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Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by multi-
articular, symmetrical and invasive arthritis resulting from immune system abnormalities
involving T and B lymphocytes. Although significant progress has been made in the
understanding of RA pathogenesis, the underlying mechanisms are not fully understood.
Recent studies suggest that NLRP3 inflammasome, a regulator of inflammation, might
play an important role in the development of RA. There have been increasing clinical and
pre-clinical evidence showing the treatment of NLRP3/IL-1b in inflammatory diseases. To
provide a foundation for the development of therapeutic strategies, we will briefly
summarize the roles of NLRP3 inflammasome in RA and explore its potential
clinical treatment.
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1 INTRODUCTION

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease with a pathological basis in
synovitis, manifesting as symmetric polyarticular invasive joint inflammation with extra-articular
organ involvement, and patients with rheumatoid arthritis are characterized by positive serum
rheumatoid factor and Anti-citrullinated protein antibodies (ACPAs) (1). The global average
prevalence of RA ranges from 0.5% to 1.0% (2), with a higher prevalence among women and the
elderly (1, 2). However, the pathogenesis of RA is not fully understood, which hinders the diagnosis
and treatment of RA. In addition, the use of biologics has improved the condition of patients with
RA while increasing the risk of infection (3, 4). Therefore, indepth study of the pathogenesis of
rheumatoid arthritis is of greater significance for the development of new treatment strategies, but
the pursuit of curative effect needs to pay attention to the safety of drugs (5). The pathogenesis of RA
involves many immune cells and cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6),
interleukin-18 (IL-18), and tumor necrosis factor (TNF) as the main pro-inflammatory cytokines,
which induce inflammatory response and osteoarthritis injury (6). The NLRP3 inflammasome is a
key source of IL-1 and IL-18, and accumulating evidence suggests that the inflammasome plays a
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role in the pathogenesis of rheumatic diseases (7). Here we
discuss the current progress of the NLRP3 inflammasome in
rheumatoid arthritis.
2 OVERVIEW OF NLRP3 INFLAMMASOME

The inflammasome, a group of multimeric protein complexes,
identifies pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) by pathogen-
recognition receptors (PRRs) to mediate host immune responses.
The inflammasome is generally composed of a PRR, pro-caspase-
1, and an adaptor protein that connects the PRR with pro-
caspase-1 (8). The inflammasome promotes the maturation and
secretion of IL-1b and IL-18 during natural immune defense by
activating caspase-1, and also regulates adaptive immunity (7). In
addition, inflammasome also mediates the caspase-1-dependent
programmed cell apoptosis (pyroptosis), which induces cell
death under inflammatory and stressed pathological conditions
(9–11).

2.1 Classification of Inflammasomes and
Activation of NLRP3 Inflammasome
The nucleotide-binding domain(NOD)–like receptor(NLR)
protein consists of an N-terminal recruitment domain, a
centra l nuc leot ide-b ind ing domain tha t media te s
oligomerization, and carboxy-terminal Leucine Rich Repeats
(LRRs) (12–14). Depending on the existence of NLR protein,
inflammasomes are divided into NLR family and non-NLR
family. The former includes nucleotide‐binding domain
leucine‐rich repeat pyrin domain containing 1(NLRP1), NOD-
like receptor family pyrin domain containing 3 (NLRP3), and
NLR-family CARD-containing protein 4 (NLRC4), while the
latter includes Absent in Melanoma 2 (AIM2), pyrin
inflammasomes (15). Based on the activation of caspase during
inflammasome formation, inflammasomes containing caspase 1
are known as canonical inflammasomes, and complexes
containing caspase 4, caspase 5, or caspase 11 are known as
non-canonical inflammasomes. The caspase recruitment domain
(CARD) motifs of caspases 4, 5, and 11 can directly bind to a
portion of the intracellular lipopolysaccharide, leading to the
activation of these caspases and the subsequent secretion of IL1
and IL18 (16–18). The NLRP3 inflammasome is the most studied
inflammasome, and the NLRP3 contains three domains: pyrin
domain(PYD), NACHT and LRR (19, 20). Activation of the
NLRP3 inflammasome requires two steps (21–23): In the
priming step (signal 1), PRRs such as toll-like receptors (TLRs)
recognize PAMPs or DAMPs to activate the NF-kB signaling
pathway and upregulate the expression of NLRP3 and pro-IL-1b.
During the activation step (signal 2), in response to multiple
stimuli such as reactive oxygen species (ROS), K+ efflux, ATP,
lysosomal rupture, and bacterial or fungal components (24–27),
NLRP3 binds to the adaptor protein ASC through the PYD
domain and recruits pro-caspase-1 through the CARD domain
to finally form the NLRP3 inflammasome (28). After the
activation, caspase-1 will cleave pro-IL-1, pro-IL-18, and
Frontiers in Immunology | www.frontiersin.org 2
gasdermin D (GSDMD), leading to an inflammatory response
and pyroptosis (29–32).

