, including DNA replication,
DNA damage repair, nucleotide excision repair, and mismatch
repair, were significantly enriched in cluster B (Figure 3F).

Construction of RNA Modification “Writer”
Gene Clusters
We used the “limma” package to screen out 1,641 DEGs (Figure
S3A) and performed GO and KEGG functional analysis on
DEGs. Gene enrichment analysis demonstrated that these
DEGs were dramatically abundant in cell activation,
proliferation, and immune-related pathways, including T-cell
activation, lymphocyte proliferation, and neutrophil-mediated
immunity (Figures 4A, B). This also indirectly indicates that
Frontiers in Immunology | www.frontiersin.org 8
RNA modification “writers” are essential in OC immune
regulation. Subsequently, to determine the prognostic worth of
these DEGs, we performed a univariate Cox analysis on these
DEGs and screened out 10 genes associated with overall survival
(OS) (p < 0.001, Table S3). Based on these 10 survival-related
DEGs, we also used a consensus clustering algorithm to
categorize OC simples into two gene clusters, namely, gene
clusters A and B (Figures S3B–D). The expression of RNA
modification “writers” differed between the two groups, with
“writers” having relatively high expression in cluster B
(Figure 4C). Consistent with the RNA modification cluster,
the two gene clusters also each had different clinical and
prognostic characteristics (Figure S3E), among which the K-M
curve displayed a more pronounced survival advantage for
patients in cluster B (p < 0.001, Figure 4D).

Subsequently, we further investigated immunological
behavior in the two gene clusters. The ssGSEA results
indicated that the vast majority of immune cells had higher
levels of infiltration in cluster A (Figure 4E). The CIBERSORT
algorithm results showed that gene cluster A was mainly
infiltrated by adaptive immune cells (T and B cells), while gene
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C

FIGURE 4 | Identification of gene clusters based on differentially expressed genes (DEGs) and tumor immune microenvironment (TME) cell infiltration characteristics
and transcriptome traits in distinct gene clusters. (A) Gene Ontology (GO) enrichment analyses of DEGs among two gene clusters. (B) Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses of DEGs among two gene clusters. (C) Differences in the expression of 26 RNA modification “writers” among the two
gene clusters. (D) Kaplan–Meier curves for the two gene clusters of ovarian cancer (OC) patients. (E) 23 TME cells’ infiltration abundance of two gene clusters.
(F) The proportion of each immune cell in two gene clusters. (G) Correlations between two gene clusters and TME score. (H) Expression levels of CTLA4, PD-1, PD-
L1, and PD-L2 in two gene clusters. (I) Differences in interstitial activation pathways of two gene clusters. Adjusted p-values were shown as ns, not significant; *p <
0.05; **p < 0.01; ***p < 0.001.
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cluster B was mainly infiltrated by innate immune cells,
including NK cells and monocytes (Figure 4F). The results of
tumor purity analysis showed that gene cluster A tumor tissues
had a high content of immune and stromal cells, which also
represented low tumor purity (p < 0.001, Figure 4G). Consistent
with RNA modification typing, except for PD-1, the expression
of other immune checkpoints in gene cluster A was also
significantly higher (Figure 4H). In addition, classical
biological pathways, including CD8 T effector, EMT1-3, Pan-F-
TBRS, and Angiogenesis, were more prominent in gene cluster
A, while pathways related to mismatch repair were significantly
enriched in gene cluster B (Figure 4I). Again, based on these
immune signatures, we believe that gene cluster A roughly
corresponds to “hot” tumors, while gene cluster B corresponds
to “cold” tumors.

