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The therapeutic targeting of the immune system, for example in vaccinology and

cancer treatment, is a challenging task and the subject of active research. Several

in silico tools used for predicting immunogenicity are based on the analysis of

peptide sequences binding to the Major Histocompatibility Complex (pMHC).

However, few of these bioinformatics tools take into account the pMHC three-

dimensional structure. Here, we describe a new bioinformatics tool, MatchTope,

developed for predicting peptide similarity, which can trigger cross-reactivity

events, by computing and analyzing the electrostatic potentials of pMHC

complexes. We validated MatchTope by using previously published data from

in vitro assays. We thereby demonstrate the strength of MatchTope for similarity

prediction between targets derived from several pathogens as well as for

indicating possible cross responses between self and tumor peptides. Our

results suggest that MatchTope can enhance and speed up future studies in

the fields of vaccinology and cancer immunotherapy.
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Introduction

The Immune System (IS) is the primary defense of an

organism against a wide range of exogenous pathogens like

viruses, bacteria, and fungi, as well as endogenous pathological

conditions like tumor cells (1). However, an inadequate immune

response to self, healthy cells, or peptides, is not desirable, as it can

lead to autoimmune diseases (2). Several cell types and molecules,

such as cell receptors, chemokines, and interleukins, are involved

in the immune response, and the complex interactions between

these components drive the human immune system (3).

The first step for the IS to mount an immune response and

defend the organism is to recognize possible harmful pathogens.

One of the ways the human IS accomplishes this task is by

loading the Major Histocompatibility Complex (MHC) with a

peptide (pMHC) (4) and presenting it to immune cells. This

presented epitope can be derived from a self-protein, a protein

from a pathogen, or a tumor cell protein (5). There are two main

MHC types - MHC class I (MHC-I) and MHC class II (MHC-II)

- that differ essentially in which cells they are expressed by and

by which immune cells they are recognized. The MHC loci are

called Human leukocyte antigens (HLA) in humans.

The cells responsible for pMHC interaction are the T

lymphocytes. Among the different T lymphocytes subtypes,

two subpopulations coordinate the immune response: the CD8

+, or cytotoxic T cells, and the CD4+, or helper T cells. While

CD4+ binds to MHC-II, which are expressed by Antigen

Presenting Cells (APCs), CD8+ binds to MHC-I. The focus of

the current work, MHC-I, is virtually expressed by all nucleated

cells and is the central player in presenting every peptide

produced inside these cells. The presented epitope can be

recognized either as self or non-self. If the epitope is

recognized as non-self, a signaling cascade will be triggered,

leading to the apoptosis of the infected or tumor cell (6).

However, this recognition is not strictly specific: The T-cell

receptor (TCR) not only recognizes an exact match of the

epitope but also similar ones. This latter event is called cross-

reactivity (7, 8) and can lead to unwanted immune responses.

Expanding recognition broadness has a positive side since it

allows a reduction in the number of TCRs required. However, an

epitope derived from a virus protein can mimic a self-epitope

and thus trigger an autoimmune disease (2, 9). Furthermore, this

is a major limitation to the immune response to tumors, given

the high similarity between proteins from normal and tumor

cells, making appropriate response difficult for CD8+ cells (1,

10, 11).

The triggering of an immune response depends on the

protein interaction between the TCR and the pMHC, in which

interface complementarity is a pivotal element. Several

physicochemical elements govern this event, such as

electrostatic potential distribution. Several works have already

described its central role in protein interactions in intracellular

and extracellular environments (12, 13). However, beyond that,
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the charge complementary has an additional function: to guide

the anchoring of the protein interaction system more than any

other factors (14).

Cross-reactivity becomes particularly important in vaccine

development. It is crucial to check whether the vaccine will be

effective against all subtypes of a given pathogen (as in the case of

dengue viruses, where cross-reactivity between subtypes can lead

to hemorrhagic fever) (15). Likewise, when developing a new

immunotherapeutic approach, it is necessary to ensure that the

target will not trigger cross-reactivity with a self-protein. Given

that testing all possible pMHCs in vitro is impossible, in silico

analyses can be helpful. Some cross-reactivity predictors are

available, mainly using linear peptide sequences as input, and

were primarily designed to predict allergic processes (16–18).

