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Macrophages originating from the yolk sac or bone marrow play essential roles in tissue homeostasis and disease. Bone marrow-derived monocytes differentiate into Ly6Chi and Ly6Clo macrophages according to the differential expression of the surface marker protein Ly6C. Ly6Chi and Ly6Clo cells possess diverse functions and transcriptional profiles and can accelerate the disease process or support tissue repair and reconstruction. In this review, we discuss the basic biology of Ly6Chi and Ly6Clo macrophages, including their origin, differentiation, and phenotypic switching, and the diverse functions of Ly6Chi and Ly6Clo macrophages in homeostasis and disease, including in injury, chronic inflammation, wound repair, autoimmune disease, and cancer. Furthermore, we clarify the differences between Ly6Chi and Ly6Clo macrophages and their connections with traditional M1 and M2 macrophages. We also summarize the limitations and perspectives for Ly6Chi and Ly6Clo macrophages. Overall, continued efforts to understand these cells may provide therapeutic approaches for disease treatment.




Keywords: Ly6Chi and Ly6Clo macrophages, differentiation, inflammation, autoimmune disease, cancer



Introduction

Macrophages contribute to homeostasis and disease through their extensive tissue distribution, functional diversity and plasticity. Tissue-resident macrophages (TRMs) arise from two sources: embryonic precursors and circulating monocytes (1–3). Embryonic macrophages contribute to self-maintenance, tissue remodeling and genotoxic stress resistance (4, 5), whereas bone marrow monocyte-derived macrophages act as short-lived effector cells contributing to various physiological activities, such as atherosclerosis and fibrosis (6). Conventionally, macrophages with different functions are described as M1 and M2 macrophage subsets (7). The M1 macrophages are known as classically activated macrophages, which contribute to primary host defense against pathogens (8). The M2 macrophages are known as alternatively activated macrophages, which heal tissue injury or damage caused by M1 macrophages and are involved in stimulating antibody production in adaptive humoral immunity (9). In addition, an increasing number of tumor-associated macrophages (TAMs) have been identified, which execute diverse functions such as suppression of antitumor immunity (10). The concept of M1 and M2 macrophage subsets is mainly derived from the in vitro polarization inducing assays, hence the M1 and M2 classifications are more suitable to describe the activation state of macrophages in vitro.

During the recent decade, the new classification of Ly6Chi and Ly6Clo macrophages has been widely applied to investigate monocyte-derived macrophages and to depict the precise state of macrophages in an intricate internal microenvironment (11). This classification system represents two different macrophage populations that are distinct in phenotype, function and even origin (12–14). Ly6C is a glycoprotein that is expressed on macrophage/dendritic cell precursors during mid-stage development. Differential Ly6C expression can identify functionally distinct macrophage populations in the steady state or disease (15, 16). In mice, the circulating monocytes derived from bone marrow are composed of at least Ly6Chi and Ly6Clo subsets. The CX3CR1midCCR2+Ly6Chi and CX3CR1hiCCR2-Ly6Clo phenotypes are functional equivalent with CD14hiCD16lo and CD14loCD16hi phenotypes in humans (17, 18). Recently, emerging studies have shown that the continuum of macrophage phenotypes, not the two circumscribed profiles originally proposed, plays important roles in various diseases, including kidney injury (19), liver fibrosis (13), rheumatoid arthritis (20), and breast cancer (21). Here, we review the new classification and perspectives in monocyte-derived macrophage research, including the origin, heterogeneity, conversion, and function of Ly6Chi and Ly6Clo macrophages.



Basic Biology of LY6CHI and LY6CLO Macrophages


Origin, Development, and Functional Heterogeneity

For half a century or more, the prevailing doctrine for tissue macrophages has been that these cells originate from circulating monocytes (22). Recently, it has become obvious that most tissue macrophages originate during embryonic development (23). TRM populations are mainly contributed by yolk sac (YS)-derived macrophages, erythro-myeloid progenitors (EMPs), and fetal hematopoietic stem cells (HSCs) (24, 25). In mice, yolk sac- or fetal liver-derived macrophages are located in different adult tissues, including the brain, epidermis and kidneys, and contribute to tissue homeostasis independent of bone marrow-derived monocytic precursors (5, 24, 25). Embryonic- derived and monocytes-derived subsets contribute to macrophage in adult tissues, including the gut and dermis (26–29). In addition, in the heart and pancreas, the macrophage population is a mixed population of yolk sac-derived macrophages, fetal liver-derived monocytes and bone marrow-derived monocytes (5).

