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Hortová-Kohoutková and Frič. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Mini Review
PUBLISHED 18 October 2022

DOI 10.3389/fimmu.2022.932055
Lactate from the tumor
microenvironment - A key
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immunotherapies
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Recent findings about the new roles of lactate have changed our

understanding of this end product of glycolysis or fermentation that was

once considered only a waste product. It is now well accepted that lactate

acts as a signaling molecule and fuel source for cancer cells in a glucose-

restricted environment. Moreover, lactate and lactate dehydrogenase are

markers of poor prognosis of many cancers and regulate many functions of

immune cells. The presence of lactate in the tumor microenvironment (TME)

leads to polarization of the immunosuppressive phenotypes of dendritic cells

and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a

major obstacle to immune-cell effector functions and the efficacy of cell-

based immunotherapies. Emerging evidence suggests that lactate in the TME

might be a novel therapeutic target to enhance the immunotherapeutic

potential of cell-based therapies. This review describes our current

understanding of the role of lactate in tumor biology, including its

detrimental effects on cell-based immunotherapy in cancer. We also

highlight how the role of lactate in the TME must be considered when

producing cell therapies designed for adoptive transfer and describe how

targeted modulation of lactate in the TME might boost immune-cell

functions and positively impact cellular immunotherapy, with a focus on

NK cell.
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Introduction

Lactate is the end product of anaerobic glycolysis when

oxygen levels are insufficient. In addition, our understanding

of lactate function has shifted over the last decade; now, lactate is

also seen as an important signaling mediator both at the cellular

level and the systemic level as a modulator of cell behavior in

health and disease (1–3).

During cancer, rapidly proliferating tumor cells produce

lactate at high concentrations as a waste molecule of anaerobic

and aerobic glycolysis. The extracellular concentrations of

lactate released by tumor cells can reach up to 40mM, which

is approximately 20 times higher than levels in healthy blood

or tissue (4, 5). This metabolic state, in which cells rely on

glycolysis rather than on oxidative phosphorylation in an

oxygen-rich environment, is known as the Warburg effect.

The rapid gain of ATP in a case of sufficient glucose supply is

not the only benefit of this metabolic program (6, 7), as other

intermediates arising from glycolysis serve as building blocks

in other metabolic pathways linked to cell proliferation and

protein synthesis (8, 9). The Warburg effect, originally

described in tumor cells (10), has recently been reported in

many immune cell types such as T cells (11), macrophages

(12) or natural killer (NK) cells (13).

Lactate production is tightly linked with the activity of the

cytoplasmic enzyme lactate dehydrogenase (LDHA), which

mediates the reduction of pyruvate to lactate as well as the

oxidation of NADH to NAD+ (14). Lactate is then exported

outside of the cytosol by one of the monocarboxylate

transporters (MCT) (15, 16).

Lactate not only serves as an end product of glycolysis, it is

involved in NADPH production (Figure 1) in glucose-restricted

environments, such as the one found in the tumor

microenvironment (TME) (17). NADPH is crucial for

maintaining redox balance (18) and reductive biosynthesis

(19), which are key conditions for tumor growth. The cells

activated through specific activation membrane receptors have

increased energy uptake (20), which is linked with high lactate

production. Lactic acid selectively disables activation of

cytotoxic cells including NK cells and therefore impairs

immune surveillance and possibly also the cytotoxic properties

of therapeutic NK cells prepared for adoptive transfer (21).

While many roles of lactate in solid tumors are broadly

reported, the role of lactic acid in haemato-oncology disorders

seems to be more nuanced. Nevertheless, increased levels of

lactate and LDHA have been frequently reported as markers of

poor prognosis in different types of leukemia (22, 23) such as

acute lymphoblastic leukemia (ALL) (24, 25), acute myeloid

leukemia (AML) (26–29), chronic lymphoblastic leukemia

(CLL) (22) and chronic myeloid leukemia (CML) (30). Highly

active tumor cells, as well as activated immune cells, utilize
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glucose and glutamine to produce ATP, and also catabolize

lactate to produce NADPH.

