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Although COVID-19 has captured most of the public health attention, antimicrobial
resistance (AMR) has not disappeared. To prevent the escape of resistant
microorganisms in animals or environmental reservoirs a “one health approach” is
desirable. In this context of COVID-19, AMR has probably been affected by the
inappropriate or over-use of antibiotics. The increased use of antimicrobials and
biocides for disinfection may have enhanced the prevalence of AMR. Antibiotics have
been used empirically in patients with COVID-19 to avoid or prevent bacterial coinfection
or superinfections. On the other hand, the measures to prevent the transmission of
COVID-19 could have reduced the risk of the emergence of multidrug-resistant
microorganisms. Since we do not currently have a sterilizing vaccine against SARS-
CoV-2, the virus may still multiply in the organism and new mutations may occur. As a
consequence, there is a risk of the appearance of new variants. Nature-derived anti-
infective agents, such as antibodies and antimicrobial peptides (AMPs), are very promising
in the fight against infectious diseases, because they are less likely to develop resistance,
even though further investigation is still required.

Keywords: SARS-CoV-2, antibiotic resistance, one health approach, global health, antibiotic discovery,
antimicrobial peptides, environmental contamination, vaccination
INTRODUCTION

The COVID-19 pandemic has highlighted the susceptibility of humans to emerging infectious
diseases (1). A serious threat to the world’s population is still faced by viral pandemics because many
viral diseases have no treatment and because of the emergence or re-emergence of some virus
strains. Scientists believe that the SARS-CoV-2 virus was first discovered in animals and then spread
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to humans by crossing the species barrier. Like all other viruses
belonging to the coronavirus family, SARS-CoV-2 can cause
infection in both humans and animals, which means that
COVID-19 is a zoonotic disease or zoonosis (2, 3). Almost
75% of the emerging pathogens are zoonotic. The emergence
of these new resistant microorganisms and their transfer between
humans, animals, and ecosystems can be facilitated or impeded
because of environmental circumstances and behaviors (4–6). In
today’s increasingly globalized society, an infected person is able
to spread the disease much faster than hundreds of years earlier.
This finding has again highlighted the importance of the one
health approach to integrating human health, animal health, and
the environment (7).

An t im i c rob i a l r e s i s t anc e (AMR) oc cu r s when
microorganisms (bacteria, fungi, viruses, and parasites)
undergo heritable changes when exposed to antimicrobial
agents such as antibiotics, antifungals, or antivirals. The
development of resistant strains with a high potential for
infection occurs as a result of mutation or re-assortment of
pre-existing microbial strains, rendering vaccines and medicines
ineffective in some cases (8). The selective pressure exerted by
antimicrobials induces mechanisms for the acquisition of
resistance in microorganisms, such as spot mutation or
horizontal gene transfer, which pass from generation to
generation and therefore select microorganisms that have
inherited this resistance (9, 10). Although several classes of
broad-spectrum antibiotics are available to treat Gram-positive
and Gram-negative bacterial infections, many pathogens rapidly
evolve or acquire resistance to first-line treatments and respond
only to last-resort antibiotics (11, 12). An infection caused by
resistant microorganisms is more difficult to treat. Affected
people may require hospitalization, generate more clinical
complications, and, eventually, may result in the patient
becoming a carrier of the AMR with the possibility of
transmitting the infection to those around him/her. In most
cases, the severity of disease associated with the emergence of
Frontiers in Immunology | www.frontiersin.org 2
resistance depend on the incidence and diversity of infections, as
well as the availability, efficacy, and safety of the therapeutic
approaches adopted (13, 14). Significant efforts are underway to
discover new classes of antibiotics and to develop derivatives and
drug combinations (15). The World Health Organization
(WHO) warns that by 2050 there will be more deaths from
multidrug-resistant bacteria worldwide than from cancer (16).
Most countries have revealed that the process and development
of their AMR National Action plan has been affected by the
COVID-19 pandemic (Figure 1).

