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Human placental hematopoietic
stem cell-derived natural killer
cells (CYNK) recognize and
eliminate influenza A virus-
infected cells

Manojkumar Gunasekaran, Andrea Difiglia, John Fitzgerald,
Robert Hariri , William van der Touw and Tanel Mahlakõiv*

Celularity Inc., Florham Park, NJ, United States
Influenza A virus (IAV) infections are a significant recurrent threat to public

health and a significant burden on global economy, highlighting the need for

developing more effective therapies. Natural killer (NK) cells play a pivotal role

in the control of pulmonary IAV infection, however, little is known about the

therapeutic potential of adoptively transferred NK cells for viral infections. Here,

we investigated the antiviral activity of CYNK, human placental hematopoietic

stem cell-derived NK cells, against IAV infection in vitro. Virus infection induced

the expression of NK cell activating ligands on respiratory epithelial cells,

resulting in enhanced recognition by CYNK cells. Upon co-culture with IAV-

infected epithelial cells, CYNK exhibited elevated degranulation and increased

production of IFN-g, TNF-a and GM-CSF in a virus dose-dependent manner.

Furthermore, CYNK showed virus dose-dependent cytotoxicity against IAV-

infected cells. The antiviral activity of CYNK was mediated by NKp46 and

NKG2D. Together, these data demonstrate that CYNK possesses potent

antiviral function against IAV and warrant clinical investigations for adoptive

NK cell therapies against viral infections.
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Introduction

Seasonal influenza viruses primarily target epithelial cells of the upper airways, and

the infection is typically associated with a mild respiratory illness. However, occasionally,

the virus can spread from the upper airways to the lower respiratory tract resulting in

pneumonia and acute respiratory distress syndrome. Influenza virus pandemics,

epidemics and sporadic outbreaks result in heightened morbidity and mortality,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.900624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.900624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.900624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.900624/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.900624/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.900624&domain=pdf&date_stamp=2022-10-20
mailto:tanel.mahlakoiv@celularity.com
https://doi.org/10.3389/fimmu.2022.900624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.900624
https://www.frontiersin.org/journals/immunology


Gunasekaran et al. 10.3389/fimmu.2022.900624
therefore implying a significant burden on global healthcare (1,

2). While vaccination remains the most effective means to

prevent and control influenza virus infections, vaccines have

limited efficacy and need seasonal redesign due to rapid

antigenic evolution (3). While various antiviral drugs exist,

drug-resistant viruses have emerged (4). Alternative broad-

spectrum therapies are therefore urgently needed to control

emerging virus strains.

Natural killer (NK) cells are innate lymphoid cells that play a

key role in immune surveillance against tumorigenesis and

infectious microorganisms. NK cells circulate the body probing

the environment using an array of activating and inhibitory cell

surface receptors that distinguish between healthy and stressed

cells. NK cell activating receptors, including natural cytotoxicity

receptors (NCRs) NKp30, NKp44, NKp46 and NKG2D,

recognize cell surface stress ligands that are upregulated on

transformed or infected cells. In addition, NCRs recognize

pathogen-associated molecules, such as viral hemagglutinins

(HA), on infected cells (5–7). Target cell recognition leads to

NK cell activation and specific target eradication via “injection”

of cytolytic granules, containing granzymes and perforin, or by

death ligand induced apoptosis (8, 9). Activated NK cells also

secrete a variety of cytokines and chemokines, including

interferon gamma (IFN-g), tumor-necrosis-factor alpha (TNF-

a) and granulocyte-macrophage colony-stimulating factor (GM-

CSF) that support target cell killing and shape the developing

adaptive immune response (10–12).

Recent studies have demonstrated robust activation of NK

cells during viral infections, regardless of the virus class (13) and

that the depletion of NK cells aggravates viral pathogenesis in

animal models (14–18). In humans, it was reported that the

number of NK cells decreased upon seasonal IAV infection in

peripheral blood (19) and NK cell lymphopenia in the peripheral

blood and lung was associated with disease severity during the

2009 pandemic H1N1 infection (20, 21). In addition to direct

cytolysis of infected cells, lung-resident NK cells produce a

significant amount of IFN-g (22) that promotes humoral and

cell-mediated immunity and contributes to survival in influenza

infection in mice (23, 24). Similarly, NK cell-derived TNF-a
contributes to reduced influenza virus replication in lung

