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Ovarian cancer is the most lethal heterogeneous disease among gynecological tumors
with a poor prognosis. Necroptosis, the most studied way of death in recent years, is
different from apoptosis and pyroptosis. It is a kind of regulated programmed cell death
and has been shown to be closely related to a variety of tumors. However, the expression
and prognosis of necroptosis-related genes in ovarian cancer are still unclear. Our study
therefore firstly identified the expression profiles of necroptosis-related genes in normal
and ovarian cancer tissues. Next, based on differentially expressed necroptosis-related
genes, we clustered ovarian cancer patients into two subtypes and performed survival
analysis. Subsequently, we constructed a risk model consisting of 5 genes by LASSO
regression analysis based on the differentially expressed genes in the two subtypes, and
confirmed the strong prognostic ability of the model and its potential as an independent
risk factor via survival analysis and independent risk factor analysis. Based on this risk
model, patients were divided into high and low risk groups. By exploring differentially
expressed genes, enrichment functions and tumor immune microenvironment in patients
in high and low risk groups, the results showed that patients in the low risk group were
significantly enriched in immune signaling pathways. Besides, immune cells content,
immune function activity was significantly better than the high-risk group. Eventually, we
also investigated the sensitivity of patients with different risk groups to ICB immunotherapy
and chemotherapy drugs. In conclusion, the risk model could effectively predict the
survival and prognosis of patients, and explore the tumor microenvironment status of
ovarian cancer patients to a certain extent, and provide promising and novel molecular
markers for clinical diagnosis, individualized treatment and immunotherapy of patients.
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INTRODUCTION

Ovarian cancer (OC) is the deadliest malignancy of gynecological
tumors, causing approximately 150,000 female deaths each year
(1). Besides, owing to its’ heterogeneity, complex and uncertain
etiology and lack of typical clinical symptoms in the early stage,
75% of OC patients are diagnosed as an advanced stage, and
more than 70% of patients recurred after treatment (2).
Therefore, the prognosis largely depends on the clinical stage
and early prevention. In the past few years, the advance of
the diagnosis, surgery and targeted therapy have largely
improved the survival, but the lack of effective indicators of
occurrence and recurrence is still the main obstacle at present, so
the identification of reliable prognostic biomarkers are
indispensable for prolonging the overall survival of OC
patients. At present, CA-125 and human epididymal protein 4
are the most commonly used predictive markers in clinical
practice (3). Nevertheless, due to the complex molecular
mechanisms that affect ovarian cancer prognosis, single-gene
prediction models tend to be less accurate and sensitive, while
multiple genes-based models tend to show better results in
predicting the prognosis of various tumors.

Necroptosis, a regulated programmed cell death, is
mechanistically similar to apoptosis and morphologically
similar to necrosis, whose key regulators of necroptosis
include receptor interacting protein kinase 1, and mixed
lineage kinase domains such as pseudokinase, together
forming a necrosome complex (4, 5), thus activating
programmed necrosis through TNF receptor superfamily, T
cell receptors, Toll-like receptors and etc (6). There is
increasing evidence that necroptosis is involved in the
pathogenesis of many diseases, such as Parkinson’s disease,
infectious diseases and cancers (7, 8). In non-Hodgkin’s
lymphoma, single nucleotide polymorphisms in the RIP3
gene were detected in 458 patients and were associated with
an increased risk of non-Hodgkin’s lymphoma, suggesting that
inheritance of the RIP3 gene variations might contribute to the
onset of the disease (9). Several studies have even found that
necroptosis regulators might be prognostic biomarkers for
cancer and certain diseases (10, 11). In pancreatic cancer,
necroptosis could promote tumor cell migration and invasion
by releasing CXCL5 (12). Besides, Najafov et al. revealed that
necroptosis could promote tumor metastasis and T cell death
(13). Interestingly, necroptosis, an alternative mode of
programmed cell death to overcome apoptosis resistance,
might trigger and amplify the application of antitumor
immunity in cancer therapy. However, the role of necroptosis
in the prognosis and underlying molecular mechanisms of OC
is currently unclear.
Abbreviations: OC, ovarian cancer; GTEX, The Genotype-Tissue Expression;
TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; FDR, false
discovery rate; DEGs, differentially expressed genes; OS, overall survival; AUC,
area under curve; CNV, Copy-number variant; PFS, progression free survival;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; KM,
Kaplan-Meier.
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MATERIALS AND METHODS