2.2 Regulation of the NLRP3
Inflammasome Activation
The NLRP3 inflammasome can be activated by a variety of
stimuli such as transmembrane movement of ions,
mitochondrial dysfunction, lysosomal rupture, and ROS.
Hence, the regulation of its activation process is quite complex.
Some potential regulatory mechanisms have been studied, such
as the role of NIMA-related kinase 7 (NEK7), the regulation of
autophagy/mTOR pathway, and changes in subcellular
localization (27, 33, 34).

2.2.1 Regulation of the Activation Step
NEK7 is involved in mitosis and plays a crucial role in the
activation of the NLRP3 inflammasomes. Under the mediation
of ROS and K+ efflux, NEK7 combines with the LRR domain of
NLRP3, regulating NLRP3 inflammasome assembly as well as
caspase-1 activation (35–37). A recent study showed that the
stress granule protein DEAD-box helicase 3(DDX3X) can also
contribute to NLRP3 activation by interacting with NLRP3 (38).
Autophagy is a physiological process in which lysosomes degrade
intracellular pathogens, damaged organelles, and proteins,
contributing to host defense and cell homeostasis. It has been
shown that the autophagosome directly encapsulates and
degrades the NLRP3 inflammasome to prevent its activation
(39, 40). Current studies have highlighted the emerging concept
of organelles involved in NLRP3 activation. The NLRP3
inflammasome is composed of three different proteins, and
recent studies have indicated that alterations in the subcellular
localization of these molecules are also responsible for the
assembly and activation of NLRP3 inflammasome. Activation
of NLRP3 requires contributions from mitochondrial signals for
priming, and the endoplasmic reticulum(ER), trans-Golgi
network, cytoskeletal infrastructure, and microtubule-
organizing center (MTOC) for transport and assembly (41).
Mitochondria-associated ER membranes(MAM) and MTOC
NLRP3 locates in the endoplasmic reticulum (ER) and cytosol,
and NLRP3 in the endoplasmic reticulum binds to ASC on the
adjacent mitochondria at the MAM upon various stimuli.
NLRP3 relocates to the microtubule tissue center in the
presence of microtubule affinity regulating kinase 4 (MARK4).
When NLRP3 reaches the MTOC, NEK7 binds with NLRP3, and
the inflammasome is assembled (42). In the absence of
activation, NLRP3 localizes in the cytoplasm and endoplasmic
reticulum but relocalizes in the mitochondria and Golgi
apparatus after activation (43). Stimulation of NLRP3 destroys
the trans Golgi network (TGN) and turns it into a dispersed
TGN (dTGN). Furthermore, phosphatidylinositol-4-phosphate
on dTGN promotes NLRP3 aggregation, which is essential for
downstream ASC oligomerization and caspase-1 activation (44).
Overall, these data suggest that spatially interaction among ER-
mitochondria-Golgi apparatus is closely associated with NLRP3
activation, and understanding these regulatory processes may
reveal new checkpoints for inflammasome.
June 2022 | Volume 13 | Article 931690
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A recent structural modeling study using cryo-electron
microscopy described a double-ring cage structure held by 6-8
NLRP3 dimers via LRR-LRR interaction with the PYD shielded
within the assembly to avoid premature activation. The cage
structure may provide a mechanism for rapid activation of
NLRP3 when NLRP3 monomers are assembled and in a
standby state to sense signals and convert to their active
conformation. They also confirmed that NLRP3 cage is also
necessary for the dispersal of TGN. However, it is worth
considering whether the conformation of cage is regulated by
factors such as ion flux alteration and post-translational
modifications (45). Moreover, Immunometabolism and
circadian oscillation are also involved in regulating NLRP3
activation (46, 47).