epithelial cells (25–27). The many facets of NK activity in

respiratory infections was reviewed by Culley et al. (28). The

protective role of NK cells during viral infections suggests that

boosting NK cell numbers or activity may provide a clinical

benefit against IAV. We have developed CYNK-001, an off-the-

shelf allogeneic NK cell population derived from human

placental hematopoietic stem cells, that efficiently kills various

tumor cell lines in vitro and in vivo (29, 30). While adoptive NK

cell therapies, including CYNK-001, are being investigated in the

clinical setting for the treatment of hematological and solid

tumors, NK cell therapies and their potential benefit in

infectious diseases has been little investigated.
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Here, we took the first step to assess the antiviral function of

CYNK (research grade CYNK-001) using an in vitro IAV

infection model on a respiratory epithelial cell line. We

demonstrate that CYNK recognize IAV-infected cells via

highly expressed NK cell activating surface receptors and lyse

IAV-infected epithelial cells.
Materials and methods

CYNK cell culture

CYNK cells are the research-grade counterpart of CYNK-

001, a cryopreserved off-the-shelf placental hematopoietic stem

cell-derived NK cell product manufactured under current good

manufacturing practice standards (30). CYNK stem cells are

generated by expanding and differentiating placental

hematopoietic CD34+ stem/progenitor cells in a 35-day culture

process in the presence of cytokines, including thrombopoietin,

stem cell factor, FLT3 ligand, recombinant human interleukin

(rhIL)-7, rhIL-15, and rhIL-2 as described in (31). CYNK are

stored frozen in the gas phase of liquid nitrogen.
In vitro characterization of CYNK

Frozen CYNK cells were thawed and washed in staining

buffer (10% fetal bovine serum (FBS) in phosphate buffered

saline (PBS, Gibco)). CYNK cells were stained with LIVE/DEAD

Fixable Aqua Dead Cell Stain (Invitrogen) in PBS, followed by

blocking in Purified Mouse IgG2a, k Isotype Control (BD),

Human Fc Block (BD) and BD Horizon Brilliant Stain Buffer

(BD) in staining buffer. Cells were then stained with

fluorophore-conjugated antibodies from BD, Miltenyi Biotec

and Biolegend diluted in staining buffer according to

manufacturers’ instructions. The following antibodies were

used: CD226 (DNAM-1) - PE (Clone: DX11, BD), CD337

(NKp30) – BV421 (Clone: p30-15, BD), CD335 (NKp46) –

BV650 (Clone: 9-E2, BD), CD56 (NCAM1) – AF700 (Clone:

5.1H11, BioLegend), CD3 - APC-Cy7 (Clone: SK7, BD), CD14 -

APC-Cy7 (Clone: MjP9, BD), CD19 - APC-Cy7 (Clone:

SJ25C1, BD), CD336 (NKp44) – BV510 (Clone: p44-8, BD),

CD314 (NKG2D) – APC (Clone: BAT221, Miltenyi Biotec).

Samples were acquired on Cytek Aurora flow cytometer (Cytek)

and data analyzed on FlowJo Software (BD).
Influenza A virus

Influenza virus A/Puerto Rico/8/34 (IAV PR8) H1N1 virus

was obtained from ATCC.
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Virus infection and analysis of NK cell
receptor ligand expression

Human alveolar basal epithelial adenocarcinoma cell line

A549 (ATCC) were maintained in a humidified incubator at

37°C and 5% CO2. A549 were seeded at a concentration of 106

cells per well in a 6-well plate in complete F-12K medium

(supplemented with 10% FBS, 100 units/ml penicillin G, 100

mg/ml streptomycin) (Gibco). After 24 hours, the cells were

washed with PBS and infected with IAV A/Puerto Rico/8/34

strain in serum-free Opti-MEM medium (Gibco) at various

multiplicity of infection (MOI). Infection was performed at

room temperature with gentle rocking for 1 hour, followed by

replacement of the inoculum with complete F-12K medium, and

the cells were returned to the incubator. Cells were stained and

analyzed using flow cytometry after 24 or 48 hours of infection.