Publicly Attainable Expression Datasets
We obtained the RNA-seq data, mutation data and related
clinical information of normal ovarian tissue and ovarian
cancer tissue from GTEX (The Genotype-Tissue Expression,
https://xenabrowser.net/datapages/) and TCGA (The Cancer
Genome Atlas, https://portal.gdc.cancer.gov/repository), and
then normalize the expression profile data to remove batch
effects for further analysis. The RNA-seq data and clinical
information in external validation cohort were downloaded
from the GEO (Gene Expression Omnibus, https://www.ncbi.
nlm.nih.gov/geo/, ID: GSE32062) were displayed in Table 1. All
analyses were performed with R 4.0.1.

Identification of Differentially Expressed
Necroptosis-Related Genes
By searching the previous literature, we obtained 75 necroptosis
genes in Table 2. Then we obtained the expression profiles of 75
necroptotic genes, and obtained 33 differentially expressed
necroptosis-related genes through the limma package (Log2
fold change < 1, false discovery rate (FDR) < 0.05, and P <
0.05). STRING and correlation analysis were used to explore the
interaction network of these differentially expressed genes
(DEGs) (cutoff = 0.2). Furthermore, we performed function
analyses to investigate the enriched functions and pathways of
the DEGs.

NMF Consensus Clustering
NMF clustering was performed to identify stable sample clusters
based on 50 iterations according to the Brunet method using
genes associated with energy metabolism. In addition, the cluster
number, represented by k, was set as 2–10, whilst the best cluster
number was calculated based on the cluster cophenetic
correlation and the observed consensus map. The mean
silhouette width of the consensus membership matrix was
determined using the “NMF” function in the R package.
TABLE 1 | Clinical characteristics of the samples in TCGA and GEO cohort.

TCGA(n=587) GEO(n=260)

Age, years (range) 59 (26,89) 64 (2,96)
Grade
Grade 1 6 (1.0%) 0 (0.0%)
Grade 2 69 (11.8%) 131 (50.1%)
Grade 3 495 (84.3%) 129 (49.9%)
Grade 4 1 (0.2%) 0 (0.0%)
NA 16 (2.7%) 0 (0.0%)

Stage
Stage III NA 204 (78.5%)
Stage IV NA 56 (21.5%)

Recurrence
positive
negative

NA
NA

67 (25.8%)
193 (74.2%)

Vital status
Alive 282 (48.0%) 139 (53.5%)
Deceased 305 (52.0%) 121 (46.5%)
June 2022 | Volume 13 | A
NA, Not applicable.
rticle 894718

https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Necroptosis-Related Gene Signature

Frontiers in Immunology | www.frontiersin.org 3
Development and Validation of the
Necroptosis‐Related Prognostic Signature
for Ovarian Cancer
Based on the obtained clinical information of ovarian cancer,
univariate Cox analysis was used to identify prognosis-related
genes as the Cox P value of 0.05, and we eventually obtained 7
genes closely associated with prognosis. To further construct the
risk model, the “glmnet” package was used to perform LASSO
regression analysis using 10-fold cross-validation and a P-value
of 0.05, and 1,000 cycles’ running. For each cycle, 1000 random
stimuli were set to prevent overfitting. Ultimately, a 5-gene
model was successfully constructed, and the risk score formula
is as follows: Risk Score= ∑ Xi × Yi (X: coefficients, Y: gene
expression level). Based on this formula, patients in the TCGA
database were divided into high-risk and low-risk groups
according to the median score, and each patient’s risk score
and survival status were presented in the form of a heatmap,
while Rtsne and stats were used for dimensionality reduction
analysis to distinguish the patients between high and low risk
groups. Kaplan-Meier analysis was utilized to identify the
differences in overall survival (OS) between high and low risk
groups. Finally, in order to evaluate the predictive power of the
risk model, the “survival”, “survminer” and “timeROC” packages
calculated the area under curve (AUC) values for 1, 3, and 5
years. Besides, the GEO cohort was used to validate the risk
model. Patients in the validation set were also divided into high
and low risk groups by applying the median risk scores, and
PCA, ROC, and Kaplan-Meier (KM) analyses were also applied
to the GEO dataset.