However, it is already known that some epitopes show cross-

response despite sharing fewer than 50% of amino acid residues

in their linear sequence, which implies substantial difficulties for

such predictors to predict cross-reactivity correctly (19, 20). For

this reason, we developed a new cross-reactivity prediction tool,

the MatchTope, which uses protein structural information to

predict similarities between pMHC-I complexes, facilitating the

development of new vaccines and immunotherapies. Using

several available datasets, we verified that MatchTope achieves

excellent agreement with experimental results, indicating that

this tool can significantly improve vaccine development for

several diseases and cancer immunotherapeutic treatments.
Results

Opening the MatchTope black box

The MatchTope tool uses the calculation of molecular

electrostatic potentials (MEP) of MHC class I loaded with

different peptides, followed by clustering the different peptide-

MHC class I (pMHC) complexes based on their MEPs similarity.

The application of MEP differences as a measure of pMHC class I

similarity was previously described by our research team (21, 22).

The steps involved in our analysis are displayed in Figure 1.

Prior to the analysis, the user should provide a set of pMHC class I

files in PDB format (23) (a minimum of three files are required).

Since only few crystallographic complexes exist to date, the input

pdb file will often stem from a modeling approach. The pdb file

contains three columns holding the 3D coordinates of each

protein atom as well as some additional information, such as

occupancy, temperature factor, element name, charge, radius, or

other properties, depending on the source. Since some columns of

non-standard pdb files for modeled complexes were found to

cause problems during the MEP calculation, these were deleted in

a pre-processing step using a bash script.

The next step involves a repositioning of the 3D orientation

of all input complexes by superimposing them. This process is

important to ensure the comparison of the same electrostatic
frontiersin.org
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FIGURE 1

MatchTope flowchart showing the analysis process from the first step of inputting pdb files to the final step of generating results. Each step is
described in greater detail in the Methods section.
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regions in different pMHCs. To achieve this, we use a Python

script to call the PyMOL ‘Fitting’ function (24). This function

superimposes the pdb input with a predefined model pMHC pdb

structure to unify input positions.

After the fitting process, MatchTope starts to calculate the

electrostatic similarity of the complexes by using the standalone

version of PIPSA. The PIPSA (Protein Interaction Property

Similarity Analysis) software is an established tool for analyzing

protein electrostatic interaction similarities (https://pipsa.h-its.org/

pipsa/) (25, 26). We added modifications to PIPSA to adapt it for

the pMHC analysis, accounting for the typical elongated shape of

the pMHC binding cleft, which differed from the globular protein

shape PIPSA has largely been previously applied to; these

modifications are available in PIPSA version 3.2 or later. PIPSA

first calculates the MEP using the University of Houston Brownian

Dynamics (UHBD) program (27). PIPSA creates a ‘skin’ around

each pMHC and then the MEPs of each pMHC complex are

compared. Besides calculating overall electrostatic similarities for

the full proteins in the complete skins, the algorithm also allows for

calculating similarities in a focused region. For this study, a cylinder

in the pMHC cleft was considered, and only regions of protein skins

residing within this cylinder were used for computing similarity

indices, as shown in Figure 2. Using this focused region, we can

reduce the noise caused by identical surroundings, and thereby

avoid erroneous clustering of the results.

The final part of the analysis, the clustering process, uses the

similarity indices calculated during the PIPSA run as input. To

group electrostatically similar pMHCs in the same cluster,

MatchTope uses an R (29) package called ‘pvclust’ (30), which

performs a hierarchical clustering combined with a bootstrap of

the input data to validate the clustering branch. The cluster

package requires some user-defined arguments. We used the

“correlation method” to calculate the distance between branches,

and the “complete method” as the cluster method. After testing

all other criteria, these two arguments yielded the best

correlation with the in vitro results.
MatchTope validation

To validate MatchTope, we used four data sets which were

obtained from previously published articles (15, 31–33). A list of

all considered epitopes, stating also which of them trigger in

vitro cross-reactivity, is shown in Supplementary Table 1, and

data on input superposition and model pdb structures is shown

in Supplementary Table 2. The low average RMSD obtained

(0.019 Angströms, considering all protein atoms) indicates that

all MHC structures were well superimposed.