A549 cells were surface labelled with fluorophore-conjugated

antibodies: anti-ULBP1 – PE (clone: 170818, R&D Systems),

anti-ULBP-2/5/6 - PE (clone: 165903, R&D Systems), anti-

ULBP3 - PE (clone: 170818, R&D), anti-MICA/B - APC

(clone: 6D4, Biolegend), CD95 (Fas) – FITC (clone: DX2,

Biolegend), CD155 – PE-Cy7 (clone: TX56, Biolegend), CD112

(Nectin-2) – PE-Cy7 (clone: TX31, Biolegend), B7H6 - APC

(clone: 875001, R&D Systems), CD261 (DR4) - APC (clone:

DJR1, Biolegend), DR5 - PE (clone: DJR2-4 (7-8), Biolegend) or

Fc-coupled recombinant human NK cell receptor proteins

NKp30, NKp44, NKp46 and NKG2D (all from R&D systems),

followed by anti-human-Fc – Alexa Fluor 647 (clone: HP6017,

Biolegend). Intracellular IAV nucleoprotein (NP) was stained

with anti-influenza NP – FITC (clone: D67J, Thermo Fisher

Scientific) after fixation and permeabilization of surface-stained

cells with Cytofix/Cytoperm (BD). Cells were analyzed using

Cytek Aurora (Cytek) and the data were analyzed using FlowJo

Software (BD).
Degranulation and intracellular
cytokine staining

A549 cells were seeded at 104 cells per well in a 96-well plate

in complete F-12K medium. PR8 infection was performed as

described above. CYNK cells were added 24 hours post infection

at an effector-to-target (E:T) ratio of 10:1 with anti-CD107a –

BV786 (clone H4A3, BD) in assay buffer (RPMI (Gibco) with

10% FBS). After 1 hour, 2 mMmonensin (Biolegend) and 3mg/ml

Brefeldin A (BD) were added and incubated for 3 hours. Cells

were stained with Live/Dead Fixable Aqua Stain (Thermo Fisher

Scientific) and labelled with anti-CD56 (NCAM1) – Pe-Cy7

(clone: 5.1H11, Biolegend), anti-CD3 – APC-Cy7 (clone: sk7,

BD), anti-CD14 – APC-Cy7 (clone: mFp9, BD) and anti-CD19
Frontiers in Immunology 03
– APC-Cy7 (clone: SJ25C1, BD). For intracellular cytokine

staining, surface-stained cells were permeabilized using

Cytofix/Cytoperm (BD) and cells were stained with anti-TNF-

a - PE (clone: MAb11, BD) and anti-IFN-g - APC (clone: B27,

BD) antibodies. Cells were analyzed using Cytek Aurora (Cytek)

and the data were analyzed using FlowJo Software (BD).
Cytotoxicity assay

A549 cells were seeded at 9x103 cells per well in 96-well

electronic microtiter plates (Agilent) in complete F-12K

medium. The next day cells were infected with PR8 and 3-day

recovered CYNK cells were added at an effector-to-target (E:T)

ratio of 5:1. Cytotoxicity was measured using the xCELLigence

Real-Time Cell Analysis (RTCA) platform (Agilent). Cell index,

indicating the impedance of electron flow caused by adherent

cells was recorded real time. Percentage of cytolysis was

calculated using the formula: (cell index of no effector–cell

index of effector)/cell index of no effector×100.
NK receptor blocking

NK cell receptors were blocked for 30 minutes at 4°C on

CYNK cells with 10 µg/ml of anti-NKp30 (clone: P30-15,

Biolegend), anti-NKp44 (clone: P44-8, Biolegend), anti-NKp46

(clone: 9E2, Biolegend) and/or anti-NKG2D (clone: 1D11,

Biolegend). IgG1 (clone: MOPC21, Biolegend) was used as a

control. CYNK cells were then co-cultured with PR8-infected

A549 cells at an E:T ratio 10:1 for 24 hours in the presence of

indicated antibodies.
Cytokine and chemokine quantification

CYNK cells were co-cultured with PR8-infected A549 cells at

an E:T ratio 10:1 for 24 hours and cytokines and chemokines

were quantified using Milliplex MAP Human CD8+ T cell

magnetic bead panel (Millipore). Samples acquired using with

the FlexMap 3D platform and data analyzed using Belysa curve

fitting software.
Statistical analysis

GraphPad Prism (GraphPad Prism Software, Inc.) was used

for statistical analysis. All experiments have been repeated at

least twice. A representative data is shown is not indicated

otherwise. Statistical significance was shown as *, P < 0.05; **,

P < 0.01 and ***, P < 0.001, ****, P < 0.0001.
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Results