2.2.2 Regulation of the Priming Step
During the priming of NLRP3 inflammasome activation, NLRP3
protein expression is upregulated. And several mediators are
involved in regulating NLRP3 transcription, including myeloid
differentiation primary response 88 (MyD88) and TIR domain-
containing adapter-inducing interferon-b (TRIF) (21), IL1
receptor-associated kinase (IRAK1) (48), Fas-associated protein
with death domain (FADD) and caspase-8 (49). These mediators
drive the transcription of the NLRP3 gene in preparation for
activation. Additionally, it has been demonstrated that miRNAs
regulate NLRP3 mRNA translation by binding to the
untranslated regions (UTRs) of the transcript (50, 51). Post-
translational modifications, such as ubiquitination and
phosphorylation, are also important regulators of NLRP3
inflammasome activation. NLRP3 inflammasome ubiquitinates
in macrophages when activated (52). It was reported that the
vitamin D receptor negatively regulates NLRP3 activation by
blocking deubiquitination (53). The process of ubiquitination is
catalyzed by a series of enzymes, including E3 ubiquitin ligases.
The E3 ligase tripartite motif-containing protein(TRIM31) has
been reported to promote NLRP3 polyubiquitination thus
inhibiting the excess activation of NLRP3 inflammasome (54).
Dopamine inhibition of NLRP3 inflammasome is also achieved
by the E3 ligase MARCH7-mediated ubiquitination of NLRP3
protein (55). However, another research showed that the E3
ligase Pellino2 promotes NLRP3 inflammasome activation
through ubiquitination of NLRP3 (56). The exact mechanism
by which multiple E3 ligases interact with different NLRP3 sites
remains to be fully determined. Previous studies showed that
NLRP3 is a substrate of protein kinase A (PKA), which
phosphorylates NLRP3 at ser295 and inhibits the activation of
the NLRP3 inflammasome (57, 58). However, protein kinase D
plays a facilitating role in NLRP3 inflammasome activation at the
same site (59). In addition, protein tyrosine phosphatase non-
receptor type 22 (PTPN22) and phosphotase 2A (PP2A) can
promote NLRP3 activation through dephosphorylation (60, 61).
Epigenetic factors also regulate the activation of NLRP3
inflammasome, including DNA methylation and histone
modifications. NLRP3 is methylated in health and mediates
inflammatory suppression. Histone acetylation mediates
the inflammatory response, while histone deacetylation induces
inflammation resolution (62). It has been demonstrated that
Frontiers in Immunology | www.frontiersin.org 3
NLRP3 inflammasome expression can be down-regulated by
inhibiting histone acetylation on NLRP3 promoter (63).

2.3 Immunomodulatory Effects of the
NLRP3 Activation Products
The NLRP3 inflammasome is an important bridge connecting
innate and adaptive immunity, and the activated NLRP3
inflammasome activates caspase-1 to produce biologically
active IL-1 and IL-18. IL-1 and IL-18 belong to the IL-1
family and play a critical role in host immune regulation. IL-
1 is a potent proinflammatory cytokine, mainly expressed on
monocytes, macrophages and dendritic cells (DCs). IL-1b
induces the upregulation of adhesion molecules and
chemokines, leading to leukocytes recruitment and ultimately
triggering a series of inflammatory responses (64). DC is an
antigen-presenting cell that induces T cell activation (65). IL-1
activates DC to generate interferon-gamma (IFN-g) in T cells.
As a T cell co-stimulator, IL-1 induces T cell differentiation and
polarization, especially toward T helper type 17 (Th17)cells.
And IL-1b induces differentiation of naive CD4 + T cells into
Th17 and also promotes Th9 differentiation in concert with
other cytokines (66, 67). Moreover, IL-1b also facilitates the
proliferation of B cells and the production of antibodies. IL-18,
also known as IFN-g inducing factor, drives the production of
IFN-g in Th1 cells and also works with IL-12 and IL-15 to
act ivate natural ki l ler (NK) cel ls to induce IFN-g
production (68). In epithelial cells, IL-18 regulates the
function of Th17 cells and regulatory T(Treg) cells, resulting
in an imbalance of Th17/Treg (69).As activation products of
NLRP3 inflammasome, IL-1b and IL-18 contribute to
proinflammatory T cell differentiation and activate adaptive
immune responses (70) . Accord ing ly , the NLRP3
inflammasome plays a vital role in immune regulation
through leading to autoimmune diseases by its dysfunction or
hyperactivation, and rheumatoid arthritis is one of them.