Although tissues are populated with fetal macrophages, monocyte-derived macrophages might replace TRMs to a greater or lesser extent. Monocyte-derived macrophages are classified as CD11BhiF4/80hiLy6Chi macrophages (namely, Ly6Chi macrophages) and CD11Bhi F4/80hiLy6Clo macrophages (namely, Ly6Clo macrophages) based on the expression of Ly6C, a cell-surface glycoprotein (14, 19). Ly6Chi macrophages develop from recruited classical CCR2+CX3XR1loLy6Chi monocytes (analogous to human CD14+CD16- monocytes) during inflammation and are then converted into Ly6Clo macrophages. With the development of techniques such as single-cell sequencing and mass cytometry, new dimensions of the richness and heterogeneity of macrophages have been mapped. According to the latest single-cell analysis studies, four subpopulations of Ly6Chi inflammatory macrophages have been found to be present in kidney injury through relatively meticulous research (3). Here, we focus on the two most unlike subsets, Ly6Chi and Ly6Clo macrophages, to reveal the phenotypic and functional differences between them.

The Ly6Chi and Ly6Clo subsets exhibit functional heterogeneity, which is indicated by the high diversity in cell-surface marker, cytokine release and transcriptional profiles (14, 30–32). Indeed, Ly6Chi macrophages derived from circulating Ly6Chi monocytes are more enriched in the acute inflammatory response and show a proinflammatory ability (3). They exert proinflammatory and profibrotic functions mediated through various inflammatory and secreted factors, including tumor necrosis factor (TNF), interleukin (IL)-1β, and transforming growth factor (TGF)-β (33, 34). In contrast, Ly6Clo macrophages attract wide attention for their protective roles in wound healing, anti-inflammatory processes, and antifibrotic processes (14, 35, 36). Ly6Clo macrophages play diverse roles in maintaining the stability of the endothelium, regulating vasculogenesis, and transporting ions (3). They supposedly derived from Ly6Clo monocytes which are known to patrol endothelial cell of the blood vasculature (37). The detailed functions of the two subsets are discussed below (Table 1).


Table 1 | The role of Ly6Chi/lo macrophages in disease.





Conversion of Ly6Chi Macrophages Into Ly6Clo Macrophages

Conversion of Ly6Chi macrophages into Ly6Clo macrophages through phenotypic switching is an important source of tissue macrophages (13, 14, 33), but the precise regulatory mechanism underlying this process is still unclear. However, studies have revealed the signals driving Ly6Chi/Ly6Clo monocyte conversion and its molecular bases (55, 56). For example, it was proposed that the conversion of Ly6Chi monocytes into Ly6Clo monocytes might be a functional transition caused by loss of microenvironmental signals that sustain the expression of genes specific to Ly6Chi cells rather than a true developmental, terminal differentiation program (57, 58). The transcription factors Nr4a1 and Cebpβ were reported to be master regulators that promote the conversion of Ly6Chi monocytes into Ly6Clo monocytes (56, 59, 60). Both Nr4a1−/− mice and Cebpβ−/− mice lack Ly6Clo monocytes (59, 61). In early studies, macrophage colony-stimulating factor 1 (CSF-1) was shown to promote the maturation of macrophages from bone marrow-derived macrophage precursors accompanied by a rapid decrease in Ly6C expression, which indicated the significance of CSF-1 in phenotypic switching (62, 63). Apart from this, IL-4 and IL-10 were found to have the ability to promote liver-derived Ly6Chi macrophage conversion into Ly6Clo macrophages, and a synergistic effect was observed between these two cytokines (13). Resolving D2, a specialized proresolving lipid mediator, significantly improves muscle regeneration by promoting Ly6Chi/Ly6Clo macrophage conversion (36). Phagocytosis by Ly6Chi macrophages fosters Ly6Chi/Ly6Clo macrophage conversion in the fibrotic liver through liposomal stimulation (14). In addition, the CX3CR1-CX3CL1 signaling axis indirectly regulates the phenotypic switch between Ly6Chi/lo macrophages (38, 40, 43, 64). Since Ly6Clo macrophages are beneficial for hepatic fibrosis resolution, the number of Ly6Chi macrophages was significantly increased in CX3CR1-/- mice, followed by chronic inflammation and increased hepatic fibrosis (40). Moreover, neutrophils are involved in the Ly6Chi/Ly6Clo macrophage switch by expressing reactive oxygen species (ROS) to orchestrate liver repair (41) (Figure 1). Although the master regulators involved in Ly6Chi/Ly6Clo macrophage conversion are not fully understood, many investigations are contributing to the answer.