Construction and Validation of RMW Score
Considering the complexity of RNA modification and individual
differences, based on these DEGs, we created a scoring system to
measure RNA modification patterns in single OC patients, called
the RMW score. Figure 5A visually illustrates the distribution of
sufferers across RNA modification clusters, genotypes, and
RMW score groups. First, the expression profile data of the
samples were merged with the survival information, and we
selected 652 samples for subsequent analysis. These samples were
averaged at random into a training group (n = 326) and a test
group (n = 326) with the “caret” package. Based on previous
genetic screening results, LASSO and multivariate Cox analyses
were conducted on 10 prognostic-related DEGs in the training
set to facilitate the selection of the best prognostic features. Nine
OS-related DEGs were still screened by LASSO regression
(Figures S4A, B). Subsequently, we applied multivariate Cox
analysis to these 9 genes, and finally we obtained 7 genes for
further analysis, including three low-risk genes (PLCH1,
ZNF429, and MYCNOS) and four high-risk genes (ZFHX4,
DYRK1B, GFPT2, and ADNP) (Figure S4C). Based on the
correlation coefficient calculated by multivariate Cox
regression, we established the calculation formula of RMW
score: RMW score/risk score = (−0.1671 * PLCH1 expression)
+ (−0.6230 * ZNF429 expression) + (−0.2306*MYCNOS
expression) + (0.1385 * ZFHX4 expression) + (0.5187 *
DYRK1B expression) + (0.1590 * GFPT2 expression) + (1.0575
* ADNP expression).

Clearly, we observed significant differences in the distribution of
RMW scores across different RNA modification clusters and gene
clusters (Figures 5B, C). Among them, the RMW scores of cluster
A and gene cluster A were relatively high, indicating that the high
RMW score may be related to the immune infiltration and
activation of patients. To estimate the clinically relevant nature of
the RMW score, we categorized patients into high- and low-score
(risk) groups by median RMW score. We observed significant
expression variations in 7 genes between the two groups, with
high-risk genes having higher expression in the high-score group,
while low-risk genes showed the opposite (Figure 5D).
Figures 5E, F show the distribution of RMW scores. It can be
seen that the higher the RMW score, the shorter the patient’s
Frontiers in Immunology | www.frontiersin.org 9
survival time and the higher the mortality rate. The K-M survival
curves highlight greater survival benefits for the high-score group (p
< 0.001, Figure 5G). In addition, ROC curves illustrated the
sensitivity and specificity of RMW score in predicting 1-, 3-, and
5-year survival, with area under the curve (AUC) values of 0.761,
0.661, and 0.662, respectively (Figure 5H).

To further investigate the predictive behavior of the RMW
score, we calculated the RMW score for the test and all sets
(TCGA-OV+GSE9891) and the external validation group
(GSE26193) according to the formula and categorized the
patients into two score groups (Figures S5-S9). The heatmap
illustrated the variation in RMW score-related gene expression
among two groups (Figures S5-9A). Figure S5-9B, C show the
change trend of RMW score and patient survival status in the two
groups, respectively. Survival curves showed that the low-score
group exhibited a significant survival benefit (p < 0.001; Figures
S5-9D). ROC curves showed relatively high AUC values of RMW
score in predicting 1-, 3-, and 5-year outcomes (Figures3S5-9E).
These results suggest that the RMW score could mirror RNA
modification patterns and forecast outcomes in OC.

We further validated the expression of 7 RMW score-related
genes in OC cell HO8910, SKOV3, and OVCAR3 by qRT-PCR.
As shown in Figure S10, the expressions of ADNP, PLCH1,
ZFHX4, and ZNF429 were significantly lower in OC cell lines
compared to those in IOSE cells. Meanwhile, DYRK1B and
GFPT2 expressions were significantly upregulated in OC cell
lines. However, there was no significantly different in MYCNOS
expression in OC cell lines.

Clinical Correlation Analysis and Stratified
Analysis of RMW Score
We discussed the relevance of RMW scores to various clinical
features, including survival status, age, and stage. We noticed
that a greater proportion of patients over 60 years of age, with
advanced disease and death, were in the high group (Figures
S11A–C), and these patients had higher RMW scores (Figures
S11D–F). In addition, stratified analysis assessed whether the
RMW score could predict survival in different clinical subgroups,
including age (≤60 and >60 years), grade (stages 1–2 and 3–4),
stage (stages I–II and stages III–IV), BRCA1 (mutant and wild
type), and chemotherapy (accepted and non-accepted). Figures
S11G–N show that the low RMW score group has a more
favorable prognostic outlook among patients stratified by
various clinical traits. These results suggest that the RMW
score can be employed to estimate several cl inical
characteristics, including age, stage, grade, and survival status.