Independent Prognostic Analysis of
the Signature
Before the analysis, we screened and grouped for clinical
characteristics. Owing to the differences in age between patients,
we used age = 65 as the distinguishing criterion according to the
screening criteria of previous researches. Besides, we divided
Grade 1-2 into one group, and Grade 3-4 into another group to
better compare survival analysis results. To investigate whether
risk score could be an independent risk factor for ovarian cancer
patients, univariate and multivariate COX analyses were used to
TABLE 2 | Necroptosis-related genes were presented.

Genes Full-names

ALDH2 aldehyde dehydrogenase 2 family member
CXCL1 C-X-C motif chemokine ligand 1
EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit
HMGB1 high mobility group box 1
NDRG2 NDRG family member 2
NR2C2 nuclear receptor subfamily 2 group C member 2
PGAM5 PGAM family member 5, mitochondrial serine/threonine protein

phosphatase
TLR2 toll like receptor 2
TLR4 toll like receptor 4
ALK ALK receptor tyrosine kinase
APP amyloid beta precursor protein
ATRX ATRX chromatin remodeler
AXL AXL receptor tyrosine kinase
BACH2 BTB domain and CNC homolog 2
BCL2 BCL2 apoptosis regulator
BCL2L11 BCL2 like 11
BNIP3 BCL2 interacting protein 3
BRAF B-Raf proto-oncogene, serine/threonine kinase
CASP8 caspase 8
CD40 CD40 molecule
CDKN2A cyclin dependent kinase inhibitor 2A
CFLAR CASP8 and FADD like apoptosis regulator
CYLD CYLD lysine 63 deubiquitinase
DDX58 DExD/H-box helicase 58
DIABLO diablo IAP-binding mitochondrial protein
DNMT1 DNA methyltransferase 1
EGFR epidermal growth factor receptor
FADD Fas associated via death domain
FAS Fas cell surface death receptor
FASLG Fas ligand
FLT3 fms related receptor tyrosine kinase 3
GATA3 GATA binding protein 3
HAT1 histone acetyltransferase 1
HDAC9 histone deacetylase 9
HSP90AA1 heat shock protein 90 alpha family class A member 1
HSPA4 heat shock protein family A (Hsp70) member 4
ID1 inhibitor of DNA binding 1, HLH protein
IDH1 isocitrate dehydrogenase [NADP(+)] 1
IDH2 isocitrate dehydrogenase [NADP(+)] 2
IPMK inositol polyphosphate multikinase
ITPK1 inositol-tetrakisphosphate 1-kinase
KLF9 Kruppel like factor 9
LEF1 lymphoid enhancer binding factor 1
MAP3K7 mitogen-activated protein kinase kinase kinase 7
MAPK8 mitogen-activated protein kinase 8
MLKL mixed lineage kinase domain like pseudokinase
MPG N-methylpurine DNA glycosylase
MYC MYC proto-oncogene, bHLH transcription factor
MYCN MYCN proto-oncogene, bHLH transcription factor
OTULIN OTU deubiquitinase with linear linkage specificity
PANX1 pannexin 1
PLK1 polo like kinase 1
RIPK1 receptor interacting serine/threonine kinase 1
RIPK3 receptor interacting serine/threonine kinase 3
RNF31 ring finger protein 31
SIRT1 sirtuin 1
SIRT2 sirtuin 2
SIRT3 sirtuin 3
SLC39A7 solute carrier family 39 member 7
SPATA2 spermatogenesis associated 2
SQSTM1 sequestosome 1
STAT3 ignal transducer and activator of transcription 3