Our goal is to analyze the factors associated with COVID-19
which limit or promote the emergence of AMR. Knowledge of
the factors affecting this relationship will help mitigate the
impact of the COVID-19 pandemic on AMR. In this scenario,
we encourage the investment in research and development of
Nature-derived anti-infective agents; such as antimicrobial
peptides (17) and antibodies (18), which are distinguished by
their limited ability to generate resistances (19).
IMPACT OF COVID-19 ON ANTIBIOTIC
PRESCRIPTION

At social level, COVID-19 has enabled greater visibility of
infectious diseases (1, 20). One potential consequence of the
COVID-19 pandemic is the spread of antimicrobial resistance in
the acute care setting because of the increased antimicrobial use
(21). In hospitals, antibiotics have been used intensively in
patients with COVID-19 to eliminate potential bacterial
infections (22, 23). Up to 70% of patients with COVID-19
receive antibiotic treatment, either on an outpatient or
inpatient basis. Antibiotics cannot destroy viruses. However,
physicians often need to prescribe antibiotics to hospitalized
patients with COVID-19 who have a confirmed or strong
suspicion of bacterial coinfection or superinfection (24).
Sometimes physicians do not have sufficiently knowledge of
FIGURE 1 | World map showing the countries (in blue) that, during 2020-2021 responded favorably to the question “Has your National AMR Action Plan
development and implementation process been affected by the COVID-19 pandemic and the national response in your country?”. Countries in red are those who
responded negatively. Source: Global database for the Tripartite Antimicrobial Resistance (AMR) Country Self-Assessment Survey (TrACSS) https://
amrcountryprogress.org.
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the symptoms and natural course of respiratory infectious
diseases and prescribe empiric antibiotics, even if the diagnosis
is not microbiologically confirmed. One of the main reasons of
antibiotics prescription is due the symptoms of COVID-19, that
often resemble to those of bacterial pneumonia (25). Diagnostics
used to distinguish viral from bacterial pneumonia may be
ineffective or have response times of hours or days, while
immediate treatment is needed. In addition, bacterial infections
in patients who do not have COVID-19 can go unnoticed and
require delayed treatment when all focus is on pandemic control.
Patients with COVID-19 may also be affected by a secondary
bacterial infection requiring antibiotic treatment, contributing to
an increased use of these drugs (26–28) (Figure 2). There is a risk
that a large number of people may use antibiotics in an erroneous
self-medication attempt to protect themselves from the virus.
This might be particularly common in underdeveloped countries
where antibiotics can be available without a prescription.

Currently, the impact of the pandemic on the prevalence of
multidrug-resistant (MDR) bacteria is still unclear. More and
better data are needed to better understand the incidence of co-
infections and the pathogens involved, as well as the impact of
underlying risk factors on patients. Recent reports have
described a high use of broad-spectrum antibiotics as a risk
factor in the emergence of multidrug-resistant microorganisms,
which often appear in critically ill COVID-19 patients (29–31).
IMPACT OF COVID-19 ON THE RELEASE
OF ANTIMICROBIALS INTO
THE ENVIRONMENT

Habitat degradation is an important factor in the increasing threat
posed by pandemics and other human health problems.
Frontiers in Immunology | www.frontiersin.org 3
The destruction of forests and the expansion of urban areas and
industrial activity can be dangerous for a wide range of animal
species. The survivors are forced to be closer to each other and
humans, whichmakes it more likely that harmless animal microbes
will turn into deadly human pathogens. The COVID-19 pandemic
is supposed to have begun in bats and spread from a “wet market”
in Wuhan, China, where live wildlife species are available for
human consumption. Selling wild animals for human use, whether
as pets or in the form of live animal markets, plainly poses a
significant danger to public health. These marketplaces serve as
breeding grounds for zoonotic infections by housing ill, stressed,
and overcrowded animals in extremely unclean settings. The
continued use of these procedures will cause further disasters to
human health in the future, with the potential for much
greater devastation.

A key factor in the development of bacterial resistance is the
ability of the microorganism to adapt rapidly to new
environmental conditions (32). In industrial livestock models,
the widespread and indiscriminate use of antibiotics and growth
promoters exacerbates the problem by producing pathogenic
strains resistant to these drugs. Despite bans in different
countries, antibiotics are being used in animal husbandry, not
only to treat infections but also to promote weight gain in
animals such as cattle, pigs, and poultry (33). The overuse of
antimicrobial drugs in farm animals and human medicine has
been linked to the emergence of multidrug-resistant microbes
(34, 35). About 65 percent of all antibiotics used for human
treatment (including tetracyclines and penicillins) are marketed
for animal use in the United States. Most of them are
administered to entire groups of animals, even if none of them
are sick. As a result, antimicrobial drugs become ineffective and
infections persist in the organism, increasing the risk of spread to
other people or animals (36). Humans can become infected with
antibiotic-resistant bacteria through handling or eating raw or
FIGURE 2 | Impact of COVID-19 on antibiotic prescribing. One of the potential consequences of the COVID-19 pandemic is the spread of antimicrobial resistance in
the acute care setting as a result of increased antimicrobial use. Although antibiotics cannot destroy viruses, physicians are sometimes insufficiently aware of the
symptoms and natural course of respiratory infectious diseases and often prescribe antibiotics to those diagnosed patients in whom there is confirmation or high
suspicion of bacterial coinfection or superinfection. Consequently, many hospitalized patients with COVID-19 are prescribed empirical antibiotics, often in the
absence of microbiological confirmation of the diagnosis.
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undercooked meat, coming into contact with livestock or their
excrement, and/or eating food or drinking water (including
recreational water) contaminated with animal feces. Antibiotics
are one of the most frequently found chemicals in aquatic
environments worldwide. This might have ser ious
consequences for the ecology as well as the spread of AMR in
the environment. Alternative livestock production techniques
are promoted by agroecology by reducing pesticide use and
increasing soil fertility in ecological ways.