RMW Score Is Associated With Tumor
Immune Microenvironment
Immune Infiltration
First, we performed GSEA to identify the underlying biological
properties of different scoring groups. As expected, significant
enrichment of immune pathways, including T- and B-cell
receptor pathways, chemokine signaling pathway, and
cytokine–cytokine receptor interaction, was detected in high-
risk patients compared with low-score patients (Figure 6A).
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Further studies showed that pan-F-TBRS and TME stroma were
markedly activated in the high group, which, to some extent,
mediated tumor immune tolerance (Figure 6B). Subsequently,
we applied ssGSEA to assess immune infiltration in both groups.
As depicted in Figure 6C, the level of immune cell infiltration
was generally higher in the high group. To better illustrate the
effect of the RMW score on TME immune infiltration, we also
tested the correlation between different immune cells and the
RMW score (Figure S12A). The CIBERSORT algorithm
revealed that the RMW score was negatively linked to
regulatory T cells, memory B cells, activated dendritic cells,
and activated NK cells, while naive B cells, eosinophil, M0
macrophages, activated mast cells, plasma cells, and gd T cells
were positively correlated (Figure S12B). Figure S12C indicates
the ratio of each immune cell in two groups. ESTIMATE results
confirmed a positive relationship between RMW scores and both
Frontiers in Immunology | www.frontiersin.org 10
immune and stromal scores, indicating lower tumor purity in the
high group (Figures 6D, E). Moreover, we assessed the
relationship between seven RMW score-related genes and
immune cell abundance and observed that the majority of
immune cells were markedly linked to seven genes (Figure 6F).

Furthermore, we surveyed the connection between immune
checkpoints and our risk model. Table S4 lists 47 immune
checkpoint-related genes. Figure 6G depicts 23 immune checkpoints
with differential expression in both groups, including HAVCR2, IDO1,
PDCD1LG2, and CTLA4, and most immune checkpoints were
overexpressed in the high group. To better illustrate the
characteristics between immune checkpoints and RMW scores, we
also tested the correlation between some drug target genes and RMW
scores (Figures 6H, S12D). In addition to IDO1, three other genes,
including PDCD1LG2, HAVCR2, and CTLA4, were positively
correlated with the RMW score.
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FIGURE 5 | Construction of the RMW score in the training set. (A) Alluvial diagram of subtype distributions in groups with different RMW scores and survival outcomes.
(B) Differences in RMW score between gene clusters. (C) Differences in RMW score between RNA modification patterns. (D) Heatmap shows the distribution of core
genes in models between normal and ovarian cancer (OC) tissues. (E) Ranked dot showing the RMW score distribution and patient survival status. (F) Scatter plots
showing the RMW score distribution and patient survival status. (G) Kaplan–Meier analysis of the overall survival (OS) between the two groups. (H) Receiver operating
characteristic (ROC) curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the RMW score.
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Correlation Between RMW Score
and Tumor Stem Cells and Tumor
Mutation Burden
Recently, studies have found that cancer stem cells interact with
immune cells in the TME and can promote the progression of
various cancers (58, 59). We analyzed the regulatory role of the
RMW score in OC stem cells by analyzing mRNA expression
(RNAs) and DNA methylation patterns (DNAs). It is evident
from Figures S13A, B that the RMW score was clearly
negatively dependent on both RNAs and DNAs, although
these correlations were not statistically significant. These
results suggest that a high RMW score is associated with
reduced tumor cell stemness.

Growing evidence suggests that the higher the tumor
mutation burden (TMB), the greater the number of
neoantigens in the tumor, and the better the patient’s
susceptibility to immunotherapy (60). Therefore, we next
comprehensively evaluated the distribution of TMB in the
two groups. Figure S13C highlights the higher TMB for the
high group (p = 0.0072). Subsequently, the somatic mutation
Frontiers in Immunology | www.frontiersin.org 11
distribution results revealed a high mutation frequency in
both groups, with the highest mutation frequency being in
TP53, which can be as high as 88% and 80%. High score
patients had a markedly higher frequency of mutations
(Figures S13D,E).