The first data set used for MatchTope validation was from a

study testing a Hepatitis E Virus (HEV)-Specific T Cell Receptor
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against some epitopes derived from RNA-dependent RNA

polymerase (HEV.1527), non-muscle Myosin Heavy Chain 9

(MYH9.478) and from other proteins (33). The in vitro assays

show cross-reactivity between HEV.1527 and MYH9.478 and a

non-cross recognition between HEV.1527 and ACTB.266.

Figure 3 presents the results obtained with MatchTope during

the validation process. Cluster letter A depicts two groupings: 1

and 2. Grouping 1 clustered HEV.1527 and MYH9.478, matching

with the in vitro results while also putting ACTB.266 on the most

distant branch from grouping 1. Grouping 2 clustered different

epitopes, but no experimental information regarding potential

cross-reactivity was available in the original publication.

In the second data set, six epitopes derived from throat cancer

(31) were used. In this study, two major clusters of epitopes are

presented, which trigger responses from different TCRs. Within

each cluster, the epitopes trigger the response from the same TCR.

Our results corroborate the same grouping pattern observed in in

vitro assays. In cluster letter B (Figure 3), it is possible to observe

two major groupings – 3 and 4 – which each cluster the epitopes

triggering responses from the same TCR.

The third data set used for MatchTope validation was from a

Hepatitis C target cross-reactivity study (32). In this study, 28

epitopes presented to HLA-A*02-01 were tested against a wild

type viral epitope. Results from in vitro experiments

demonstrated a cross-reactivity between epitopes from wild

type virus and epitopes from genotypes I, IV, V, and VI,

which were recognized, fully or partially, by the same TCR

recognizing also the wildtype viral epitope. The fourth data set

that we have chosen for MatchTope validation was from a study

on Dengue virus (15). In this data set, eight pMHCs containing

peptides derived from two different proteins, NS4a and NS4b,

from the four dengue virus serotypes, are considered. In vitro

data showed that epitopes generated from NS4b presented cross-

reactivity with all other epitopes, while for epitopes generated

from NS4a the same was not true. DockTope was first used to

model the complexes and then MatchTope was used to compute

their MEP similarity. The letter C cluster in Figure 3 depicts

results from both the Hepatitis C (HCV) and Dengue data sets.

In this cluster, it is possible to observe that the N4Sb epitopes

were placed together (Grouping 5), indicating similarity between

targets, which explains the cross-reactivity shown in the in vitro

assays. Moreover, the NS4a epitopes were not clustered, which

corroborates the in vitro results. The 6, 7, 8 and 9 grouping from

Cluster C are related to HCV data. Previous experiments

performed in vitro already demonstrated the cross-reactivity

indicated here by the 7 and 8 grouping, supporting the efficiency

of our tool in grouping targets correctly. Despite the absence of

in vitro analyses supporting the cross-reactivity predicted in 6

and 9 groupings, it is quite likely that members of these groups

would trigger cross-reactivity if tested against a specific TCR.
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B

A

FIGURE 2

Two different views of a pMHC showing the exact region and size of the cylindrical region used by PIPSA to compare MEPs between different
pMHCs. The pMHC is shown in the representation with the alpha chain in light blue color, the beta chain in dark blue color, the epitope in
orange with amino acid side chains in stick representation. The cylindrical region used for calculation is shown by a gray semi-transparent
surface. The pMHC is shown from the top (A) and from the side (B). The pMHC depicted was modeled with the DockTope (28) tool using a
dengue virus epitope as input.
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Additionally, we used a set of distinct complexes studied in vitro

and deposited in the CrossTope data bank (http://crosstope.com/)

(34), for which cross-reactivity has not yet been demonstrated

experimentally. In CrossTope, MEP superimposed onto pMHCs

molecular surfaces are available, allowing the detection of similar

patterns and manual grouping of pMHCs into various clusters based

on these similarities. The automated MatchTope analysis, again, led

to the expected result with pMHCs with a similar electrostatic charge

distribution clustering in the same group (data not shown).