The pandemic led to some livestock animals being kept on
farms longer than usual because of problems with transportation
and outbreaks at the slaughterhouse. This may have contributed
to increasing animal density on farms, which may have resulted
in greater antibiotic administration in animal production.
Preventive use of antibiotics in farmed animals was recently
prohibited by the European Union. It is expected that other
nations follow suit for genuine success in the battle against AMR.

Hand washing is considered an essential means of preventing
nosocomial infections, mostly in healthcare settings. Hand
hygiene is highly recommended to prevent the acquisition and
transmission of SARS-CoV-2 infection (37). The advent of
COVID-19 has led to an increase in the consumption of
antibacterial soaps, hydroalcoholic gels , and other
handwashing products and disinfectants (38, 39). It has
become so popular that, at least in developed countries, almost
all stores, schools, hospitals, and workplaces carry these hand
hygiene products to prevent the acquisition and transmission of
infections (38, 40). Hand hygiene products typically contain
bactericidal, fungicidal, and virucidal products, as well as
alcohol and non-alcohol detergents, but some manufacturers
add antimicrobial compounds to make the product more
effective against pathogens (41). These chemicals, like
hydrogen peroxide and sodium hypochlorite, peroxyacetic acid,
and chlorine dioxide may penetrate soil systems and damage
Frontiers in Immunology | www.frontiersin.org 4
native biota. Environmental remediation and biogeochemical
cycling of elements might be disrupted by the introduction of
these chemicals into soil. The presence of these biocides can
interfere with wastewater treatment methods that rely on the
activity of microorganisms that play key roles in biogeochemical
cycles and environmental remediation (42–44). Although
ethanol is the predominant ingredient in most hand hygiene
products, some gels also incorporate other synthetic substances
that may not offer much in terms of protection but instead may
fuel bacterial antimicrobial resistance (45). This may result in the
selective survival of bacteria harboring resistance genes, and in
the development of AMR (46–48). During the COVID-19 crisis,
the massive use of these substances, in particular in hospitals,
and the continued use of these hand hygiene products can lead to
unintended release of biocides and disinfectants into
wastewater and sewage treatment plants (49, 50). As a result of
extraordinarily high bacterial loads combined with
subtherapeutic drugs, wastewater is a significant source of
AMR, causing the selective survival of bacterial strains carrying
resistance genes (6, 39) (Figure 3).
IMPACT OF COVID-19 VACCINATION ON
THE EMERGENCE OF RESISTANCE

The use of vaccines may minimize resistance to the pathogens
targeted by vaccination. Vaccines are an important tool in the
prevention of infections and have had a positive impact on the
reduced use of antibiotics and the development of antibiotic
resistance (51). Vaccination prevents infectious diseases and
their complications; is easy, cheap, and saves lives (52).
Conventional vaccines may lower viral loads, thereby
decreasing onward transmission. Vaccine protection is twofold:
it protects the inoculated person to prevent infection, and on the
FIGURE 3 | Impact of COVID-19 on the release of antimicrobials into the environment. The excessive use of antimicrobial drugs in farm animals and human
medicine, especially in hospitals, can lead to an increase in the concentration of biocides and disinfectants in wastewater and sewage treatment plants and cause
the selective survival of bacterial strains carrying resistance genes.
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other hand, it can protect the surrounding people, even those
who are not immune to the disease, since the immunized person
is unable to spread the infection, a concept named “herd
immunity” (53). When a vaccine stops people from getting the
virus or bacteria, it gives them sterilizing immunity. This means
that they can’t have enough viruses in their bodies to spread to
other people. In contrast, vaccines that cause “non-sterile”
immunity protect the host from the disease but do not stop
the disease from spreading. prevent the emergence of new
variants and reduce the development of resistance, it is
essential that the virus cannot replicate among infected people,
so vaccines that provide sterilizing immunity or measures that
prevent the colonization of the virus in tissues are desirable (54,
55). The administration of COVID-19 vaccination, and other
vaccines for simultaneous co-infections, are anticipated as a safe
and effective measure to prevent infections (56) and further
evolution of variants (57). The new COVID-19 vaccinations have
the potential to reduce the usage of antibiotics for COVID-19
patients (58). However, current COVID-19 vaccines do not
prevent vaccinated people from infecting themselves and
others. As a result, anybody who contracts the virus, regardless
of vaccination status, has the potential to spread it, which makes
herd immunity an unrealistic goal (59). Given that the scientific
community currently accepts that both vaccinated and
unvaccinated people can be a source of infection for others, the
sanitary utility of the green pass for the prevention of COVID-19
infection is questionable (60, 61). Without additional control
measures to discriminate against infection, this action could
enable to an increase in the burden of disease among those
vaccinated in these local contexts required by the passport.