RMW Score Can Predict Drug Sensitivity
in Ovarian Cancer Patients
To explore whether the RMW score can predict the
immunotherapy response to ICIs, we used the TIDE score to
model the two main mechanisms of tumor immune evasion and
provide predictive outcomes for immunotherapy. We found that
TIDE scores in the high-score group were much higher,
suggesting that the low RMW score patients were more likely
to respond to immunotherapy (Figures 7A–C). Microsatellite
instability (MSI) refers to the difference in the number of repeat
units of the same microsatellite locus between different
individuals or between normal tissues and some abnormal
tissues of the same individual. Growing evidence indicates that
patients with higher MSI are better able to respond to and
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FIGURE 6 | Evaluation of the tumor immune microenvironment (TME) and checkpoints between the two groups. (A) Enrichment plots showing B-cell receptor signaling
pathway, chemokine signaling pathway, cytokine–cytokine receptor interaction, T-cell receptor signaling pathway, primary immunodeficiency, and Toll-like receptor signaling
pathway were enriched in the high RMW score subgroup. (B) Differences in interstitial activation pathways of two groups. (C) 23 TME cells’ infiltration abundance of two RMW
score subgroups. (D, E) Correlations between two groups and TME score. (F) Correlations between the abundance of immune cells and seven genes in model.
(G) Expression of 23 immune-related genes in two groups. (H) Expression levels of CTLA4, HAVCR2, PDCD1LG2, and IDO1 in two groups. Adjusted p-values were shown
as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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gain from immunotherapy (61). From Figure 7D, we can see that
the MSI was higher in the low RMW score group. This also
proves that low-score patients with high MSI can benefit
from immunotherapy.

We next selected chemotherapeutic agents available for OC to
assess the sensitivity of the two groups to these agents.
Interestingly, we found that with the exception of paclitaxel,
the IC50 values of the rest of the drugs, including rucaparib,
veliparib, vinblastine, cisplatin, docetaxel, and gemcitabine, were
significantly elevated in the low RMW score group (Figures 7E–
K). Figure S14 shows the correlation between RMW score-
related genes and different drugs. These results suggested that
RNA modification “writers” are associated with drug sensitivity,
including immunotherapy and chemotherapeutics, where a
lower RMW score suggests better treatment outcomes
for patients.

Plot a Nomogram to Predict Survival
Considering the inconvenient clinical application of RMW scores
in predicting the prognosis of OC patients, we combined RMW
scores with independent prognostic clinical traits, including age
and stage, to draw a nomogram to more intuitively demonstrate
the validity of these factors, especially RMW scores, in predicting
1-, 3-, and 5-year survival (Figure 8A). In addition, the conjoint
univariate and multivariate analyses confirmed that the signature
of the RMW score was an independent prognostic factor in five
sets (Table 1). Considering the effect of sample number on the
results, we used the samples from the ALL sets (TCGA-OV
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+GSE9891) to plot the nomogram and carry out the next step of
the analysis. ROC results showed that the accuracy of OS at 1 year
was higher than that at 3 and 5 years (Figures 8B–D). DCA
showed that the net benefit of our RMW score-based prognostic
model was high compared to clinical factors if the patient or
physician threshold probability was greater than 50%,
particularly when predicting 1-year survival. Within this range,
the RMW score outperformed the predictions of individual
predictors (Figures 8E–G). Subsequently, we plotted ROC
curves to analyze the accuracy of combining the three
predictors for a common prediction. Clearly, combining clinical
factors with the RMW score predicted larger AUC values with
higher accuracy (Figures 8H–J). The calibration curves showed
that the proposed nomogram was the best at predicting 1-year
survival, followed by 3 years, compared to the ideal model
(Figures 8K–M).