(Continued)
TABLE 2 | Continued

Genes Full-names

STUB1 STIP1 homology and U-box containing protein 1
TARDBP TAR DNA binding protein
TERT telomerase reverse transcriptase
TLR3 toll like receptor 3
TNF tumor necrosis factor
TNFRSF1A TNF receptor superfamily member 1A
TNFRSF1B TNF receptor superfamily member 1B
TNFRSF21 TNF receptor superfamily member 21
TNFSF10 TNF superfamily member 10
TRAF2 TNF receptor associated factor 2
TRIM11 tripartite motif containing 11
TSC1 TSC complex subunit 1
USP22 ubiquitin specific peptidase 22
June 2022 | Volume 13 | Article 894718
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investigate clinical traits such as age, grade and risk score, and the
results were presented in the form of forest plots.

Construction of the Nomogram
We integrated clinical characteristics with risk scores and applied
the rms R package to construct the nomogram predicting 1, 3, 5-
year survival probabilities of patients, and a calibration curve to
verify predictive power.

Comparison Between the Signature and
the Other Established Signature
Based on the model constructed in this study, we compared the
risk models that have been constructed in previous studies, and
identified the predictive ability of the model by calculating the
ROC value of different models, the P value of survival analysis,
and the C-index value of the model.

Functional Enrichment Analysis Between
High and Low Risk Groups
Patients in the TCGA cohort were divided into high and low risk
groups according to the median risk score, and the limma package
was used to identify differentially expressed genes (|log2FC| ≥ 1
and FDR < 0.05). Based on these differential genes, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analyses were performed.

The Mutation Spectrum of
Patients in TCGA
The somatic mutation information of patients was downloaded
from TCGA, and the frequency of somatic mutation of each
patient and the mutation frequency of different genes were
calculated by the maftools package. Meanwhile, based on the
risk model, the mutation spectrum of patients in the high and
low risk groups was estimated to compare whether there existed
significant difference between the groups. In addition, the
calculated TMB scores were compared to explore the difference
and the relationship in the high and low risk groups.

Analysis of Copy Number Variation
Copy-number variant (CNV) refers to copy number variation,
which greatly enriches the diversity of genetic variation in the
genome. GISTIC software was used to identify genes exhibiting
significant amplification or deletion.
Frontiers in Immunology | www.frontiersin.org 4
Tumor Immune Microenvironment
In order to estimate the immune infiltration of ovarian cancer
patients, the CIBERSORT program was used, and the R package
“Cibersort” was used to obtain the normalized enrichment score
of 22 immune cells in the high and low risk groups, and the KM
survival analysis of high and low immune infiltrating cells and
functional patient survival prognosis. Other than that, ssGSEA
was conducted to calculate the scores of infiltrating immune cells
and to evaluate the activity of immune-related pathways via gsva
package. Except for that, the correlation between the signature
and immune cell markers was investigated. Cell markers were
chosen according to CellMarker database

Sensitivity to Chemotherapy
To explore the correlation between risk models and
chemotherapy in ovarian cancer patients, the pRRophetic
package was used to calculate the sensitivity of patients in high
and low risk groups to multiple chemotherapeutic agents.

Evaluation of the Immunotherapy
Between Groups
The expression of immune checkpoint molecules was compared
between high and low risk groups, and we explored whether
there was a significant difference between high and low risk
patients on ICB treatment.

Risk Correlation Analysis
The content of immune cells and immune genes in each
sample was integrated, and the association between
immune genes, immune cells, and TMB and risk scores was
investigated via Pearson correlation analysis, visualized by the
corrplot package.

The Expression of Key Genes in
Clinical Samples
Adjacent non-tumor and ovarian cancer tissues were obtained
from the Gynecology and Obstetrics in Renmin Hospital of
Wuhan University. All the patients provided informed consent
and were approved by the Ethics Committee of Renmin Hospital
of Wuhan University to collect 9 cases of OC tissues and
corresponding paracancerous tissues. The clinical parameters
were displayed in Table 3. Total RNA from ovarian cancer
TABLE 3 | Clinicopathological parameters of patients.