NK cells recognize virus-infected cells via specific receptor-

ligand interactions. To explore the ability of CYNK to recognize

virus-infected cells, we first analyzed the cell surface expression

of NK cell activating receptors that are known to mediate the

antiviral activity of NK cells. CYNK cells present with the

nominal NK cell phenotype: a lack of expression of lineage

markers CD3, CD14 and CD19, but high expression of CD56

(Figure 1A) and NK cell activating receptors NKp30, NKp44,

NKp46, NKG2D and DNAM-1 (Figures 1B, C).

To understand whether ligands for CYNK-expressed NK cell

receptors are modulated by viral infection on target cells, we next

established an in vitro infection model where a human lung

epithelial cell line A549 is infected with IAV strain PR8/34

(H1N1) and analyzed the expression of NK cell activating

receptor ligands on infected cells (Supplementary Figure 1).

A549 cells were chosen as they are a common IAV in vitro

infection model and are relatively resistant to NK cell killing

even at high effector-to-target ratios (32). By 48h post infection,

PR8 infection resulted in a significant cytopathic effect in A549

cells (Supplementary Figures 1A-D). As the NK cell receptors

expressed on CYNK cells have multiple ligands, we used

recombinant Fc-coupled NKp30, NKp44, NKp46 and NKG2D

proteins to analyze their interaction with infected A549 cells.

Virus infection significantly increased the binding of

recombinant NKp30, NKp44, NKp46 and NKG2D proteins

compared to non-infected cells (Supplementary Figures 1E, F).

To further characterize the infection-induced ligands, we used

antibodies against major known NK cell receptor ligands. PVR

(CD155) and Nectin-2 (CD112), ligands for DNAM-1, were

highly expressed but not modulated by infection. B7H6, a strong

ligand for NKp30, was not expressed on A549 cells. Virus
Frontiers in Immunology 04
infection induced significant changes only in the expression of

UL16 Binding Protein family members that activate NKG2D

(Supplementary Figure 1G). To exclude that antibodies and

proteins bound to the high proportion of dying cells at 48h

post infection in a nonspecific manner, we titrated virus dose

and analyzed virus nucleoprotein (NP) staining and NK cell

receptor binding at 24h post infection (Figure 2A). IAV infection

resulted in increased NP expression in a dose-dependent

manner and induced up to 10% increase in NKp30, NKp44

and NKG2D ligand expression. NKp46 binding was increased by

infection, however, to a lower extent (Figure 2B). Evaluation of

the expression of NK cell receptor ligands on cells with

increasing virus burden demonstrated a linear correlation

between the level of virus infection and stress-ligand

expression (Figure 2C). Of the major specific NK cell receptor

ligands, increased staining of ULBP2/5/6 on infected cells was

also noted at the 24h timepoint (Figures 2D, E). Together, the

data suggest enhanced recognition of virus-infected cells by

CYNK via specific receptor-ligand interactions.

To directly assess CYNK recognition of infected cells, we

next analyzed CYNK activation upon co-culture with IAV-

infected A549 cells. CYNK cells exhibited elevated cell surface

staining of CD107a, a marker of degranulation that strongly

correlated with the level of infection of target cells (Figures 3A,

B). CYNK exposure to infected target cells also induced IFN-g
and TNF-a production, demonstrated by intracellular cytokine

staining (Figure 3C). While cytokine staining was detected in a

low proportion of CYNK, a significant amount of CYNK-

secreted cytokines was detected in culture media (Figure 3D).

The level of cytokine production by CYNK correlated with the

virus dose used to infect A549 cells (Figure 3E). To understand

whether virus infection sensitizes A549 cells to NK cell-mediated

killing, we applied CYNK on virus-infected cells and monitored
A B

C

FIGURE 1

CYNK cells express NK cell activating receptors involved in virus recognition. (A) Representative flow cytometry dot plots demonstrating the
gating strategy for the analysis of CYNK cells. Thawed CYNK cells were stained with fluorophore-conjugated antibodies recognizing indicated
NK cell markers and analyzed by flow cytometry. Lineage included CD3, CD14 and CD19. CYNK are defined as live CD3- CD14- CD19- CD56+

cells. (B) Proportion of indicated marker expression on CYNK cells. (C) Representative histograms of the expression of indicated NK activating
cell receptors on CYNK cells. mean ± SD (n = 6) FMO - fluorescence minus one.
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cell death in real time. Consistent with previous findings, virus

infection in A549 cells induced cytotoxicity in CYNK against

A549 cells in a virus dose-dependent manner (Figures 3F–H).