Figure 1 | The distinct functions of Ly6Chi and Ly6Clo macrophages in injury, chronic inflammation and wound repair. During the initial stage of inflammation, Ly6Chi monocytes are recruited to the injury site via cytokines, including CC-chemokine ligand 1 (CCL1), CC-chemokine ligand 2 (CCL2), and fractalkine (CX3CL1), wherein they develop into Ly6Chi macrophages. These cells express proinflammatory mediators, such as nitric oxide (NO), tumor necrosis factor (TNF) and interleukin-1β (IL-1β), which exacerbate tissue injury. These Ly6Chi cells interact with kidney-resident macrophages through the S100a8/a9-Tlr4 axis, initiating and amplifying the inflammatory response. During fibrosis, Ly6Chi cells promote this process through the effects of transforming growth factor-β (TGFβ) on quiescent hepatic stellate cell activation, platelet-derived growth factor (PDGF) on myofibroblast proliferation and TNF and IL-1β on activated hepatic stellate cells. Ly6Clo macrophages accumulate via the recruitment of Ly6Clo monocytes or phenotype switching from Ly6Chi macrophages. Proresolution macrophages inhibit the inflammatory response and T-cell function through anti-inflammatory factors and CD52-HMGB1 binding. They also engulf apoptotic T cells, which play anti-inflammatory roles. During the phagocytic process, Ly6Clo cells produce matrix metalloproteinases (MMPs), such as MMP9, MMP12, and MMP13, accelerating extracellular matrix (ECM) degradation and inhibiting fibrosis. During tissue repair and reconstruction, Ly6Clo cells secrete hepatocyte growth factor (HGF) and insulin-like growth factor (IGF) to promote wound healing and tissue regeneration. Regarding the mechanism underlying phenotypic switching, various factors and processes, including cytokines (CSF-1, IL-4, and IL-10), the CX3CR1-CX3CL1 axis, neutrophil-released ROS, phagocytosis, and Resolving D2, have been explored.






Ly6CHI and Ly6CLO Macrophages in Homeostasis and Pathology


Ly6Chi and Ly6Clo Macrophages in Homeostasis

In the steady state, tissue-resident macrophages, such as microglia, Langerhans cells, and Kupffer cells, exhibit a F4/80hiLy6Clo phenotype. These tissue-resident macrophages play fundamental homeostatic roles in the clearance of apoptotic cells and participate in tissue immune surveillance (42). They maintain themselves locally and independently of circulating precursors. For instance, the most important cardiac macrophages in the steady state are F4/80hiLy6CloMHCIIhi and F4/80hiLy6CloMHCIIlo subsets. These subsets exist independently of bone marrow-derived monocytes and are renewed through in situ proliferation. They perform more antigen sampling and efferocytosis than infiltrating Ly6Chi macrophages (27). In contrast, Ly6Chi macrophages are rarely involved in tissue homeostasis. Classical Ly6Chi monocytes do not enter tissues on a large scale, and they intend to switch to a Ly6Clo phenotype with time of residency. Ly6Chi monocytes remain in an undifferentiated state instead of becoming committed macrophages or DCs, which is different from the differentiation of Ly6Chi monocytes into macrophages or DCs during inflammation (23). However, when homeostasis is disrupted, bone marrow-derived Ly6Chi monocytes are recruited to the site of inflammation.