Given the growing efforts to employ the cellular responses of

NKs and CD8+ T cells in immunotherapies against tumor and

leukemic cells, the connection between lactate metabolism and

lactate levels and the control of the cytotoxic responses of T and

NK cells is an area of intense study. Here we overview current

knowledge of the role of lactic acid, particularly that derived

from the TME, on the function of immune cells, with a focus on

NK cells. We also highlight the remaining research gaps that

need further study to gain a deeper understanding of lactate

metabolism and improve the efficacy of immunotherapies driven

by NK cells.
The role of lactate in the tumor
microenvironment

Robust evidence of the role of lactate in shaping the

function of many immune cells has recently emerged (31–

34). The ability of lactate to modulate the function of immune

cells in the TME is well-described; in the TME lactate serves as

a pro-tumorogenic molecule by inhibiting the function of

effector cell types such as effector T cells (CD4+ (33), CD8+

(28, 35, 36)) and NK cells (34, 37) and supports the

development of suppressor cells such as T regulatory cells

(Treg) (32, 38), myeloid-derived suppressor cells (MDSCs)

(37, 39) and tolerogenic dendritic cells (tDCs) (32).

Among several described mechanisms of lactate-mediated

immunosuppression in the TME is the metabolically driven

effect of lactate on T cells. Lactate limits the glycolytic flux of T

cells and thus shifts them toward tolerance through several

mechanisms. These mechanisms involve lactate accumulation

result ing in decreased glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) activity. Because the activity of

g lycolyt ic enzymes favors the product ion of pro-

inflammatory cytokines, the decrease in GAPDH activity

limits their synthesis. Secondly, the lactate-rich environment

does not limit Treg function and expansion, thus supporting

the induction of tolerance (32, 38). In addition, lactate is

required for intra-tumoral Tregs to support tumor

progression (40). Lactate also suppresses the proliferation

and function of cytotoxic (CD8+) T lymphocytes (CTLs) by

selectively inhibiting p38 and c-Jun N-terminal kinase activity,

resulting in reduced IFN-g production (41). Lactic acid also

impairs the recruitment of CTLs to the TME by blocking their

motility. Hass et al. observed that chemotaxis of CD4+ and

CD8+ T cells is reduced by differently expressed lactate

transporters (Slc16a1 on CD8+ T cells and Slc5a12 on CD4+

T cells). The authors also showed that the lactate and

glycolytic pathways are key regulators of chemokine-induced
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T-cell migration (35). Lactate diminishes the cytotoxicity of

CTLs by lowering intracellular levels of perforin and granzyme

B and reducing lytic granule exocytosis (35, 36, 42). Moreover,

activated T cells in the TME not only have to compete with

tumor cells for glucose, but must also cope with intracellular

acidification resulting from tumor cells via MCT-mediated

lactate transmission (43). High levels of extracellular tumor-

derived lactate in the TME prevent activated T cells from

secreting lactate into extracellular space due to the

concentration gradient of lactate across the membrane. This

gradient causes endogenous lactate to accumulate, which

hampers the antitumor activity of effector T cells (1). The

similar principles should apply in CD8+, CART and/or NK

cells. Nevertheless, this field and comparison still lack

consistent data, so our discussion remains rather speculative.

Neutralization of the acidic TME and proton-pump inhibitors

can reverse the suppression of antitumor immunity and

improve immunotherapy (44).

Lactate also suppresses inflammasome assembly,

lipopolysaccharide (LPS)-stimulated cytokine secretion and

migration of macrophages and monocytes (39). The effects of

lactate and the overall acidity of the TME are dependent on the

lactate concentration. On one hand, lactate promote the
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differentiation of monocytes to dendritic cells (DCs) with an

immunosuppressive phenotype by stabilizing HIF1a. On the

other hand, high levels of lactate in the TME prevent the

differentiation of monocytes to DCs (45, 46). Lactic acid

suppresses the inflammatory functions of macrophages (M1-

like) and enhances regulatory (M2-like) polarization, and these

effects are dependent onMCT transport and HIF activation (47).

Interestingly subsets of macrophages (M2-like) are able to

directly monitor the levels of lactate through G protein-

coupled receptor 132 and modulate its functions according the

lactate presence (48). Similar to the inhibitory effects of lactic

acid reported in monocytes and macrophages, lactic acid reduces

DCs maturation and suppresses LPS-induced cytokine

production (39). Lactic acid limits cell presentation of tumor

antigens by activating G protein-coupled receptor 81 (Gpr81; a

receptor for lactate) and inhibits the expression of major

histocompatibility complex II (MHC-II) (49) (Figure 1).

Moreover, lactic acid suppresses immunoglobulin (Ig)E- and

IL-33-dependant inflammatory cytokine and chemokine

production (50). In neutrophils, lactate induces the formation

of neutrophil extracellular traps (51).