Case id Age Gender Tumor size(cm) TNM Histological type Chemotherapy Radiotherapy

1 58 Female 1*1*1 T3N1M0 High-grade Serous IIIC Paclitaxel;
Lobaplatin

NA

2 53 Female 3*2.5*2.5 T3N1M1 High-grade Serous IVB Taxol; Carboplatin NA
3 68 Female 5*3*2.2 T3N1M0 High-grade Serous IIIC nab-paclitaxel, carboplatin NA
4 63 Female 15*13*13 T3N1M0 High-grade Serous IIIC Lobaplatin NA
5 65 Female 16.5*11.5*2.5 T3N1M0 High-grade Serous IIIC Cisplatin NA
6 45 Female 11.15*8.20*9.22 T3N1M0 High-grade Serous IIIC Cisplatin NA
7 53 Female 11*9.5 T3N1M1 High-grade Serous IIIC Taxol; Carboplatin NA
8 45 Female 8*5*1.2 T3N0M0 High-grade Serous IIIB Taxol; Carboplatin NA
9 44 Female 4*4*3 T3N1M1 High-grade Serous IVA Taxol; Carboplatin NA
June 2022 | Volume 13 |
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and paracancerous tissue samples were extracted and quantitated
by qRT-PCR, where GAPDH was used as an internal control.
RESULTS

Identification of Differentially Expressed
Necroptosis-Related Genes
We integrated normal tissue samples in GTEX and tumor tissue
samples in TCGA to obtain the expression profiles of 75
necroptosis-related genes, and then identified 33 DEGs
(LogFC>1, FDR<0.05). NDRG2, ALDH2, DIABLO, TARDBP,
KLF9, HMGB1, CFLAR, FAS, SQSTM1, SIRT2, RNF31, SIRT3,
BCL2, CYLD and TSC1 were downregulated in tumor tissues,
while HSPA4, CASP8, PANX1, RIPK1, FADD, LEF1, SPATA2,
EZH2, TNFSF10, DDX58, MYCN, TNF, PGAM5, CXCL1, PLK1,
TNFRSF21 , IDH2 and CDKN2A were upregu la ted
(Supplementary Figure 1A). To further investigate the
interaction between these genes, we performed a PPI analysis
using STRING (the highest confidence=0.4) in Supplementary
Figure 1B, while the correlation network is presented in
Supplementary Figure 1C, which indicated that CASP8,
CDKN2A, CFLAR, CYLD, DDX58 and DIABLO were hub genes,
playing a central role in the tumorigenesis and development of
OC. Furthermore, we performed the function analyses to
investigate the enriched functions and pathways and the results
showed that necroptotic process, negative regulation of reactive
Frontiers in Immunology | www.frontiersin.org 5
oxygen species and NF−kappa B signaling pathway were enriched
in the KEGG terms (Supplementary Figure 1D), negative
regulation of reactive oxygen species, tumor necrosis factor
receptor superfamily binding and tumor necrosis factor receptor
superfamily binding in the GO terms (Supplementary Figure 1E).

NMF-Based Sample Classification
In order to explore the relationship between DEGs and ovarian
cancer subtypes, we performed NMF clustering on 379 patients
in TCGA. By continuously running the NMF function and
extracting the cophenetic coefficient, we obtained the best rank
value, that is, the number of clusters = 2 (Figure 1A), and we
could find that patients were well divided into two groups, and
heatmaps of gene expression and clinical characteristics were
presented in Figure 1B. At the same time, we investigated
whether there is a difference in survival between the two
groups, and found that there were significant differences in OS
and progression free survival (PFS), and the survival prognosis of
patients in the C2 group was significantly better than that in the
C1 group (P = 0.022, 0.047) (Figures 1C, D). Random forest is a
decision tree-based machine learning algorithm that can be used
for sample classification or regression tasks, thus exploring
complex non-linear interdependencies between variables to
distinguish the key components between the two groups. Via
the “randomForest” R package, we figured out several key genes
involved in the occurrence and development of the OC
(Supplementary Figure 2).
A