The rapid development of COVID-19 vaccines and the fear of
side-effects has raised doubts about the safety and efficacy of
vaccination among certain groups of people (62). If the benefits/
risks of vaccination are not correctly explained to the population,
this perception could negatively affect the acceptance of “normal”
vaccines, such as measles and polio. Focusing excessive attention
on the pandemic could also have led to substantial disruption of
other global health programs, including routine childhood
vaccination campaigns against cholera, measles, meningitis,
polio, tetanus, typhoid, and yellow fever. This situation could
increase the number of people with no defense against these
diseases and their associated complications, and the occurrence
of resistance (63, 64).

As long as the virus continues to be spread, there is the
possibility that new variants may appear that are more
contagious, produce more severe symptoms, or evade the effect
of vaccines (65, 66). The rapid global spread of the delta variant
was explained by the maintained viral load despite increasing
vaccination coverage (67, 68). Current vaccines only target the
spike protein (S), that provides the cellular entry of the virus
through the ACE2 receptor (69, 70). However, this protein can
accumulate a higher rate of mutations among other SARS-CoV-2
proteins, and thus may contribute to escape immunity (66, 71).
To improve the protection against mutant strains and reduce the
use of antibiotic, future COVID-19 vaccines should target other
antigenic viral proteins with the capacity to induce less epitope
Frontiers in Immunology | www.frontiersin.org 5
variability (72, 73). For example, the effort to avoid a double
health burden of “flu and COVID-19” has led to increased flu
vaccination coverage and this may have influenced less
antibiotic prescribing for flu-like infections and secondary
bacterial complications.
IMPACT OF OTHER MEASURES
FOR THE PREVENTION OF
COVID-19 TRANSMISSION

With the COVID-19 pandemic, measures such as lockdowns,
physical distancing, travel restrictions, and quarantines
implemented for persons in close contact with a positive have
been implemented. These measures may have contributed to a
reduction in the opportunities for transmission of many
pathogens beyond SARS-CoV-2 (74). On the other hand,
transmission within a local household or facility may be
amplifying (75). Generally, the situation of confinement, and
the limitation in leaving home, could have contributed to a
decrease in the number of medical visits and, therefore, to a
decrease in antibiotic prescriptions (76) limiting the appearance
of resistance microorganisms (Figure 4).

In general, the use of facemasks is a key strategy for the
effective prevention of airborne diseases. The use of facemasks
potentially blocks airborne transmission routes and it is
recognized as an effective containment measure in the
COVID-19 pandemic: indeed, it prevents droplet dispersal
when infected persons talk, sing, cough, or sneeze (77). Then,
facemasks can reduce the risk of environmental contamination
by respiratory droplets and the spread of the virus among people.
In addition, the possible virus diffusion by contact can be
avoided, due to the limitation of respiratory droplets that may
deposit onto surfaces. Facemasks also provide a physical
obstruction that prevents the wearer from touching his or her
face, thereby reducing fomite transmission (78). In the pandemic
scenario, mask use helps minimize the spread of SARS-CoV-2
infection by the wearer (79, 80). It is not surprising that health
authorities recommend the use of facemasks to reduce the risk of
environmental contamination and disease transmission. Finally,
this reduces the need to use antimicrobials, and the risk of
emerging resistant microorganisms (80).

