Acute kidney injury (AKI) is a frequent consequence of sepsis and has been linked to poor prognosis. In critically ill patients, the ratio of neutrophils to lymphocytes and platelets (N/LP) has been confirmed as an inflammation-related marker connected with the development of renal dysfunction. However, the effect of the N/LP ratio on the initiation and development of AKI in patients with sepsis remained unclear. The purpose of this study was to determine if the N/LP ratio on intensive care unit (ICU) admission was associated with the occurrence of sepsis-associated AKI (S-AKI) and severe AKI.
Adult septic patients from the Medical Information Mart for Intensive Care-IV database were screened and classified into three categories (low, middle, or high) based on their N/LP ratio quartiles. The Cox proportional hazard and competing risk models were used to determine the risk of S-AKI in various N/LP groups, whilst the logistic regression model and restricted cubic splines (RCS) analysis were employed to investigate the link between N/LP ratios and the occurrence of severe AKI. Finally, we did a doubly robust estimation, a subgroup analysis, and a sensitivity analysis to determine the findings’ robustness.
We categorized 485, 968, and 485 septic patients into three groups based on their N/LP ratios: low, intermediate, and high. According the Cox proportional hazard model, the hazard rate (95% CI) for those in the middle and high N/LP groups on the incidence of S-AKI were 1.30(1.07, 1.58) and 1.27(1.02, 1.59), respectively, as compared to those in the low N/LP group. And the Fine-Gray proportional subdistribution hazards model indicated that mortality was not a substantial competing risk for S-AKI. Additionally, multivariate logistic regression revealed that the risk of severe AKI increased 1.83 fold in the high group compared to the low group. The RCS result also suggested that the probability of severe AKI rose significantly when N/LP > 9.5. The consistency of these findings was confirmed using doubly robust estimation. However, subgroup and sensitivity analyses revealed that the association between N/LP and the incidence of S-AKI, severe AKI varied considerably between different populations and diagnostic criteria.
A raised initial N/LP level may induce the development of S-AKI and severe AKI within 7 days after ICU admission in septic patients. These influences were enhanced in elder, male, septic shock, and those with poor health condition. Furthermore, high NLP was more strongly connected to the risk of S-AKI and severe AKI in sepsis patients on the urine output-based AKI criteria than on the serum creatinine-based criteria.