Since the production of lactate acidifies the TME, several

studies have investigated the effects of an acid environment on
FIGURE 1

The roles of lactate in tumor microenvironment (TME). Lactate can be strongly immunosuppressive in the tumor microenvironment (TME) or
can act as a molecule that helps tumor cells to regenerate NADPH and thus maintain redox balance and support their biosynthetic demands.
The low pH and low glucose concentration in the TME also support the immunosuppressive function of the TME. Lactate directly or indirectly
influences every cell in the TME. Gpr81, lactate receptor; MHC II, major histocompatibility complex class II. Created with BioRender.com.
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Jedlička et al. 10.3389/fimmu.2022.932055
cellular function. Lowering the pH from 6.8 to 6.0 in NK cells

decreases in levels of granzyme B and perforin mRNA;

furthermore, lactate may interfere with secretory pathways in

NK cells and thus modulating the activity of the cytolytic

machinery (15, 37). Exposure of NK cells in vitro to 15mM

lactate, which is comparable to in-vivo concentrations in tumors

(4, 52), lowered the expression of the NKp46 activation receptor

(37) (Figure 1). However, the levels of lactate may vary based on

type of the tumour (5, 52). Another study showed that lactic acid

produced by colorectal cancer cells causes apoptosis of isolated

liver resident NK cells in vitro and lowers the amount of tumor-

infiltrating NK cells in vivo (34). Brand and colleagues showed

that the production of lactic acid by cancer cells limits CTL and

NK cell activation (Figure 1) and impairs IFN-g production;

curiously this pattern was not present in CD4+ and IL-17+ CD4+

(Th17) T cells. Lactic acid-induced acidification also inhibits the

transcription factor nuclear factor of activated T cells (NFAT),

which results in decreased IFN-g production (21) (Figure 1). The

direct link between lactate levels and NFAT activity is an

important finding, as NFAT plays a major role in

orchestrating activities not only in T cells but also in other cell

types including NK cells (53, 54). Interestingly lactate can

influence cytosolic calcium (Ca2+) availability through

pyruvate and a-ketoglutarate concentrations (55, 56). This

could possibly influence NFAT function since it is regulated

by Ca2+ abundance (54). The expression of LDHA negatively

correlates with the survival of cancer patients, and reduces the

numbers and activity of CD8+ T cells (21). Elevated lactate levels

indirectly inhibit NK cell function by increasing the number of

MDSCs (57). MDSCs are a heterogeneous population of

immature myeloid cells that mediate the immunosuppressive

environment in the TME. As well as suppressing NK cell activity,

MDSCs prevent DCs maturation and inhibit T cell activation

(37). The findings from the studies that have investigated

influence of lactate on various immune cells need to be

considered during further research leading to the use of

adoptive transfer of NK cells to target solid tumors.

Another marker of poor prognosis in oncology patients is

serum levels of LDH, as shown in CLL (22) and AML (24). One

study suggested that tumors with elevated lactate dehydrogenase

A (LDHA) levels are more prone to immune evasion, and

therefore tumor progression occurs due to limited anti-tumor

mechanisms (21). In contrast, another study showed that LDHA

is crucial for the anti-tumor and anti-viral functions of murine

NK cells (58). However, it is difficult to obtain data that directly

indicates the role of lactate on the different mechanisms of NK

cell-mediated killing in the TME. Since the environment is very

complex and lactate influences every cell present, NK cell

inhibition can occur due to many mechanisms. These

mechanisms include the direct inhibitory effects of lactate on

NK cells (34) or indirect effects, whereby lactate alters the
Frontiers in Immunology 04
function of other immune cells, which then inhibit the

function of NK cells,37,40.

Thus, overcoming the negative effects of lactate on cell-based

immunotherapies remains elusive. A study that used LDH

isolated from various cell lines showed that millimolar

concentrations of exogenous pyruvate can inhibit LDH

function in an MCT-1 dependent manner (59). But since these

experiments have not been performed in the TME, it can only be

speculated that a similar mechanism occurs in the TME. Hence,

this finding needs to be validated in the TME before pyruvate

could eventually be used in a clinical setting. In vivo experiments

that injected a melanoma cells into mice showed that LDHA

knockdown decreases PD-L1 expression, and thus makes tumor

cells more susceptible to anti-PD-1 treatment. Mice with LDHA

knockdown also have higher infiltration of NK and CD8+ T cells

into tumors. These findings stimulate further research, opening a

space for the eventual pharmacological targeting of LDH (60).