While A549 is relatively resistant to NK cell-mediated killing,

CYNK cell cytotoxicity against PR8-infected A549 cells

increased from 5% at 0 MOI to 45% and 64% at MOI 1 and

3, respectively.

To analyze the involvement of specific NK cells receptors in

the antiviral activity of CYNK, we blocked NK cell receptors on

CYNK with antibodies in co-culture with virus-infected A549

cells. IFN-g production was used as a sensitive readout for

CYNK activation. NKG2D and NKp46 blocking resulted in

significantly reduced production of IFN-g, however, combining

all tested antibodies further decreased IFN-g production,

suggesting a synergistic relationship between the NK cell

receptors in CYNK activation (Figure 3I). In agreement with

the latter, combined blocking of NK cell receptors resulted in

decreased cytolysis of virus-infected cells. However, blocking of

single receptors NKp30 and NKp44 mildly increased cytolysis of
Frontiers in Immunology 05
target cells, suggesting their potential inhibitory role on CYNK

activity in this model (Figure 3J and Supplementary Figure 2).

Altogether, the data demonstrate that CYNK recognize

infection-induced stress ligands on virus infected cells via

specific receptor-ligand interactions, resulting in CYNK

degranulation, cytokine production and target cell cytolysis.
Discussion

Over the past decades, considerable progress has been made

in the development of adoptive NK cell therapies for the

treatment of cancer (33). First indications of a therapeutic

potential of an NK cell therapy came from a trial where

allogeneic NK cells were used to treat acute myeloid leukemia

(AML) (34). Allogeneic culture-expanded or stem cell-derived

NK cells have since been investigated in patients with various

hematological or solid tumors (33, 35). CYNK-001, a

cryopreserved allogeneic placental stem cell-derived NK cell
A

B

D E

C

FIGURE 2

IAV upregulates NK cell ligand expression on infected cells. A549 cells were infected with influenza A virus strain A/Puerto Rico/8/34 (PR8) at
MOI = 0, 0.1, 1 and 3 and cells were analyzed 24h post infection using flow cytometry. Expression of (A) intracellular viral nucleoprotein (NP)
and (B) ligands of indicated NK cell activating receptors. (C) Linear regression analysis for the level of infection (x-axis: % NP+) and the level of
NK receptor binding (y-axis). (D) Expression of indicated ligands of NKG2D. (E) Linear regression analysis for the level of infection (x-axis: % NP+)
and the level of anti-ULBP2/5/6 binding (y-axis). mean ± SD (n ≥ 3). * indicates a statistically significant difference from IgG control in the
experimental group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Infected cells compared to non-infected cells (unpaired t-test). MOI,
multiplicity of Infection.
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therapy, is currently being investigated for various cancer

indications: Phase I study in AML (NCT04310592), Phase I/II

study in multiple myeloma (NCT04309084) and Phase I study in

glioblastoma multiforme (NCT04489420). As per CYNK-001

Investigator’s Brochure, the initial clinical study data established

CYNK-001 to be safe and well-tolerated in cancer patients. Due

to its broad activating receptor expression profile, CYNK-001

recognize and lyse an array of tumor cells in vitro and the

therapy is expected to eliminate tumor cells in patients with

different tumor types (29, 30).
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In addition to the potent anti-tumor effect, NK cells are