2.4 Role of IL-1b and IL18 in RA
The IL-1 family is the important inflammatory regulator that
promotes the activation of innate immune system cells and is
involved in the pathological process of various diseases. IL-1b, the
best functionally member of the IL-1 family, is one of the major
pathogenic factors of RA and mediates the destruction of bone
and cartilage (71). Receptor activator of nuclear factor kappa-B
ligand (RANKL)is the key osteoclastogenic cytokine that binds
receptor activator of NF-kB(RANK) on osteoclast precursor cells
and mediates osteoclast differentiation and activation, leading to
bone resorption. IL-1b upregulates RANKL production,
enhances its activity and stimulates osteoclast production to
induce bone erosion (72). IL-1b also acts on osteoclast
progenitors to stimulate osteoclastogenesis (73). In addition,
IL-1b acts in concert with other inflammatory factors such as
TNF-a to amplify the inflammatory response and induce bone
loss (71). In rheumatoid arthritis synovium, IL1b is involved in
cartilage degeneration by stimulating fibroblasts and
chondrocytes to secrete matrix metalloproteinase (MMF),
which in turn exacerbates synovial inflammation and bone
destruction (73). Meanwhile, IL-1b impairs the synthesis of
June 2022 | Volume 13 | Article 931690
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new bone matrix and inhibits osteoblast production in RA,
thereby reducing new bone generation (74).

IL-18 is a pleiotropic cytokine that plays an important role in
the flare and maintenance of the inflammatory response during
RA. IL-18 plays a role by activating T cells in synovium to
produce inflammatory cytokines, RANKL and so on, mediating
bone destruction (75). Pannus formation is one of the
pathological features of RA, and is also the main cause of joint
lesions and cartilage destruction. In vitro, IL-18 triggers the
production of vascular growth factors such as vascular
endothelial growth factor, monocyte chemotactic protein 1,
and stromal cell-derived factor 1, and facilitates the formation
of vascular opacities (76).
3 THE NLRP3 INFLAMMASOME AND RA

Rheumatoid arthritis (RA) is one of the most common
autoimmune diseases. Increasing evidence suggests that the
NLRP3 inflammasome is involved in the pathogenesis of RA.
Anti-citrullinated protein antibodies are a group of
autoantibodies against citrullinated proteins/peptides and are
biomarkers of RA. ACPA promotes IL-1 production in
rheumatoid arthritis by activating the NLRP3 inflammasome
(77, 78). Several studies have shown an upregulation of NLRP3
mRNA and NLRP3-associated proteins in monocytes,
macrophages, and dendritic cells in RA patients (79–81).
Polymorphisms in the NLRP3 gene indirectly reflect the
susceptibility, disease severity and treatment effect of RA.
Rs4612666, rs10754558, rs10159239, and rs35829419 have
been investigated as NLRP3 single nucleotide polymorphisms
(SNPs) associated with susceptibility to rheumatoid arthritis, in
which rs35829419 and CARD8 rs2043211 mutations are related
to disease severity, while rs10159239 and rs4612666 are related to
the therapeutic response of RA on anti-TNF (12, 82–85).