To obtain the best parameters to match in silico and in vitro

results, different combinations of PIPSA settings, as well as

statistical parameterization, were tested. For statistical analysis,

we tested several clustering options. For PIPSA, we varied probe

size, skin thickness, and the cylindrical shape radius by which

the focused region is defined. We arrived at a cylindrical shape of

40 Å radius, 33 Å length, 25 Å skin and a probe size of 1 Å. The

cylinder is placed on the pMHC cleft, by using the coordinates of

the input pdb files as a reference and, with the help of visual

analysis, entering those coordinates in the PIPSA settings, as also

shown in Figure 2. The pMHC pdb file with the cylinder can

then be exported to a separate file.
MatchTope availability

Upon publication of this article, a standalone version of

MatchTope will be made available for download, free of charge,

via github (https://github.com/Marcus-Mendes/MatchTope.git).

Also, in the near future, we will release a MatchTope web server
Frontiers in Immunology 06
version, where pdb files or complexes modeled using DockTope

can be uploaded and then directly subjected to MatchTope

analysis. The results will then be displayed on the web page

and be available for download.
Discussion

Here, we described a fully automated tool for comparing and

clustering pMHCs by MEP similarity for cross-reactivity

prediction. Using previously published data sets as input, we

were able to correctly group the targets showing cross-reactivity.

MatchTope allows the user to analyze multiple pMHC structures

at once, calculate the MEPs, and group similar complexes. The

resulting distances in molecular electrostatic potential space

enable the user to draw conclusions about whether cross-

reactivity is likely to occur for the analyzed complexes or not.

The current implementation of MatchTope makes use of

various bash scripts, R scripts, and version 4.0.2 of PIPSA. In

addition, as an external tool, PyMOL is required. We

recommend using the DockTope tool for modeling targets

(28). With this tool, the user can model peptides complexed

with HLA-A*02:01, HLA-B*27:05, H2-Db, or H2-Kb, but any

pMHC of class I allele can be used as input for MatchTope.

MEPs are always calculated with the same settings, even if the

pMHC allele differs between different complexes, making the

MatchTope applicable for other MHC Alleles.

In a previous study (22), we discussed how one of the TCR

variable domains, CDR3, discriminates peptides from a self or
B CA

FIGURE 3

The final result of MatchTope analysis: Hierarchical clustering is represented in a tree-based format. Pvclust provides two types of p-values: AU
(Approximately Unbiased, red color) p-value and BP (Bootstrap Probability, green color) value. Branches inside red squares have an AU p-value
higher than 95%, indicating a significant similarity between pMHCs clustered in that branch. There are three different clusters matching the
different data sets used for MatchTope validation. (A) is related to the Hepatitis E Virus (HEV)-Specific T Cell Receptor study, (B) is the cluster
from the throat cancer study, and (C) combines the clustering from the HCV and Dengue studies. Groups 1, 3, 5, 7, and 8 clustered epitopes
that have cross-reactivity confirmed by in vitro data. Supplementary Table 1 presents the epitope list and which epitopes similarly trigger cross
reactivity.
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non-self-protein. In our new tool MatchTope, we solely make

use of these regions to calculate MEP similarities. Other portions

of the complex were not considered since it would only increase

the noise in the analysis. We plan to include topographic features

combined with MEP data in a future MatchTope

implementation to further improve analysis robustness.

In cluster C (Figure 3), the 7 and 8 groups are separated.

However, in vitro data indicate that both trigger the same TCR,

which also recognizes the wild-type epitope. It would be

expected that both clusters would be fused in one cluster, but

TCR recognition is not a binary process, with different TCRs

presenting divergent requirements of stimulation, which can

explain why there are two groups instead of one large one.

Cluster A has groups 1 and 2 (Figure 3). Group A matches in

vitro data (33), while there is no in vitro evidence to support a

cross-reactivity between epitopes from Group 2. Such a result is

important to guide wet lab researchers in suggesting new

epitopes that can be used in future assays.