critical for the innate immune response against various viral

infections through cytolytic elimination of infected cells,

however, NK cells are little investigated as a potential

therapeutic for infectious diseases (13, 14, 36–38). Here, we

analyzed the antiviral properties of CYNK in an in vitro

influenza A virus (IAV) infection model. We showed that

infection of a human respiratory epithelial cell line increased

the expression of different stress ligands in a virus dose-

dependent manner. These stress ligands are well established
A B

D E

F
G

I

H

J

C

FIGURE 3

CYNK cells are activated by virus-infected cells in a dose-dependent manner. A549 cells were infected with influenza A virus strain A/Puerto
Rico/8/34 (PR8) at the indicated MOI and CYNK were added 24h post infection at the E:T ratio of 5:1. (A) Expression of CD107a on CYNK cells
(n = 4) (B) Linear regression analysis for virus dose (x-axis: MOI) and the level of CD107 expression (y-axis). (C) The proportion of CYNK cells
positive for IFN-g and TNF-a by intracellular cytokine staining after 4 hours of co-culture with virus-infected A549 cells. (n = 3-4) (D)
Quantification of the indicated cytokines in cell culture supernatants collected after 24 hours of CYNK cells co-cultured with virus-infected
A549 cells. (E) Linear regression analysis for virus dose (x-axis: MOI) and the level of secreted cytokine (y-axis). (F, G) Cytolysis of virus-infected
A549 cells by CYNK cells analyzed using an impedance-based RTCA platform. (F) Cytolysis of virus-infected A549 by CYNK cells over 24 hours.
(G) Specific cytolysis of virus-infected A549 cells after CYNK at 4h and 24h of co-culture. (H) Linear regression analysis for virus dose (x-axis:
MOI) and the level of specific cytolysis at 4h or 24h (y-axis). (I) Quantification of IFN-g in cell culture supernatants of CYNK cells co-cultured
with infected A549 cells for 24h in the presence of indicated blocking antibodies: IgG, anti-NKp30, anti-NKp44, anti-NKp46, anti-NKG2D or all
(anti-NKp30, anti-NKp44 anti-NKp46, anti-NKG2D). Data pooled from two individual experiments. (J) Cytolysis of virus-infected A549 cells by
CYNK cells analyzed using an impedance-based RTCA platform in the presence of indicated antibodies or the combination of all (anti-NKp30,
anti-NKp44 anti-NKp46, anti-NKG2D) at 4h and 24h. Paired t-test comparing treatment control (IgG) to blocking antibodies. * indicates a
statistically significant difference from IgG control in the experimental group. mean ± SD (n ≥ 3 donors). *P < 0.05, **P < 0.01. E:T, effector-to-
target ratio; MOI, multiplicity of infection.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.900624
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gunasekaran et al. 10.3389/fimmu.2022.900624
targets of activating receptors NKp30, NKp44, NKp46 and

NKG2D on CYNK cells. Analysis of receptor involvement in

target recognition and CYNK activation using blocking

antibodies revealed that NKp46 and NKG2D contributed

specifically to cytokine production. In the cytolysis model,

only combined blocking of all analyzed receptors resulted in

reduced target cell cytolysis. Individual blocking of receptors

revealed, that NKp30 and NKp44 might play an opposing role as

blocking these receptors increased the cytolytic response,

suggesting that a synergistic role of NKG2D and NKp46

resulted mounting a cytolytic response. This recognition

pattern agrees with earlier publications highlighting the

dominant role of NKp46 in the recognition of virus-infected

cells (5, 36, 38). NKG2D is another key regulator of NK cell

responsiveness as its ligands are common markers of cell stress

upon transformation or infection (9). CYNK has high expression

of NKp44, a unique property compared to peripheral blood NK

cells which have low or undetectable expression of NKp44 (29,

30, 39, 40). While NKp44 was shown to interact with viral HA

and neuraminidase proteins resulting in target lysis, it could also

behave as an inhibitory receptor, as seen here, due to an

immunoreceptor tyrosine-based inhibitory motif (ITIM) in its

cytoplasmic tail (41, 42). Several activating cellular ligands have

been identified for NKp30, including B7H6, however, NKp30

interaction with viral molecules such as poxviral HA and human

cytomegalovirus pp65 protein reduce cytolytic activity of NK

cells (43–45). To date, no role has been identified for NKp30 on

NK cells in influenza virus models. Our data suggests that

NKp30 might inhibit cytolysis against IAV-infected A549 cells.

Using recombinant NK cell receptors, we showed linear

correlation between the level of infection and stress ligand

expression on target cells. Furthermore, we established strong

correlation between the level of target cell infection and CYNK

cell responsiveness (degranulation, cytotoxicity and cytokine

release), demonstrating a dominance of CYNK-activating

signals on infected cells.