3.1 NLRP3 Inflammasome Mediates the
Pathogenesis of RA
The involvement of the NLRP3 inflammasome in RA
pathogenesis has been demonstrated in both animal and cell
experiments. Genetics is closely linked to susceptibility to RA
(86). The RA susceptibility gene A20, also called tumor necrosis
factor alpha-induced protein 3 gene (TNFAIP3), is a cytokine-
inducible protein that inhibits apoptosis and activates NF-kB.
A20-deficient mice were prone to spontaneous erosive arthritis,
which was found to be related to elevated NLRP3 expression and
IL-1b secretion (87). Collagen-induced arthritis (CIA) is the
most commonly used animal model to support the role of
inflammasome in inflammatory arthritis (88). The expression
of NLRP3 was proved to be positively correlated with arthritis
severity in the synovium of CIA mice (89). Likewise, antigen-
induced arthritis (AIA) mice exhibit severe joint inflammation
with increased expression of IL-1b and NLRP3 inflammasome in
their synovium (90). In CFA-induced arthritic rats,
cinnamaldehyde alleviates the inflammatory response by
activating succinate/hypoxia-inducible factor-1 (HIF-1) to
suppress NLRP3-derived IL-1b (91). These data indicate that
Frontiers in Immunology | www.frontiersin.org 4
NLRP3 inflammasome is involved in the pathogenesis of RA.
Activation of inflammasome can also occur in non-phagocytes,
such as T cells, endothelial cells, and epithelial cells. Th17 cells
mediate pro-inflammatory responses through the secretion of
IL-17A and TNF-a, leading to tissue destruction, articular
cartilage and bone damage. In contrast, Tregs mediate anti-
inflammatory responses through the secretion of IL-10 and TGF-
b. Recent studies have noted that the imbalance of Treg/Th17
cells affects the inflammatory response in RA (92). It is known
that tofacitinib also restores the balance of Treg/Th17 cells in
rheumatoid arthritis and alleviates the inflammatory response by
inhibiting NLRP3 inflammasome (93). Furthermore, elevated
extracellular Ca2+ concentration promotes the uptake of colloidal
calciprotein particles (CPPs) by monocytes in RA patients and
contributes to NLRP3 inflammasome activation (94). The above
studies showed NLRP3 inflammasome is involved in RA by
regulating different cells.

3.2 NLRP3 Inflammasome as a Protective
Factor in RA
However, neutrophils were less sensitive to pyroptosis compared
with macrophages (95, 96), and expression of NLRP3 and ASC
were significantly decreased in neutrophils of RA patients.
Meanwhile, mRNA expression of NLRP3 in neutrophils was
negatively correlated with the 28-joint Disease Activity Score
based on C-reactive protein (DAS28-CRP) in patients with RA
(97, 98). These results indicate that different cell types exhibit
different responses to inflammasome stimulation, and NLRP3
inflammasome may be protective in RA. The conclusion was also
confirmed in another research (99). The pathogenic role of
NLRP3 has been demonstra ted in sys temic lupus
erythematosus, inflammatory bowel disease, and type 1
diabetes mellitus(T1DM). Nevertheless, the protective effect of
NLRP3 inflammasome has also been illustrated in these diseases
(34). The exact mechanism of this effect is not specified,
requiring a deeper understanding of the role of NLRP3
inflammasome in diseases. But it may be explained by the
following speculations: a)NLRP3 performs different functions
at different stages of the disease (Table1) (102); b) NLRP3 exerts
opposite effects through the regulation of other cytokines (104);
c) NLRP3 maintains immune homeostasis and thus plays a
protective role. Recent studies showed that NLRP3
inflammasome is a crucial regulator of intestinal homeostasis.
NLRP3 inflammasome supports the integrity of the intestinal
mucosal barrier and also has a regulatory impact on intestinal
flora (105, 106).
4 POTENTIAL THERAPEUTIC TARGETS
FOR THE NLRP3 INFLAMMASOME IN
RHEUMATOID ARTHRITIS