Furthermore, strategies that remove lactate from the TME are

emerging (15, 16, 61). In recent years the various efforts to lactate

removal appeared. They aimmainly to lactate export by blocking

MCT (15, 16, 62), however also systemic alkalization (61)

approaches or lactate traps (63) have been tested. Blocking

MCT4 (the main transporter for lactate secretion) in cancer

cells restores the cytotoxicity of NK cells that was inhibited by

the lactate environment (16). Another approach showed that

alkalization of the tissue milieu by oral administration of sodium

bicarbonate in a mouse model of l-myc lymphoma restores

IFN-g production by NK cells. However, this approach did not

restore the cytotoxic functions of NK cells (61). Overall, lactate is

an omnipresent substance in the TME, and as such it directly

influences the outcome of anti-tumor immunity (37, 64, 65).
Lactate is an obstacle to a
successful immunotherapy

The production and export of lactate by rapidly proliferating

tumor cells not only (8, 66) influences the function of immune

cells and supports the ability of the tumor to grow and escape

immune recognition (as discussed above); the acidification of the

TME also limits the efficacy of cell-based immunotherapies (15,

45, 62, 67). The cells used for adoptive transfer thus need to be in

the best possible fitness and metabolic state to be able to

overcome TME-mediated inhibition (13, 16, 58). The findings

of lactate interference with NFAT signaling possibly also impair

not only IFNg expression but also key NK cell maintenance

cytokines as IL-2 as it is NFAT dependent (68, 69).

NK cel l s , the key ce l l s responsib le for cancer

immunosurveillance, eliminate cancerous cells by a multistep

process. First, the cancer cell is recognized through a series of

specific activatory and inhibitory receptors that screen for the
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density of human leukocyte antigen (HLA) molecules and other

damage markers on the surface of controlled cells. The eventual

cytotoxic elimination of the target cells is then initiated by

several mechanisms including integrin- or antibody-mediated

adhesion of NK cells to the target cell, followed by the formation

of an immunologic synapse and release of lytic granules (70–72).

As we and others reviewed earlier, this process is energetically

demanding and therefore tightly orchestrated to maintain the

energetic homeostasis of organism (20, 73).

Recent research has focused on developing new protocols for

the use of adoptively transferred immune cells to treat various

disorders including cancers (74–76) and autoimmune diseases

(77, 78). Indeed immunotherapies that use different approaches

and cell types are under investigation, including DC-based

therapies, CAR T cells, NK cell-based therapies and CAR NK

cells (75, 79–81). The efforts to treat various haemato-oncologic

disorders using adoptively transferred immune cells are

expanding; since 2020, there are 158 newly registered clinical

studies (Figure 2).

One of the major benefits of the NK approach (compared

with approaches that use other types of immune cells) is the

partial prevention of graft versus host disease, as shown in
Frontiers in Immunology 05
preclinical studies (82, 83). The therapy setups include ex vivo

cytokine-primed NKs (84–86), CAR NKs (79, 87, 88) and bi-

or tri-specific killer engagers (BiKEs or TriKEs) (83, 89, 90).

BiKEs and TriKEs are NK cells with two or three single-chain

variable fragments, respectively, with various antigen

specificity enabling precise cell-to-cell contact with tumor

cell (91). A phase I/II clinical trial (NCT01904136) of an NK-

based therapy showed promising results. The study aimed to

decrease cancer relapse after a stem-cell transplant using ex

vivo mb-IL21-expanded NK cells. The disease-free survival

was 66% in patients who received multiple high doses of NK

cells and 44% in controls, and the relapse rate was 9.5 times

lower at 24-months follow-up (81). However, cells that are

expanded in the optimal conditions of cell culture still have to

face the strongly immunosuppressive niche of TME after

adoptive transfer (92, 93). Since lactate is one of the most

abundant metabolites in the TME (64, 94) its presence causes

NFAT-regulated NK and CD8+ T cell suppression (21),

impairment of NK cell cytolytic function (15, 34, 37)

or inhibition of antigen presentation by DCs (49),

which impairs the anti-tumor functions of these cell types

(21, 45, 49, 95).
FIGURE 2

Cell-based therapies in hematological disorders. Graphical representations of clinical trials of adoptive cell transfer in hemato-oncological
malignancies posted to clintrials.gov between 1st of January 2020 – 1st of March 2022. ALL, acute lymphoblastic leukemia; AML, acute myeloid
leukemia including myelodysplastic syndrome; CLL, chronic lymphoblastic leukemia; CIK, cytokine induced killers; iNK, invariant NK cells.
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Intensive efforts have been invested into NK cell-based