With the pandemic, administrations and health authorities
have promoted telemedicine, where physicians can prescribe
medications. It is possible that this would force doctors to
prescribe drugs without being able to auscultate, or take a
sample, to establish a true diagnosis. In this scenario, it can be
postulated that, on occasion, doctors may have over-prescribed
antibiotics, as a conservative attitude (81–83). Although limiting
social contacts, this measure could negatively impact the
appearance of resistant microorganisms (Figure 4). The
extended use of hand hygiene products containing biocides is
another measure that could result in the release of chemicals into
the environment facilitating the emergence of resistant
microorganisms (Figure 4).
June 2022 | Volume 13 | Article 921483
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THE NEED FOR NEW ANTIMICROBIALS

Most of the currently available antibiotics were discovered
between 1940 and 1960 (84, 85). However, by the mid-1960s the
rate of identification of new and efficient structures had declined
dramatically (86). Until the 1980s, the lack of new discoveries of
antimicrobials was compensated by the pharmacological study
and optimization of existing antibiotics. Particularly the study of
the biochemical mechanisms that describe both the action of drugs
on their targets, and their associated resistance was largely
investigated. This era was defined by the obtaining of a large
number of optimized derivatives through the synthesis and
chemical modification of existing antibiotics with improved
activities and broader spectra (87). In the 1990s, a new wave of
resistance has resulted in significant in projects to identify new
classes of molecules in the antibiotic capacity (86). This discovery
was based on the rational design of molecules, genomic analysis
platforms, and combinatorial chemistry, coupled with
computational tools. However, the race to generate new
antibiotics by pharmaceutical companies was later abandoned.
The main reason was the null permeability of the new compounds
obtained, which prevented them from crossing the bacterial wall to
exert their antibiotic activities (88). During evolution, the
molecular tools necessary to develop a resistance mechanism
have always been accompanied by the natural ability of
microorganisms to generate antibiotics. Thus, we could predict
that eventually, new resistance mechanisms will emerge in
response to the use of the latest generation of antibiotics (89). A
major concern for microbiologists and infectious disease
authorities is the continuous increase in resistance and the rapid
spread among strains of a microorganism and the lack of effective
antibiotics (90).

The development and manufacture of new antimicrobials is a
long process. It can take more than 10 years from discovery to
Frontiers in Immunology | www.frontiersin.org 6
commercialization of a new antibiotic (91, 92). This, coupled
with the fact that bacteria can develop resistance mechanisms
that make them unusable, makes them unattractive to the
pharmaceutical industry. Furthermore, this low profitability
would be influenced by the possibility of marketing generic
antibiotics ten years after their introduction on the market
(93, 94).

Due to the current difficulties in obtaining new classes of
antibiotics, we are now approaching a situation of inability to
control infections (95). If new drugs are not developed, deaths
due to antibiotic resistance are expected to exceed 10 million per
year by 2050 (96). The problem is that infectious diseases are
estimated to become the leading cause of death, ahead of cancer
and cardiovascular diseases (89).

In the current COVID-19 pandemic, the focus of the
pharmaceutical industry has been to develop vaccines and
effective antimicrobials against SARS-CoV-2 (97). However, we
should not forget the need for new antimicrobials, as the
emergence of AMR is likely to increase, impacting COVID-19
morbidity and mortality. Therefore, any antimicrobial strategy to
find new structures of more efficient anti-infectives should be
promoted. Compounds with a broad spectrum of action and less
resistance are particularly desirable.
ANTIMICROBIAL PEPTIDES AND
ANTIBODIES AS ANTI-INFECTIVE DRUGS

Anti-infective treatment is based on the principle of targeting
molecular pathways that cause infection but do not impair
bacterial growth. In the face of a shortage of new antibiotics,
antimicrobial peptides and specific antibodies, are gaining
attention as Nature-derived anti-infective agents with great
clinical potential (98, 99). Antimicrobial peptides (AMPs) and
FIGURE 4 | Measures that prevent the spread of SARS-CoV-2 infection may have an impact on the emergence of resistant microorganisms. Vaccination, the use of
facial masks, and measures limiting social contacts may result in a decrease in antibiotic prescriptions, limiting the appearance of resistant microorganisms. However,
the use of biocide-containing hand hygiene products, telemedicine, and self-prescribing may have increased the use of antibiotics and the release of biocides into
the environment, facilitating the emergence of resistant microorganisms.
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antibodies both play an important role in the defense against
foreign microorganisms and are part of innate and acquired
immunity, respectively. They both have less capacity to generate
resistance in target microorganisms and can be administered
together with other antibiotics or antimicrobial compounds.
AMPs are a rapid, non-specific means of combating a wide
variety of bacteria, fungi, viruses, and even protozoa (100).
Specific antibodies are essential macromolecules for the
adaptive immune systems of all vertebrates. Defense blood cells
are also important producers of AMPs, where they constitute
part of the non-oxidative effector mechanisms against potential
pathogens (101). AMPs are synthesized mainly in epithelial
tissues regularly exposed to microbial attacks such as skin,
intestine, and lungs. In the body, AMPs are synthesized up to
a hundred times faster than antibodies and at much lower
metabolic cost, can be stored in high concentrations, are
available for immediate action, and are released or produced
when cells are stimulated by contact with microorganisms (102).
However, antibodies only recognize a single infectious agent, and
even while mutations of that agent may render the antibody
useless, this does not affect other similar agents and does not
contribute to the spread of resistance (103). Faced with a market
where cheap and effective antibiotics are accessible, the
manufacture of AMPS and antibodies for biomedical
applications exhibit inherent constraints; such as high
production cost, storage conditions, and dosage for
administration (104) (Table 1).