4.1 Blockade of NLRP3 Activation
Products
Targeted treatment of rheumatoid arthritis by blocking cytokines
has been recognized. Anakinra is a recombinant form of a
June 2022 | Volume 13 | Article 931690
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human IL-1 receptor antagonist that competitively inhibits IL-
1aand IL-1b (107). Although approved by the Food & Drug
Administration (FDA) for some patients with rheumatoid
arthritis (108), Anakinra is only moderately effective and is
inferior to TNF-a inhibitors, indicating its poor applicability
(109). Additionally, a human monoclonal IL-1b antibody
canakinumab, and a decoy receptor of IL-1a and IL-1b
rilonacept have been focused on in rheumatoid arthritis (27).
Inhibition of caspase-1 blocks the downstream signaling of
inflammasome and the release of active IL-1b, thereby
resolving the inflammation. The most studied caspase-1
inh ib i to r s a re VX-765 (be lnaca san) and VX-740
(pralnacasan).VX-740 attenuated the joint damage in both RA
and OA mice, but its application was limited by animal
hepatotoxicity (110, 111). VX-765 is structurally similar to VX-
740, acting by covalent modification of the catalytic cysteine
residues in the caspase-1 active site, which has been tested in
phase II trials for psoriasis and epilepsy, but not yet in
rheumatoid arthritis (112, 113). Non-steroidal anti-
inflammatory drugs (NSAIDs) are universally used and their
anti-inflammatory property is the inhibition of cyclooxygenase
(COX) isozymes. It has been proposed that inhibition of caspase
enzymes reduces the production of proinflammatory cytokines,
suggesting that there may be other targets for NSAIDs to
promote anti-inflammatory responses beyond the COX
pathway (114).

4.2 Inhibition of NLRP3
Inflammasome Activation
Inhibition of the NLRP3 inflammasome includes the blockage of
the NLRP3 inflammasome assembly and the suppression of the
NLRP3-related signaling pathways (115).

4.2.1 Inhibition of NLRP3 Inflammasome Assembly
Compound MCC950 is the most widely studied inhibitor of
NLRP3 inflammasome with high efficiency and specificity.
MCC950 ameliorates rheumatoid arthritis injury by inhibiting
NLRP3 activation and subsequent IL-1b production (79). It has
been reported that MCC950 blocks ATP hydrolysis and
suppresses NLRP3 inflammasome formation and activation by
directly interacting with the NACHT domain of NLRP3 (116,
117). However, the application of MCC950 was limited by
hepatotoxicity in a phase II clinical trial of RA (27). Both CY-
09 and tranilast (TR) (118–120) bind directly to the ATP-
binding motif of the NACHT domain of NLRP3 to inhibit
ATPase activity and thus prevent the assembly of NLRP3
inflammasome, which may be promising in the management
Frontiers in Immunology | www.frontiersin.org 5
of rheumatoid arthritis. RRX-001 is a highly selective NLRP3
inflammasome inhibitor that acts by covalently binding to
cysteine 409 of NLRP3 to interfere with its assembly. It is a
novel NLRP3-related disease therapeutic target identified in
recent years (121). However, RRX001 contains high-energy
nitro functional groups, which may cause drug toxicity.
Compound 149-01, an analog of RRX001 without high-energy
nitro functional groups, was recently identified as a potent and
specific NLRP3 inhibitor that inhibits NLRP3 activation and
attenuates inflammatory responses in vivo and vitro by
preventing NLRP3 from binding to NEK7 (122). Licochalcone
B (LicoB), a major component of traditional medicinal herb
licorice, was also found to disturb the interaction between
NLRP3 and NEK7, thus inhibiting NLRP3 activation (123).
LL-Z1640-2(LLZ) is a preclinical drug that primarily targets
TGF-b-activated kinase-1(TAK1), which produces a variety of
proinflammatory cytokines and inflammatory mediators in RA.
LLZ showed superior therapeutic efficacy against RA in
preclinical trials. In CIA mice, LLZ was observed to
significantly prevent the formation and activation of NLRP3
inflammasome in synovial macrophages and osteoclasts (124). A
recently identified novel compound 59 known as J114 was shown
to interfere with NLRP3-ASC interaction and potently suppress
ASC oligomerization during NLRP3 activation. Interestingly, the
function of J114 exhibits species differences (125). Although
research on this compound is still in the very beginning stage,
J114 may be useful for further exploration of the exact
modulatory mechanism of NLRP3 inflammasome.