RNA Modification “Writers” Models as
Ovarian Cancer Novel Predictors
To compare the predictive performance of our RNA
modification “writers” signature with other models, we selected
four risk models, including 5-gene (62), 7-gene (63), 8-gene (64),
and 11-gene (65) features. To make them comparable, according
to the expression of corresponding genes in these four models,
we also applied multivariate Cox regression analysis to calculate
the risk value and prognostic evaluation for each dataset.
Samples were divided into high and low groups according to
the median value. Survival curves indicated that the high-risk
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FIGURE 7 | The role of RMW score in ovarian cancer (OC) treatment drug sensitivity. (A–C) The correlation between the RMW score and Tumor Immune Dysfunction
and Exclusion (TIDE) Score. (D) Relationships between RMW score and microsatellite instability (MSI). (E–K) Relationships between RMW score and chemotherapeutic
sensitivity. Adjusted p-values were shown as ***p < 0.001.
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group had a greatly worse prognosis in the four models
(Figure 9A). ROC curves illustrated that the AUC values were
lower in all four models (Figure 9B). Therefore, we believe that
they are inferior in predicting prognosis compared with our
model. The restricted mean survival (RMS) package was
employed to calculate the C-index for all prognostic features.
Frontiers in Immunology | www.frontiersin.org 13
Clearly, our model has the highest C-index at 0.67 (Figure 9C).
With the use of RMS time, the predictive effect of gene signatures
at different time points can be evaluated. Therefore, our genetic
signatures perform best over time periods of about 5 years. This
indicated that our model was the best predictor of 5-year survival
in patients as compared with other models (Figure 9D).
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FIGURE 8 | Construction and validation of nomograms. (A) Nomogram for predicting the 1-, 3-, and 5-year overall survival (OS) of ovarian cancer (OC) patients in
the training set. (B–D) Receiver operating characteristic (ROC) curve showing the area under the curve (AUC) values of risk, nomogram, age, and stage in predicting
survival in OC patients. (E–G) Decision curve analysis of the risk, age, and stage at 1-, 3-, and 5-year OS. The x-axis shows the threshold probability, and the y-axis
measures the net benefit. (H–J) Receiver operating characteristic (ROC) curve showing the AUC values of risk score, clinical factors, and both sides in predicting
survival in OC patients. (K–M) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS.
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TABLE 1 | Univariate and multivariate Cox regression analysis of RMW score and clinical characteristics in five cohorts.

Univariate analysis Multivariate analysis

Training set
Parameters HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
age 1.5809 1.1791 2.1196 0.0022 1.4109 1.0464 1.9022 0.0240
grade 1.1540 0.8078 1.6484 0.4312
stage 4.3236 1.7715 10.5524 0.0013 3.6604 1.4979 8.9453 0.0044
RMW score 1.7699 1.5458 2.0264 0.0000 1.6933 1.4729 1.9466 0.0000
Testing set
Parameters HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
age 1.3427 0.9763 1.8467 0.0699
grade 1.3518 0.8890 2.0556 0.1586
stage 3.9164 1.2448 12.3219 0.0196 3.5110 1.1138 11.0670 0.0320
RMW score 1.4056 1.2321 1.6035 0.0000 1.3829 1.2102 1.5802 0.0000
TCGA set
Parameters HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
age 1.4054 1.0784 1.8317 0.0118 1.2402 0.9479 1.6225 0.1164
grade 1.1815 0.7885 1.7705 0.4189
stage 2.4177 0.9945 5.8771 0.0514
RMW score 1.8450 1.5814 2.1527 0.0000 1.8076 1.5451 2.1146 0.0000
GSE9891 set
Parameters HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
age 1.5628 1.0743 2.2734 0.0196 1.3806 0.9383 2.0314 0.1017
grade 1.3024 0.8817 1.9236 0.1843
stage 7.0056 2.2210 22.0977 0.0009 6.0557 1.9127 19.1730 0.0022
RMW score 1.4180 1.2441 1.6162 0.0000 1.3218 1.1481 1.5218 0.0001
ALL set
Parameters HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue
age 1.4563 1.1740 1.8066 0.0006 1.2840 1.0293 1.6019 0.0267
grade 1.2264 0.9353 1.6080 0.1399
stage 4.0521 2.0069 8.1812 0.0001 3.5366 1.7494 7.1498 0.0004
RMW score 1.5346 1.4041 1.6773 0.0000 1.4718 1.3412 1.6150 0.0000
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FIGURE 9 | Comparison of our risk model with other established models. (A) Kaplan–Meier (K-M) curves of four other published gene signatures. (B) Receiver
operating characteristic (ROC) curves of four other published gene signatures. (C) Concordance index (C-index) of the five prognostic risk models. (D) Restricted
mean survival (RMS) time curve of all five prognostic risk models.
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DISCUSSION