immunotherapy (96–98). The research field was boosted by

the enormous success of several commercialized CAR T cell

products. Improving the half-life of adoptively transferred cells

and maintaining their cytotoxic capacity remain important

research tasks. Efforts to improve these therapies drive

research into a better molecular understanding of metabolic

processes in T cells and NK cells, which closely control their

cellular functions. Immunometabolism in the cytotoxic cells

used for immunotherapy is essential to maintain their massive

proliferation ex vivo, but the immunometabolism further

changes after adoptive transfer as cytotoxic granules develop

and the cells successfully adapt to their environment (13, 99,

100). NK cells are beneficial for both solid and hematological

tumors (82, 101–103). Nersesian et al. examined 53 studies of

various solid cancers and concluded that NK-cell infiltration

into the tumor correlates with improved overall survival (102).

Results from an experimental model of NK cell infiltration into

tumor tissue support these clinical data. In these experiments,

cancerous pancreatic cells were treated with an NK cell-

recruiting protein-conjugated antibody (NRP-body), which

after binding to the pancreatic tumor cell released a

chemotactic molecule for NK cells. This boosted the ability of

NK cells to infiltrate the tumor stroma and thus improved the

outcome of immunotherapy (104). In hematological tumors, NK

cell-based therapies benefit from a possible graft versus leukemia

(GvL) effect by alloreactive NK cells (103, 105) and from the

ability of NK cells to migrate into the bone marrow to eliminate

leukemic cells (106). This latter feature of NK cells can be

improved by incorporating chemokine receptors into the NK-

based therapy that are specific for homing into the bone-marrow

niche (107).

However, despite the initial success of NK cell-based

therapies, the TME is one of the major obstacles to their

success (92, 93). As well as lactate, transforming growth factor

b (TGF-b) also suppresses immune cells in TME and other

immune-suppressive molecules may be present (39, 108, 109).

Nevertheless, studies show that NK cells expanded with IL-21-

expressing feeder cells are not suppressed by TME in a model of

ovarian cancer (13). Terren et al. showed that cytokines

modulate the metabolism of NK cells and glycolysis is

important for NK cell effector functions (86).

However, specific evidence about immunometabolism

changes in adoptively transferred immunotherapeutic cells is

scarce as it is difficult to obtain data. Therefore, the molecular

mechanisms that orchestrate immunometabolism are highly

underexplored. Adoptively transferred NK cells are dependent

on the balance of activity of activator and inhibitory receptors

and their cytotoxic machinery consisting of cytotoxic mediators

including granzyme B and perforin. The success of adoptive

transfer and further cytotoxicity are tightly dependent on NK
Frontiers in Immunology 06
cell status, fitness and donor variability (110). Therefore, the

presence of lactate in the TME must be taken into account

during the production of immunotherapeutic cells.
Conclusions and future perspectives

The functions of lactate, originally described and long-

understood as an end product of metabolism, have recently

been intensively studied and completely reconsidered. The

plethora of roles of lactate now includes cancer biomarkers

and target molecules for therapies. Together with LDHA,

lactate is a marker of poor prognosis in haemato-oncological

patients (23, 24, 62). As one of the main inhibitory molecules

produced in the TME, lactate is a crucial obstacle to a patient´s

immune response or the efficacy of cell-based immunotherapies

in various cancers (92, 93). Lactate can trigger signaling in

immune cells and thus limit their effector functions. These

recent findings open the door to lactate targeting to boost the

immune response to cancer. To date, lactate has been targeted

almost exclusively by blocking its secretion from tumor cells, and

this strategy shows promising results in some cancers (16, 62).

However, with the advent of cell-based immunotherapies (NK

cells, T cells), new questions need to be addressed.

Contemporary research accepts the crucial role of metabolism

in the function of immune effector cells (73), and so efforts are

underway to try to modulate immunometabolism to produce

superior therapeutic cells (73, 99). Nevertheless, this approach is

still in its infancy and needs further research (20, 73, 111). In

order to improve the outcome of NK cell-based therapies, the

deeper understanding of NK cell cytotoxicity in patient´s body is

needed. We also need to better understand the trajectories of

therapeutic NK cells after adoptive transfer. This knowledge

could be reached with the use of new models of bone marrow or

tumor niche microenvironmnet. Furthermore, the precise map

of NK cell metabolism might lead to possibility of precise

metabolic-based modification during expansion and

preparation of therapeutic cells in order to overcome

inhibitory niche of TME. To conclude, even though new

protocols to enhance the immunotherapeutic potential of cell-

based therapies are emerging, lactate still plays an important role

in thwarting of success of these approaches and so is a key

obstacle to better cancer treatment.
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