4.2.2 Inhibition of NLRP3 Inflammasome Related
Signaling Pathway
As previouslymentioned, the priming and activation of the NLRP3
inflammasome are regulated by multiple signaling pathways, and a
number of NLRP3 inflammasome inhibitors have been developed
to target these regulators. For example, taraxasterol and
parthenolide suppress the activation of NLRP3 inflammasome by
blocking the activation of NF-kB (126, 127), and celastrol resolves
the inflammatory response to RA through inhibition of the ROS/
NF-kB/NLRP3 axis (128). In addition, b-arrestins are vital
regulators of G protein-coupled receptors (GPCRs), and b-
arrestin-2(bArr2) has anti-inflammatory effects in a variety of
inflammation-related diseases. Current study demonstrated that
bArr2 effectively alleviates joint inflammation by inhibiting the
NF-kB/NLRP3 signaling pathway in CIA mice (129). The
tradi t ional d isease-modi fy ing ant i -rheumat ic drug
hydroxychloroquine is widely recognized in RA treatment.
Hydroxychloroquine (HCQ) inhibits Ca2+-activated K+Channels,
TABLE 1 | Role of NLRP3 inflammasome in different stages of different diseases.

Disease Role of NLRP3 inflammasome or IL-1 and IL-18 Reference

IAV infection NLRP3 inflammasome mediates protective immune defense in the early stage while exacerbates inflammatory responses in the late
stage of the disease.

(100)

CAPS The inflammatory effects of IL-18 were significantly enhanced in young mice compared with aged mice. (101)
T1DM NLRP3 inflammasome acts as a protective factor in the early stages of the disease. (102)
Cholestatic liver
injury

NLRP3 inflammasome plays a protective role in acute cholestatic liver injury while mediates the pathogenic role in chronic cholestatic
liver injury.

(103)
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resulting in an impaired NLRP3 inflammasome activation (130).
The mammalian target of rapamycin (mTOR) which regulates
cellular metabolism and plays a negative role in regulating
autophagy, is a serine-threonine protein kinase and belongs to
the phosphatidylinositol 3-kinase-related kinase (PIKK) family. As
an mTOR inhibitor, rapamycin treats RA by inducing autophagy
to inhibit NLRP3 inflammasome and inflammation (131).
DISCUSSION

NLRP3 inflammasome-driven inflammation accompanies the
pathogenesis of autoimmune diseases which includes
rheumatoid arthritis and makes NLRP3 inflammasome an
attractive drug target. Meanwhile, NLRP3-mediated immune
responses are critical for host defense against bacteria, viruses,
and fungi (132–134). Therefore, a balance between activators and
inactivators of NLRP3 inflammasomes are required to maintain
immune homeostasis. Compared with cytokine blockade,
molecules directly targeting NLRP3 inflammasome are more
advantageous (135, 136), but there are no clinically available
therapeutic agents now. Given the important role of NLRP3
inflammasome in both innate and adaptive immunity, the
development of NLRP3 inhibitory drugs should be handled
with caution. Many inhibitors of NLRP3 inflammasome have
been identified, and several small molecule compounds are in
clinical trials. Further elucidation of the clinical efficacy and
safety of these inhibitors is still needed.
SUMMARY

Inflammasomes have become the focus of research in the field of
inflammatory diseases. Increasing evidence suggests that the
NLPR3 inflammasome plays a key role in the pathogenesis of
Frontiers in Immunology | www.frontiersin.org 6
rheumatic diseases. Excessive inhibition or activation leads to
immune disorders that require precise regulation during NLPR3
inflammasome activation. Therefore, it is necessary to
understand the mechanism of the NLPR3 inflammasome to
explore promising therapeutic strategies for autoimmune
diseases such as RA. Cytokines inhibitors remain limited due
to infection risk, whereas NLRP3 inflammasome inhibitors show
the best anti-inflammatory effects in animal models. The side
effects of drugs may be unavoidable, while drug structure
optimization is expected to break this dilemma and provide a
practical and effective way for the treatment of RA.
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