To date, most studies have pointed to RNA modification as a key
mechanism in the epigenetic regulation of immune responses
and tumorigenesis. The dysregulation of m6A, m1A, APA, and
A-to-I, four common RNA adenosine modifications mediated by
“writers” enzymes, has been implicated in the pathogenesis of
human diseases. However, most studies have focused on a single
type of RNA modification “writers”. Thus, corporate effects and
TME infiltration traits mediated by the combined action of
multiple “writers” in OC have not been fully elucidated. In this
study, we reveal the overall alterations and interactions of RNA
modification “writers” at transcriptional and genetic levels in
OC. Based on the expression levels of the 26 “writers”, we
identified two distinct RNA modification clusters. Compared
with cluster A patients, cluster B patients had milder
clinicopathological features and a better prognostic outlook.
There were significant differences in immune cell abundance in
the TME between the two RNA modification subtypes. Among
them, cluster A was characterized by abundant immune
infiltration and significant immune activation, which contained
a large number of T and B lymphocytes and was associated with
immune-activated pathways, such as T- and B-cell receptor
signaling pathways and NOD-like and Toll-like receptor
signaling pathways. Moreover, transcriptome differences
between RNA modification isoforms were markedly associated
with cell proliferation and immune-related biological pathways.
We identified two sets of gene clusters according to DEGs
between two RNA-modification clusters. We believe that RNA
modification “writers” may act as a major factor influencing the
clinical outcome of OC and immune infiltration of the TME. We
select “writers” that can robustly and effectively predict OC
survival to calculate the RMW score. We demonstrate the
RMW score’s predictive value and explore the expression of
RMW score-related genes in OC tissues. RNA modification
patterns characterized by high immune infiltration and
immune activation showed higher RMW scores. Patients in the
two groups exhibited significantly different clinicopathological
features, prognosis, mutations, TME, immune checkpoints, CSC
index, and drug sensitivity. Finally, by integrating age, stage, and
RMW score, we built a nomogram to more intuitively display the
performance of these factors and improve the applicability of the
RMW score. This prognostic model might be employed for the
prognostic stratification of OC patients, which helps to better
understand the molecular mechanism of RNA methylation in
OC and provides new ideas for personalized treatment.

Recently, immunotherapy has gradually achieved some
advances in gynecological cancer. However, OC does not
respond well to many immunotherapy drugs, and the immune
characteristics of OC itself limit the response to immunotherapy
and disease progression to a large extent (66). Previous studies
have shown that the TME changes during malignant
progression, mainly in non-malignant cells, cytokine networks,
and the extracellular matrix. The heterogeneity of the TME may
be one of the main reasons for the unsuccessful immunotherapy
of OC (67). In this study, RNA modification patterns
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characterized by high immune infiltration and immune
activation were associated with higher RMW scores. We found
considerable variations in TME characteristics and relative
abundance of immune cells between the two patterns,
genotypes and different RMW score subgroups. This highlights
an essential contribution of RNA modification “writers” in
regulating the OC TME and progression.