The similar performance yielded by MatchTope, compared

to our other approaches to cross-reactivity prediction, raises an

important question: why develop and use MatchTope? The

former approaches were highly dependent on manual

intervention. The recovery of RGB information from the

interaction surfaces of pMHCs and their subsequent inclusion

in a hierarchical clustering approach demands labor-intensive

work, even for a small set of structures, in addition to being

error-prone. Besides, electrostatic information from all peptide

atoms, plus surrounding cleft regions, avoids that differential

variable region may be lost in the analysis.

In our database, CrossTope (http://www.crosstope.com/)

(34), hundreds of immunogenic pMHC models are available,

for which a pdb file can be downloaded and images of MEPs can

be viewed. It has previously been observed by manually

comparing images that these immunogenic pMHCs show

common patterns of electrostatic charge distributions. With

MatchTope, however, a comparison on a much larger scale

becomes feasible. MatchTope was able to pinpoint similarities

between immunogenic targets which were not previously

observed, and thus may be helpful in the field of reverse

vaccine development.

The field of cancer immunology is rapidly developing and

immunotherapeutic approaches are becoming more and more

common and show promising results. One methodology makes

use of TCR modifications to enhance affinity against tumor-

specific peptides (1, 10). However, one major risk of using this

approach is the cross-reactivity with normal cells presenting self-

peptides. A well-known case (35) is the cross-reactivity between

the melanoma-associated antigen MAGE-A3 and a titin-derived

antigen expressed by healthy cardiac cells, which led to the death

of two patients. These two peptides have a low sequence

similarity, sharing just 5 amino acid residues out of 9, but X-

ray crystallography showed structural similarity between them.

For such cases, MatchTope can be beneficial as it is able to
Frontiers in Immunology 07
demonstrate the similarity of the peptides in question without

the use of crystallographic data, using only modelled pMHC pdb

files. This underlines that MatchTope is a powerful tool to

predict such undesirable cross-reactivity.

Together with our validation, these data demonstrate that

similarity between pMHCs can be predicted from the structure

alone, based on the MEP in the cleft region. Since electrostatic

similarity can trigger cross-reactivity events, our tool can be used

as a cross-reactivity predictor, overcoming inherent issues in

predictors that just use linear sequences as input. Even with low

sequence similarity in pMHC structures, e.g. less than 50% shared

amino acid residues of epitopes, our tool was found to be able to

properly cluster the targets as indicated by in vitro results and thus

seems less prone to yield erroneous classifications than tools based

solely on sequence comparison. Thus, MatchTope demonstrates

itself as a powerful tool to predict similarities between pMHCs

and, thereby, indirectly provides an estimate of the likelihood of a

cross-reactivity response.

MatchTope can be used in support of vaccine development

in many applications beyond those that we presented here. In the

light of the current pandemic caused by the SARS-CoV-2 (36,

37), we find ourselves in a rush to find a vaccine or treatment

option to reduce the number of infections and death counts (38).

Amongst the many studies aiming at the discovery of novel

vaccine targets, some point to the possible cross-response

between antigens from coronaviruses (39, 40) and other

viruses or even bacteria (41, 42). The relevance of T cells to

vaccine development lead us to believe that MatchTope could,

for instance, be utilized to improve the efficiency of finding

epitopes with notable similarity to known immunogenic targets

or for the discovery of possible new epitopes that could be tested

as vaccine candidates in reduced time frames.
Materials and methods

MatchTope automation

MatchTope is a software to seek similarities in the MEP of

pMHCs and to group similar MEP patterns by hierarchical

clustering. To do this, we developed a workflow involving 3 bash

scripts, a Python script, the PyMOL program (24), the PIPSA

standalone version (25), version 4.02 available at: https://pipsa.h-its.

org and two R packages, to perform the following steps: (i) to edit

pdb files to remove unnecessary columns; (ii) to superimpose all

pdb files; (iii) to use these pdb files as input for PIPSA to calculate

MEPs and corresponding similarity indices; (iv) to use PIPSA

results as input for the R package to perform hierarchical

clustering. The MatchTope tool was tested on Linux Ubuntu

14.04 and Ubuntu 16.04 systems. The average run time of

MatchTope for a 30 pdb file input is 8 minutes on an Intel core

i5-750, 6 GB of RAM. The current implementation further was

tested successfully with up to 100 pMHCs as input.
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Pre-processing input pdb files

Since pMHC pdb files are often the output of modeling

software, they typically have some columns with unnecessary

information, which can cause problems for the PIPSA software.