In the context of COVID-19, excessive antibiotic prescribing,
the increased use of biocides, and the agricultural use of
antibiotics can contribute to the emergence of resistant
microorganisms. Conventional antibiotics generally target
metabolic enzymes that may selectively develop resistance,
whereas AMPs and antibodies kill microbes or neutralize
infectious pathogens, thus making it inherently more difficult
for the organisms to develop resistance. They can be regarded as
safe and effective templates for the generation of future
antimicrobials (104) (Figure 5).

Antibodies and Antibody-Derived Therapies
Antibodies and antibody-derived therapies provide an intriguing
set of tools and properties for killing or neutralizing infectious
pathogens, lysing infected cells, or modulating the immune
system to allow effector cells to escape immunosuppressive
Frontiers in Immunology | www.frontiersin.org 7
events and contribute to infection removal (99). The flexibility
to generate antibodies against any target, the ability to alter
effector functions, half-life, and the size of treatment units, are
particularly well suited for customizing therapies to specific
infectious agents (103). Proteins on microbe surfaces, toxins,
and other virulence factors can all be targets for antibodies.
Enzyme areas crucial for microbial metabolism can also be
targeted by antibody design, being able to influence the activity
of antigen molecules without necessarily affecting the immune
response (105).

Antibody-based treatments, such as pathogen-specific
monoclonal antibodies (MAbs), have demonstrated promise in
the treatment of bacteria (e.g., MRSA) and viruses that are
resistant to conventional antibiotics (106). Over 40 antibody-
based drugs have been authorized or are pending approval. The
selectivity of the antibodies translates into the very minimal off-
target binding and hence very few side effects, including the
gastrointestinal problems sometimes associated with antibiotics
due to their wide impact on the gut bacterial flora in the
environment (99). However, certain characteristics of
monoclonal antibodies make them less suited when compared
to other antimicrobial therapies (103). The first is the high
production cost. Because of the widespread use of broad-
spectrum antibiotics, antibody-based treatments are less
interesting to the pharmaceutical industry. Antibodies are
proteins, they must be handled with care, kept cold, and be
injected intravenously or subcutaneously (103). Antibiotics, on
the other hand, are generally formulated as pills or tablets that
may be used orally and stored at room temperature. Antibiotics
target general mechanisms in bacteria, such as cell wall
formation, and can be effective against a wide range of
bacteria. Antibodies, on the other hand, are very specific to a
single virus, bacterium, or bacterial subtype. Antibody therapy
provides an immediate level of immunity, and a clear diagnosis
must be made before starting treatment with a monoclonal
antibody. For example, antibody treatment has been
administered to patients with recurrent C. difficile infections
(107). However, several advancements, including dosage, cost,
and biologic stability, remain for the normal use of MAb
administration for AMR prevention (103). A larger and more
realistic context should be used to evaluate the trade-off between
antibody treatments and antibiotics in terms of cost and
convenience of use in the clinic (103). This includes the
TABLE 1 | Different features of antibiotics, antibodies, and antimicrobial peptides as anti-infective agents for infectious diseases.

Feature Antibiotics AMP Antibodies

Cost of production Low High High/moderate
Storage conditions Room temperature Refrigerated Refrigerated
Administration Orally (tablets) Topical/systemically iv/sc injection
Target specificity Narrow Broad/narrow Narrow
Resistance Yes Difficult No
Structure Simple, homogeneous,well-characterized Diverse, homogeneous, well-characterized Complex, heterogeneous, and less characterized
Molecular weight Low (<1kDa) <5 kDa High (>50 kDa)
Degree of instability Low High Low
Risk of immunogenicity Low Low High
Mechanisms of action Generally specific Variable or still unknown Specific
June 2022 | Volume 13 | Article 921483
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current COVID-19 scenario surrounding the development of
resistance to antimicrobial drugs (97). A few MAb-based drugs
are currently authorized for use by the US FDA in infectious
disorders (Table 2). New antibody-based therapies to treat and
prevent bacterial-associated pneumonia are being developed
(112). Chicken polyclonal antibodies against SARS-CoV-2 have
been proposed as anti-infective treatments for COVID-19 (113).
Antibody-based drugs will continue to play an essential role in
the development of new infectious disease treatments in the
future (99). It is envisaged that some of these initiatives will show
clinical success and hence provide the foundation and
enthusiasm for this process (114).