Studies have proved that the presence of TILs is directly
associated with a higher prognosis in OC patients (68). Among
them, CD8+ T cells infiltrate tumors as a symbol of immune
recognition and destroy tumor cells by secreting granzyme B,
TNF, and IFNg, indicating better survival in OC patients (69). B
cells can also inhibit OC migration and metastasis through
antitumor immunity to a certain extent, and some B cells
differentiate into plasma cells to produce tumor-specific
antibodies (70). Myeloid-derived suppressor cells (MDSCs) are a
subset of immunoregulatory immature myeloid cells that
proliferate throughout cancer progression and perform
immunosuppressive functions by modulating the escape of
antitumor T-cell immunity (71). In OC, MDSCs enhance cancer
cell stemness and accelerate metastasis and tumor formation by
triggering microRNA expression and inhibiting the co-suppressor
gene C-terminal binding protein-2 (72). The high expression of
immunosuppressive molecules, including vascular endothelial
growth factor and interleukin 10 in OC TME, causes abnormal
dendritic cell function, which not only fails to activate cytotoxic T
lymphocytes but also induces regulatory differentiation of effector
T lymphocytes, further suppressing the immune response of
effector T lymphocytes to tumors (73). In addition, the
extracellular matrix protein transforming growth factor beta
(TGFBI), an essential component of the OC TME, is
significantly upregulated in ovarian lesions and serous OC,
which may contribute to immunosuppression and disease
progression (74). We observed that subtype A had more
immune cell infiltration, including antitumor cells such as T and
B and tumor-promoting cells such as MDSCs and Treg. Likewise,
we observed a similar phenomenon in the high RMW score group.
However, subtypes with such high immune infiltration did not
show a matching survival advantage. This indicates that in the
immune microenvironment of OC, cells such as Treg and MDSCs
may be primarily involved in suppressing the anticancer immune
response. This is consistent with our finding of low immune
infiltration and favorable prognosis in patients with subtype B and
high RMW scores. T-cell exhaustion is characterized by loss of T-
cell effector function, increased and persistent inhibitory receptor
(IRS) expression, altered epigenetic and transcriptional profiles,
and altered metabolic patterns (75). T-cell exhaustion is one of the
major factors in immune dysfunction in cancer patients, including
OC (76). Therefore, we speculate that the increased infiltration of
T cells in the poor-prognosis cohort may be dominated by
exhausted T cells, which indirectly suggests why high T-cell
infiltration in the tumor worsens the prognosis. Exhausted T
cells may have new targets for OC immunotherapy and
represent a potent weapon to fight tumors.

With the deepening of tumor immunology and molecular
biology research, immunotherapy and targeted therapy have
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become new directions of clinical research. Our findings suggest
that RNA modification patterns may be considered appropriate
“predictors” for assessing clinical outcomes of chemotherapy or
targeted therapy. The correlation between RMW score and
cancer stem cells can be used to predict patient responsiveness
to immunotherapy. By identifying RNA modification signatures
of individual tumors, our findings provide new possibilities for
improving OC therapy and enabling personalized cancer
treatment outcomes. However, the art icle st i l l has
shortcomings. First, all conclusions are derived from
processing and retrospective analysis of data from public
databases, lacking clinical data and experimental studies to
validate the results. Furthermore, due to data limitations, our
analysis lacked a large-scale clinical cohort to validate the
correlation between RNA modifications and tumor immune
infiltration and the prognostic value of the RMW score in OC.
A large number of prospective clinical analyses are required for
further validation in the future.
CONCLUSION

Our comprehensive analysis of the four types of RNA
modification “writers” uncovered broad regulatory mechanisms
that influence TME infiltration characteristics and prognosis and
identified their therapeutic utility in targeted therapy and
immunotherapy. These findings emphasize the important
clinical relevance of RNA modification “writers” and point to
novel approaches for directing personalized treatment strategies
for OC patients.
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Supplementary Figure 1 | Overview of study design and prognostic
characteristics of RNA modification writers. (A) Overview of this work. (B) Kaplan-
Meier survival analysis of different RNA modification “writers” in OC.

Supplementary Figure 2 | Clinical and immune infiltration characteristics in two
modification patterns. (A) Cumulative distribution function curves for unsupervised
clustering of 26 RNA modification “writers”, k = 2-9. (B) Relative change in area
under the CDF curve for unsupervised clustering of 26 RNA modification “writers”, k
= 2-9. C Heatmap showing differences in clinicopathologic features and expression
levels of RNA modification “writers” between the two modification patterns. (D) The
proportion of each immune cell in two modification patterns.