Ly6Chi/Ly6Clo Macrophages in Injury, Chronic Inflammation and Wound Repair

The proinflammatory and profibrotic roles of Ly6Chi macrophages has been reported in various diseases, among which liver injury and fibrosis are typical models used to investigate the function of the Ly6Chi subset. During acute liver injury and chronic liver diseases such as liver fibrosis, CCR2+Ly6Chi monocytes are recruited to the liver in a manner dependent on the CCL2/CCR2 or CCL1/CCR8 chemokine-receptor interaction (39, 61). In the liver, these cells develop into infiltrating Ly6Chi macrophages and exhibit a proinflammatory phenotype. Ly6Chi macrophages express inflammatory genes, including inducible nitric oxide synthase (iNOS) and TNF, which aggravate the inflammatory response (65). In other inflammatory diseases, such as acute lung injury (19) colitis (66) and skin wound healing (28, 44, 67), the Ly6Chi subset is the source of IL-1β and TNF, and Ly6Chi macrophage-targeted therapies are useful for decreasing inflammation. Functionally, Ly6Chi macrophages intensify the scarring occurring during liver fibrosis by promoting hepatic stellate cell (HSC) survival via IL-1β and TNF-induced NF-κB activation and TGF-β/PDGF-mediated HSC transdifferentiation and proliferation (45, 46). Inhibiting infiltrating Ly6Chi monocytes in CCR2-/- mice was shown to relieve liver fibrosis (39). Similarly, the profibrotic function of Ly6Chi macrophages in lung and kidney fibrosis has been revealed (19, 43, 68). Mechanistically, Ly6Chi macrophages with high S100a8 and S100a9 expression were found to have a strong interaction with kidney-resident macrophages through the S100a8/a9-Tlr4 axis, thereby initiating and amplifying the inflammatory response during kidney injury (3) (Figure 1).

In contrast to Ly6Chi macrophages, Ly6Clo macrophages play important roles in inhibiting inflammation, promoting wound healing, improving regeneration and decreasing fiber deposition during tissue injury and fibrosis (Figure 1). Taking liver fibrosis as an example, the restorative Ly6Clo subset upregulates phagocytosis-related genes (Fcrls, Cd5l, Mertk, Trem2, and Axl), matrix degradation-related genes (Mmp9, Mmp12, and Mmp13), and growth factors (Hgf, Igf1 and Mif), which facilitate fiber degradation, fibrosis resolution, and tissue protection (14). In sciatic nerve injury, inflammation-resolving Ly6Clo macrophages derived from Ly6Chi cells promote an anti-inflammatory milieu by efferocytosis (47). In skeletal muscle injury, the proresolving lipid mediator resolvin D2 increases Ly6Clo macrophages and improves muscle regeneration (36). Ly6Clo macrophages express genes closely related to the mitotic cell cycle and cell division and are involved in various biological processes, including defense reactions and responses to cytokine stimuli and viruses, after resolvin D2 treatment (36). In myocardial infarction, Ly6Clo macrophages play crucial roles in postinfarct healing and optimal scar formation by secreting immunoregulatory factors, such as TGF-β (48). However, a destructive role for Ly6Clo macrophages has also been reported. For example, bone marrow-derived Ly6Clo macrophages worsen renal fibrosis by secreting various cytokines that promote the transdifferentiation of fibroblasts into myofibroblasts (69). This viewpoint is quite different from those in previous reports, and the debate on this needs to be resolved.



Ly6Chi and Ly6Clo Macrophages in Autoimmune Disease

The detrimental functions of Ly6Chi macrophages in autoimmune disease has been revealed in various reports. However, Ly6Clo macrophages show harmful or beneficial functions in diverse pathological conditions and different autoimmune disease types (Table 1). Rheumatoid arthritis (RA) is a complex autoimmune disease influenced by both genetic and environmental factors (70). Macrophages and monocytes have been reported to play important roles in the pathophysiology of RA (71). Ly6Chi macrophages have been reported to aggravate the progression of RA. Decreases in Ly6Chi macrophage numbers and chemokines are favorable markers for clinical improvement with treatment (49). Infliximab was used to improve RA in human TNF transgenic (hTNF-Tg) mice, functioning mainly by inducing apoptosis in Ly6Chi macrophages and inhibiting the recruitment of Ly6Chi monocytes (49). Ly6Clo macrophages are believed to have diverse functions in RA. Serum transfer-induced arthritis (STIA) mice are good model for RA studies (72, 73). Researchers revealed that Ly6Clo monocytes were recruited to arthritic joints and developed into Ly6CloMHC-II+ and Ly6CloMHCII-macrophages; among these cells, Ly6CloMHCII-macrophages drove the development of joint pathology (73). However, in contrast, Ly6Clo monocytes developed into Ly6Clo macrophages, which resembled anti-inflammatory M2 macrophages and contributed to reducing joint inflammation through the mobilization of regulatory T (Treg) cells (74).