Antimicrobial Peptides
AMPs usually exhibit broad-spectrum antimicrobial activity,
a l though some AMPs may exhib i t bac te r ios ta t i c ,
immunomodulatory, anti-inflammatory, and antitumor activity
(115, 116). All these properties make AMP substances with great
pharmacological potential (117, 118). One advantage of AMPs is
their action on biological targets, other than traditional
antibiotics, and their multiple mechanisms of action (117).
Although AMPs are very diverse structurally; many show some
common features, such as their positive net charge and their high
hydrophobicity. These two properties allow them to interact with
lipid membranes (119). The net positive charge is essential to
Frontiers in Immunology | www.frontiersin.org 8
interact electrostatically with the negatively charged
environment of bacterial membranes and to stabilize the
binding. On the other hand, hydrophobicity makes these
peptides more permeable to the lipid bilayer and they can bind
to each other and form pores in bacterial membranes (102). The
formation of pores in the bacterial membrane leads to its
destabilization and allows the entry and exit of metabolites,
inducing bacterial lysis. Many antimicrobial peptides act on the
bacterial membrane that has evolved. To generate resistance to
AMPs, bacteria must restructure the architecture of their cell
membranes, a process that will take several generations and
multiple mutations. This fact means that AMPS are considered
to generate little or no resistance (102, 119).

Structurally, antimicrobial peptides are widely categorized
into four large classes based on the polypeptide chain bonding
types: class O (circular), class P (resembling a P-shape, where a
chemical bond is formed between the sidechain of one amino
acid and the backbone of another amino acid in the chain), class
S (containing a chemical bond between different sidechains), and
class L (linear peptides). This classification is also named UCBB,
UCSB, UCSS, and UCLL, respectively (120). Some antimicrobial
peptides have a simple helix or sheet structure, whereas others
are more complex. According to how cells can synthesize AMPs,
they can be classified as ribosomal or non-ribosomal. Non-
ribosomal peptides are generally synthesized by bacteria and
TABLE 2 | MAbs approved by the US FDA for treatment of infectious diseases.

mAb Target Format Indication Ref

Palivizumab RSV Humanized IgG1 Prevention of respiratory syncytial virus infection (108)
Raxibacumab B. anthrasis PA Human IgG1 Anthrax infection (109)
Bezlotoxumab C. difficile enterotoxin B Human IgG1 Prevention of Clostridium difficile infection recurrence (107)
Obiltoxaximab B. anthrasis PA Chimeric IgG1 Prevention of inhalational anthrax (110)
Ibalizumab CD4 Humanized IgG4 HIV infection (111)
June 2022 | Volume 13 | Article 9
FIGURE 5 | In the current COVID-19 scenario, antibody-based treatments such as pathogen-specific monoclonal antibodies (MAbs) and antimicrobial peptides
(AMPs) could limit the development of resistant microorganisms as they are considered to generate little or no resistance.
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assembled by cytosolic multi-modular enzymes, whereas
ribosomal peptides are gene-encoded and usually result from
the cleavage of a pre-propeptide (102).

The large diversity of cationic peptides has been hypothesized
to derive from their antibacterial role in combating the distinct
pathogenic microorganism issues faced by each host organism
(119). Nature contains an almost unlimited number of peptide
drugs that need to be pharmacologically characterized (121, 122).
Templates for the development of new antimicrobial agents can
be found from creatures that live in germ-filled habitats, which
can penetrate bacterial membranes (123, 124). The
Antimicrobial Peptide Database APD (https://aps.unmc.edu/
home) collects the characteristics and activities of more than
3000 antimicrobial peptides from six life kingdoms. Animal-
derived AMPs such as magainins, dermaseptins, and other
AMPs isolated from frog skin, are being studied as potential
therapies for skin infections as both therapeutic and preventative
agents in humans. Because topical antimicrobial peptide
treatment prevents systemic toxicity, many antimicrobial
peptides have been developed as topical applications (102).
Despite the growing interest in AMPs as broad-spectrum, non-
resistance-generating antibiotics, only a few AMPs have been
approved by the US FDA for clinical use (117, 125) (Table 3).