Supplementary Figure 3 | Clinical and immune infiltration characteristics in two gene
clusters. (A), 1641 RNA modification patterns-related DEGs shown in venn diagram.
(B) Heat map of the consensus matrix for the OC sample at k = 2. C Cumulative
distribution function curves for unsupervised clustering of DEGs, k = 2-9. (D) Relative
change in area under the CDF curve for unsupervised clustering of DEGs, k = 2-9.
(E) Heatmap showing differences in clinicopathologic features and expression levels of
RNA modification “writers” between gene clusters.

Supplementary Figure 4 | Identifying representative candidate prognostic
genes. (A-B) The LASSO regression analysis and partial likelihood deviance on the
prognostic genes. (C) Forest plot of multivariate cox regression analysis for
prognostic genes.

Supplementary Figure 5 | Validation of RMW score in testing set. (A) Heatmap
shows the distribution of core genes in models between normal and OC tissues.
(B) Ranked dot showing the RMW score distribution and patient survival status.
(C) Scatter plots showing the RMW score distribution and patient survival status.
(D) Kaplan–Meier analysis of the OS between the two groups. (E) ROC curves to
predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the
RMW score.

Supplementary Figure 6 | Validation of RMW score in TCGA-OC set.
(A) Heatmap shows the distribution of core genes in models between normal and
OC tissues. (B) Ranked dot showing the RMW score distribution and patient
survival status. (C) Scatter plots showing the RMW score distribution and patient
survival status. (D) Kaplan–Meier analysis of the OS between the two groups.
(E) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival
according to the RMW score.

Supplementary Figure 7 | Validation of RMW score in GSE9891 set.
(A) Heatmap shows the distribution of core genes in models between normal and
OC tissues. (B) Ranked dot showing the RMW score distribution and patient
survival status. (C) Scatter plots showing the RMW score distribution and patient
survival status. (D) Kaplan–Meier analysis of the OS between the two groups.
(E) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival
according to the RMW score.

Supplementary Figure 8 | Validation of RMW score in whole set. (A) Heatmap
shows the distribution of core genes in models between normal and OC tissues.
(B) Ranked dot showing the RMW score distribution and patient survival status.
(C) Scatter plots showing the RMW score distribution and patient survival status.
(D) Kaplan–Meier analysis of the OS between the two groups. (E) ROC curves to
predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the
RMW score.

Supplementary Figure 9 | Validation of RMW score in GSE26193 set.
(A) Heatmap shows the distribution of core genes in models between normal and
OC tissues. (B) Ranked dot showing the RMW score distribution and patient
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survival status. (C) Scatter plots showing the RMW score distribution and patient
survival status. (D) Kaplan–Meier analysis of the OS between the two groups.
(E) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival
according to the RMW score.

Supplementary Figure 10 | The expression level of 7 RMW score-related gens.
(A–G) The expression level of ADNP, DYRK1B, GFPT2, MYCNOS, PLCH1, ZFHX4
and ZNF429 in OC cell lines.

Supplementary Figure 11 | Stratification analysis of the RMW score in OC.
(A–C) The proportion of patient age, stage and survival status in high- and low-
RMW score groups. (D–F) Boxplots for RMW score between different
characteristics OC patients, including patient age, stage and survival status.
(G–N) Kaplan-Meier curves depicted the survival difference between low and high
RMW score in the stratified analysis of OC patients.
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Supplementary Figure 12 | Immune infiltration characteristics between the two
RMW score subgroups. (A) Heatmap showing the association between RMW
score and immune cells. (B) The proportion of each immune cell in two RMW score
subgroups. (C) Correlations between RMW score and immune cell types.
(D) Heatmap shows a positive and negative correlation between drug targeted
genes and RMW score in OC.

Supplementary Figure 13 | The Correlation between the RMW score and
genetic variations. (A) Relationships between RMW score and CSC index (RNAss).
(B) Relationships between RMW score and CSC index (DNAss). (C) TMB in different
RMW score groups. (D) The waterfall plot of somatic mutation features in high RMW
score. E The waterfall plot of somatic mutation features in low RMW score.

Supplementary Figure 14 | Scatter plots to show the association between
different “writers” expression and drug sensitivity.
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