To avoid any issues, a bash script removes these columns using

shell instructions. After this process, the pdb files retain nine

columns, namely the ATOM or HETATM identifier for proteins

and other groups, respectively, atom number, type of atom, the

corresponding amino acid residue, chain information, amino

acid residue number and the Cartesian x-, y- and z coordinates.
Fitting

To avoid the problem of comparing different regions of

different pMHCs due to a nonuniform orientation in the 3D

space, we implemented a fitting routine in a Python script making

use of the PyMOL software (24). We employ a model PDB

distributed along with the code to define the reference position

and all input structures are fitted to this model. The script repeats

this superposition process twice to ensure a good result.
PIPSA calculation

PIPSA first computes similarity indices for the electrostatic

potential analytically from pdb files, making use of monopole and

dipole terms. Hydrogen atoms are added usingWHATIF (https://

swift.cmbi.umcn.nl/servers/html/index.html) as necessary. Next,

the input for UHBD calculations is generated and the electrostatic

potential grids computed with UHBD. The PIPSA program then

computes the Hodgkin similarity index for all pairs of electrostatic

potential grids (25, 43). This is done on the molecular skin and

within a cylindrical region of 40 Angström radius and 33

Angström length, defined to encompass the pMHC cleft (using

its 3D coordinates derived with the help of visual analysis, as

explained before). Due to the fitting step, every PDB file is

superimposed, avoiding the comparison of MEPs from different

regions. The ‘skin’ represents the remaining layer, after excluding

any region inside the solvent-accessible surface area defined with a

certain probe radius, and a defined thickness. Everything outside

this region is also excluded. Corresponding points on the potential

grids within the skins of the two proteins to be compared are used

for computing similarity indices. Potential values lying outside of

this skin or outside the cylinder created in the pMHCs region of

interest will not be used. The thickness of skin and probe radius

are adjusted to 25 and 1 Angström, respectively. These non-

standard parameters were chosen for the system on the basis of

extensive comparison of results obtained using different

parameters (Supplementary Figure 1). Images were generated

with UCSF Chimera 1.12 (44).
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Once the PIPSA calculation has finished, the program uses

the resulting MEP similarities as input to the R package. Using

the ‘pvclust’ package, R creates a hierarchical clustering of the

results, grouping most similar pMHCs in the same cluster and

validating this cluster using bootstrap calculation. The package

uses the correlation distance as a metric and complete clustering

as the cluster method.
Validation methodology

To validate our tool, we used four distinct data sets. All

targets were nonamers and modeled using the DockTope

software (28). A list of all epitope sequences used in our

validation step is shown in Supplementary Table 1. We

modeled all epitopes in HLA*A-0201 complex options, using

standard settings. We used the given interferon-gamma results

from published data sets to determine cross-reactivity and

confirm the validity of our in silico analysis (15, 32). The

interferon-gamma information and details on individual

cutoffs is available in the respective articles.
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SUPPLEMENTARY TABLE 1

List of MHC peptide linear sequences and their respective names. Cells of

the same color indicate the existence of in vitro data demonstrating some
level of cross-reactivity event.

SUPPLEMENTARY TABLE 2

RMSD values (in Angström) of pMHCs used for MatchTope validation

compared to the pdb model after fitting. The low RMSD values shown
here (below 0.1 Angström) demonstrate that all pMHCs are in the same

position. The last row presents the overall mean for all results.

SUPPLEMENTARY FIGURE 1

Hierarchical clustering from HCV and Dengue studies data using PIPSA’s

default values for the cylindrical region, the thickness of skin, and probe radius.
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