Systemic lupus erythematosus (SLE) is a heterogeneous systemic rheumatic disease with profound effects on multiple organs (75). In a mouse model of lupus nephritis (MRL-Faslpr mice), CSF-1 shifted circulating Ly6Chi monocytes toward inflammatory Ly6Chi macrophages that induce apoptosis in tubular epithelial cells, damaging the kidneys (76). A similar study showed that the Ly6Chi subset increased notably and secreted proinflammatory cytokines and chemokines during SLE (77). However, Ly6Clo macrophages possess distinct functions in SLE. At nephritis onset, Ly6Clo macrophages upregulate the cell-surface marker CD11b, acquire cathepsin and matrix metalloproteinase activity, and protect cells from death. However, these changes reverse after the induction of remission (77). Multiple sclerosis (MS) is a chronic autoimmune disease mediated by a complex interaction between autoreactive lymphocytes and myeloid cells in the central nervous system (CNS) and is the most common inflammatory neurological disease in young adults (78). Experimental autoimmune encephalomyelitis (EAE), characterized by immune cell infiltration of the CNS, is an ideal model for investigating MS (79). Various studies in EVE models have revealed that CCR2+Ly6Chi monocytes are required for the initiation and progression of EVE (50, 51, 79). Ly6Chi macrophages derived from Ly6Chi monocytes are essential for the maintenance of chronic inflammation and the progression of EVE. Acetylcholine-producing natural killer (NK) cells were shown to be cytotoxic to Ly6Chi cells in EVE, acting by inhibiting the production of proinflammatory cytokines and thereby attenuating CNS inflammation (80). Autoimmune (noninfectious) uveitis is a group of intraocular inflammatory diseases that target the neuroretina, and this disease can affect the CNS (81). In mice, experimental autoimmune uveitis (EAU) is a model of organ autoimmunity in the eye. By using this model, HSC-derived Ly6Chi and Ly6Clo macrophages with relatively high MHC-II expression were found to be associated with EAU through their antigen-presenting and CD4+ T cell-activating activities (52).



Ly6Chi and Ly6Clo Macrophages in Cancer


Ly6Chi Macrophages in Cancer

Ly6Chi macrophages extensively enhance tumor initiation and malignant progression. They build an inflammatory microenvironment to promote tumor growth, invasion and metastasis. The roles of CCL2/CCR2 signaling and Ly6Chi monocyte recruitment have been implicated as poor prognostic factors in multiple malignancies (53, 54, 82, 83). CCL2/CCR2 signaling was reported to foster metastasis and prolong the survival of tumor-bearing mice, and CCL2 expression and macrophage infiltration are correlated with a poor prognosis and metastatic disease in human breast cancer (84). An anti-CCL2 antibody was found to inhibit the infiltration of Ly6Chi monocytes and tumor metastasis (84). However, CCR2-independent pathway also influenced recruitment under noninflammatory conditions (85). CSF-1 signaling has been reported to determine monocyte recruitment and differentiation in the tumor microenvironment. CSF1R signaling blockade impairs the extravasation of tumor-infiltrating Ly6Chi monocytes (86). In addition, Ly6Chi macrophages are closely connected with immune resistance to ablative radiotherapy in pancreatic ductal adenocarcinoma, as depletion of this subset delays tumor growth after radiotherapy (87). In leukemic mice, an increase in monocyte-derived Ly6Chi leukemia-associated macrophages (LAMs) was detected in extramedullary tissue. Ly6Chi LAMs differ from TAMs in their gene expression profile and activation phenotype. They actively express TNF-α and IL-1β, which contribute to sterile inflammation. Ly6Chi LAMs have high migratory and phagocytotic potentials and promote the extramedullary distribution of leukemia cells (88, 89).