Nisin has been approved for the treatment of stomach ulcer
and colon infections. Currently, nisin is the only non-ribosomal
antimicrobial peptide commonly utilized in food preservation
being an additive for the agricultural and food industries.
Daptomycin is a 13 amino acid cyclic lipopeptide generated by
the bacteria Streptomyces roseosporus. It has bactericidal
effect against Gram-positive bacteria, including those that
are resistant to antibiotics. The combination of peptide
antibacterial capabilities with antibiotics has the potential to
reduce the development of resistance. For example, when the
antimicrobial peptide. AMPs may interact synergistically with
immune system components in addition to having synergistic
activity when coupled with antibiotics and could be potential
alternatives to conventional antibiotics due to their favorable
safety profile and low or limited ability to induce bacterial
resistance (102). Cathelicidins are one of the most promising
antimicrobial peptides. However, there are intrinsic
characteristics of antimicrobial peptides that still make them
unattractive to the pharmaceutical industry: such as their
stability, adsorption, inability to cross epithelial and skin
Frontiers in Immunology | www.frontiersin.org 9
barriers, potential immunogenicity, and the difficulty of
conferring oral bioavailability to these molecules (114). Many
antimicrobial peptides are nephrotoxic due to their high
therapeutic dosage and several AMPs have failed in Phase III
clinical trials due to lack of clear efficacy or lack of superiority
over conventional treatments (117).
CONCLUSIONS

Public actions to mitigate COVID-19 have resulted in a change in
the public’s behavior regarding the adoption of preventive
measures. Some measures, such as face masks, social distancing,
and increased hand hygiene will likely diminish AMR. In contrast,
over-prescription of antibiotics, nosocomial infections, and
telemedicine could have contributed to an increase in AMR
(131–133). Everything seems to indicate that this new virus,
SARS-CoV-2, is contributing to worsening the current situation
concerning the emergence of resistant microorganisms (19, 21).
AMR demands a “one health” approach, which recognizes that
human and animal health are interrelated, and that infections are
transmitted from people to animals and vice versa. These changes
in the everyday use of antibiotics and other substances could result
in the release of antibiotics and resistant bacteria into the
ecosystem via contaminated water, food, or excretion.
Consequently, the spread of AMR across many domains of one
health, such as healthcare, agriculture, and the environment, might
be affected. A global vision of the pandemic impact on AMR is not
known yet and can only be speculated at this point. However, it is
reasonable to suppose that new treatments and vaccines designed
to restrict the spread of SARS-CoV-2 should limit the
development of resistant microorganisms and vice versa. The
decline in the investment and lack of innovation of antibiotics
also favors the emergence of antimicrobial-resistant organisms
(89, 133). Current vaccines against COVID-19 have not been
implemented globally. There are still countries where there is a
very little vaccination (97, 134). The lack of sterilizing vaccines to
prevent human-to-human transmission might increase the risk of
the emergence of new variants of SARS-CoV-2 and enhance the
adverse impact of COVID-19 on AMR (62). In the context of anti-
infective therapy, Nature derived anti-infectives have the potential
to be helpful as a part of the arsenal to combat AMR infections
(114). They are particularly useful as can be co-delivered with
TABLE 3 | Natural AMPs approved by the US FDA for clinical use.

AMP Source Mechanism Target Indication Ref

Nisin Lactococcus lactis Inhibit cell wall synthesis Broad spectrum activity Treatment of stomach ulcer and colon
infections (126)

Melitin Apis mellifera Membrane disruption Broad spectrum activity Relieving pain and swelling
(127)

Gramicidin Brevibacillus brevis Membrane disruption Gram-positive bacteria Ophthalmic purposes
(128)

Daptomycin Streptomyces
roseosporus

Inhibits cell wall synthesis Gram-positive bacteria Skin infections
(129)

Polymyxins Paenibacillus polymyxa Insertion of the AMPs into the
membrane

MDR Gram-negative
bacteria

Eye and wound infections
(130)
June 2022 | Volume 13 | Article 9
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existing antibiotics. More research and development are still
required to view the true potential of these agents as powerful
tools against drug-resistant pathogens. However, new antibody-
based drugs or AMPs might establish their relevance and make a
difference in some infectious disease sectors. If these expectations
are satisfied, a new generation of antimicrobial medications that
are flexible, powerful, and long-lasting will be accessible soon.
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González-Guerra E, et al. Antimicrobial Activity of Cathelicidins of
Mammals From Avian, Aquatic and Terrestrial Environments. In: A
Méndez-Vilas, editor. Antimicrobial Research: Novel Bioknowledge and
Educational Programs. Badajoz, Spain: Formatex Research Center S.L
(2016).
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