CYNK cell activation resulted in high secretion of

immunomodulatory cytokines IFN-g and TNF-a that directly

participate in the innate response against various infectious

agents but also promote the development of adaptive

immunity (46–48). These pro-inflammatory cytokines,

however, are also called a double-edged sword - their

expression must be tightly controlled in space and time to

balance the antiviral function and immunopathology.

Excessive release of IFN-g can result in excessive inflammation

and tissue injury (49, 50).

To further understand the antiviral role of CYNK in IAV

infection, we recently evaluated CYNK in an IAV-induced acute

lung injury model in the mouse (51). The model requires the use

of immunocompetent animals that are known to reject

allogeneic human cells (CYNK). Furthermore, stress ligands

on mouse cells might not be recognized by human NK cell
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receptors on CYNK. While the model is not optimal, CYNK

administration improved clinical symptoms and reduced

inflammation in infected mice. Our in vitro data, together with

the in vivo findings, demonstrate a potent antiviral role for

CYNK cells.

The significance of NK cells in the control of viral infections

has been highlighted by multiple animal models where NK cells

were deficient or defective, and in human NK cell deficiencies

(52). All of these conditions correlate with increased

susceptibility to viral infections and enhanced virus

replication. A decrease in NK cell numbers and activity is a

hallmark of IAV infection and coronavirus disease 2019

(COVID-19) (19–21, 53), suggesting that boosting endogenous

immunity with adoptive transfer of highly activated NK cells,

might offer a clinical benefit by containing the virus. CYNK-001

is an off-the-shelf product that is safe in humans and may offer a

benefit to patients with viral infections, including IAV and

COVID-19.

Together, these studies provide a strong argument for

further investigation of NK cells in the context of virus

infections and suggests that CYNK-001 could be developed as

a treatment for infectious disease for patients with limited

treatment options.
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SUPPLEMENTARY FIGURE 1

IAV increases NK cell ligand expression on virus-infected cells. A549 cells
were infected with influenza A virus A/Puerto Rico/8/34 strain (PR8) at

MOI of 1, followed by analysis at 48 h post infection. (A) Representative
images of phenotypic changes in PR8-infected A549 cells. (B) Proportion
of live A549 cells post infection analyzed by flow cytometry. (C) A

representative histogram demonstrating the proportion of viral
nucleoprotein (NP) staining in infected cells. (D) Proportion of NP

expression among PR8-infected infected cells. (E) Representative
histograms demonstrating the binding of Fc-coupled recombinant NK
Frontiers in Immunology 08
cell receptor proteins to virus-infected cells (a readout for the expression
of respective receptor ligands). (F) Quantification of Fc-coupled

recombinant NK cell receptor protein binding to infected cells and
Mean Fluorescence Intensity (MFI) of NK cell receptor ligand staining by

Fc-coupled recombinant NK cell receptor proteins. mean ± SD (n = 3). (G)
Quantification of the expression of the indicated NK cell receptor ligands

on infected A549 cells and Mean Fluorescence Intensity (MFI) for the
specific ligand staining. mean ± SD (n = 3). mean ± SD (n = 3). * indicates a

statistically significant difference from IgG control in the experimental

group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Ctrl compared
to CYNK (un-paired, t-test). MOI, multiplicity of Infection; Ctrl, control.

SUPPLEMENTARY FIGURE 2

Identification of CYNK cell receptors mediating lysis of virus-infected
cells. A549 cells were infected with influenza A virus strain A/Puerto Rico/

8/34 (PR8) at the indicated MOI and CYNK were added 24h post infection

at the E:T ratio of 5:1. (A) Cytolysis of virus-infected A549 by CYNK cells in
the presence of indicated individual blocking antibodies or the

combination of all (anti-NKp30, anti-NKp44 anti-NKp46, anti-NKG2D)
over 24 hours. Analysis performed using an impedance-based RTCA

platform. (B) Cytolysis data from (C) graphed for 4h and 24h. Paired t-
test comparing control (IgG) to blocking antibodies. * indicates a

statistically significant difference from IgG control in the experimental

group. mean ± SD (n≥3 donors). *P < 0.05, **P < 0.01. E:T, effector-to-
target ratio; MOI, multiplicity of infection.
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