Ly6Clo Macrophages in Cancer

The Ly6Clo macrophages also demonstrate detrimental roles during tumor progression. They promote angiogenesis, exert immunosuppressive effect, and are associated with poor prognosis. The monocyte pool in tumors almost exclusively consists of Ly6ChiCX3CR1lo monocytes, which renew TAM subsets (90). These inflammatory monocytes undergo rapid differentiation into TAMs and, in doing so, lose Ly6C expression (87). TAMs are distinguished as normoxic M1-like Ly6CloMHC-IIhi TAMs and hypoxic M2-like Ly6CloMHC-IIlo TAMs (90, 91). Among TAMs, the Ly6CloMHC-IIlo subset was found to be the main population involved in tumor growth, invasion and metastasis in the mammary adenocarcinoma TS/A model. Although the Ly6CloMHC-IIlo subset exhibits weak antigen presentation, they promote angiogenesis and suppress T-cell proliferation (90). The differentiation of Ly6Chi monocytes into the Ly6CloMHC-IIlo subset is facilitated by CSF1R signaling (86). In breast cancer, the expression of adipocyte/macrophage fatty acid binding protein (A-FABP) in TAMs, especially the Ly6CloMHC-IIlo subset, was shown to facilitate tumor progression. A-FABP expression in the Ly6CloMHC-IIlo subset promoted protumor IL-6/STAT3 signaling through regulation of the NF-κB/miR-29b pathway (21). During lung metastasis, tumor cell-released microparticles (T-MPs) foster the recruitment of inflammatory monocytes, and these cells mature into Ly6Clo macrophages. Ly6Clo cells not only produce IL-6 but also trigger fibrin deposition, facilitating the growth and survival of tumor-repopulating cells, thus setting the stage for lung metastasis (92). As described above, Ly6Clo TAMs are associated with a poor prognosis and tumor progression in multiple cancers. However, a proinflammatory Ly6CloMHC-II+ macrophage subset was confirmed to promote responsiveness to PD-L1 blockade instead of resistance; thus, this subset may have a host-protective role in immune checkpoint blockade therapies (93).





Correlation Between Ly6CHI/LO Macrophages and the M1/M2 Paradigm

Macrophages with distinct functions are traditionally classified as M1 macrophages (classically activated macrophages) and M2 macrophages (alternatively activated macrophages). Cells with the M1 phenotype participate in host defense against pathogens and antitumor immunity. However, those with the M2 phenotype possess anti-inflammatory function and facilitate wound healing and tumor progression (11). Strictly, M1 and M2 macrophages represent only the states polarized by IFN-γ/LPS and IL-4/IL-13 in vitro, respectively (94). This taxonomic lineage clearly defines the two extreme types of the macrophage spectrum, which is especially beneficial for in vitro research. However, in a complex microenvironment in vivo, such as that in CCL4-induced liver fibrosis (14) or chronic alcoholic liver injury (95), macrophages can exist along a continuous spectrum, and the simple M1/M2 paradigm cannot describe the state of macrophages. Therefore, researchers have begun to focus on the Ly6Chi/lo phenotype outside the M1/M2 classification and depict various roles in homeostasis and pathology according to this classification system. Ly6Chi/lo and M1/M2 macrophages have overlap in the gene expression profile. Ly6Chi macrophages express some signature M1 markers, including TNF, iNOS and IFN-γ, and M2 markers, including Chi3l3, TGF-β and IL-10. Ly6Clo macrophages upregulate traditional M1 genes, such as CD16 and CD32, and express some M2-specific markers, including CD206 and CD301 (14, 96). Therefore, when the activation state of macrophages in vivo is described, these cells can be defined more accurately through the combination of macrophage origin, surface markers and factors inducing the macrophage activation state.



Current Research Gaps and Future Perspectives

In summary, macrophages are a key innate immune cell subset that plays various roles in multiple biological processes. The conventional M1/M2 paradigm is widely applied to describe the state of macrophages. Owing to the limitations of the M1/M2 paradigm, the Ly6Chi/lo classification is increasingly used to describe cells involved in various diseases because this precise depiction is based on cell origin, stimuli, and identification markers (94). Here, we summarize the indispensable functions of Ly6Chi and Ly6Clo macrophages in homeostasis and pathology. Recent study highlighted the importance of tissue niches (blood vessels and nerves) to the two subsets (97). After blood monocytes recruitment and differentiation, the two distinct subsets preferentially reside within different, but conserved, subtissular niches located adjacent to either nerve fibers (Ly6CloMHCIIhi) or blood vessels (Ly6ChiMHCIIlo), which demonstrate conserved niche-dependent functional programming (97). In fact, whether these Ly6Chi and Ly6Clo macrophage subsets interact with their respective surroundings in function and metabolism needs to be further explored. New genetic tools promote the disclosure of macrophage heterogeneity. Recently, Kim et al. established a binary transgenic split Cre system that allows differential targeting and translatome analysis of CNS border-associated macrophages (98). Genetics-based RiboTag translatome profiling can be a valuable and complementary addition to single cell transcriptomics and can be widely applied in the future.
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