B DC

FIGURE 1 | Consensus clustering analysis of the patients via NMF algorithm. (A) NMF clustering using necroptosis-related genes. Patients were divided into
cluster 1 and cluster 2. (B) Heat map of two clusters defined by the necroptosis -related genes expression profile. (C) Kaplan-Meier curve between two clusters
via survival analysis in OS. (D) Kaplan-Meier curve between two clusters via survival analysis in PFS.
June 2022 | Volume 13 | Article 894718

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Necroptosis-Related Gene Signature
Construction of Prognostic Risk Model
Next, we integrated gene expression profiles and patient survival
information and constructed a risk model based on necroptosis-
related genes. First, univariate Cox analysis was performed to
screen out 7 prognostic-related necroptosis genes (P = 0.05).
Among them, UBD, ISG20, BATF2, CXCL11, HLA-DOB and
CXCL13 were prognostic protective genes, while ATP1A3 was a
risk gene (Figure 2A). Then based on prognostic genes, we
performed LASSO regression analysis to construct a 5-gene risk
model, UBD, ISG20, CXCL11, ATP1A3 and HLA-DOB
(Figures 2B, C). The risk score formula is as follows: risk
score = (−0.020* UBD exp.) + (0.278* ATP1A3 exp.) + (-0.037*
ISG20 exp.) + (−0.275* CXCL11 exp.) + (−0.517* HLA-DOB
exp.). Based on the risk score, we divided 379 patients into high
and low risk groups (Figure 2D). PCA and tSNE analysis results
Frontiers in Immunology | www.frontiersin.org 6
showed that patients could be well divided into high and low
groups (Figure 2E). Figures 2F, G indicated that patients’ deaths
in the high-risk group increased significantly, and the survival
time was significantly shortened (P < 0.001). ROC analysis was
used to verify the predictive performance of the model, and the
results showed that the AUC was 0.620 at 1 year, 0.638 at 3 years,
and 0.707 at 5 years, suggesting that the model had good
sensitivity and specificity (Figure 2H).

External Validation of the Model
To verify the robustness of this model, we included the GEO
dataset. After normalizing the expression profiling data, we
integrated the survival information of 360 OC patients and
divided them into high and low risk groups based on the
median risk score (Supplementary Figure 3A). Patients in
A B

D
E

F G H

C

FIGURE 2 | Establishment of risk signature in the TCGA cohort. (A) Univariate cox regression analysis of the necroptosis-related genes. (B) LASSO regression via
the prognostic genes. (C) Cross-validation for tuning the parameter selection in the LASSO regression. (D) Distribution of the patients based the risk score. (E) PCA
and tSNE analyses classified patients into two groups. (F) The survival status and risk score of each patient. (G) Survival analysis between high and low risk groups.
(H) ROC analysis of the risk signature.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Necroptosis-Related Gene Signature
high risk group had shorter survival time (Supplementary
Figures 3B, C). KM survival analysis also confirmed that the
low-risk group had better survival prognosis (Supplementary
Figure 3D). The ROC analysis also proved the predictive power
of the model (Supplementary Figure 3E).

Independent Prognostic Analysis of the
Risk Model
To confirm the independence of this risk model in clinical
applications, we integrated patients’ clinical characteristics
such as age and grade with risk scores, and calculated HR, CI
and P for training and validation sets through univariate and
multivariate COX analysis. In the training set, both univariate
and multivariate COX analysis results indicated that age
(HR=1.024, P<0.001) and risk score (HR=1.024, P<0.001)
were independent risk factors as shown in Figures 3A, B.
Not only that, we also integrated the expression levels of risk
genes and presented them in the form of a heatmap
(Figure 3C). According to the results of the heatmap, we
found that in high-risk patients, the expressions of UBD,
ISG20, CXCL11, and HLA-DOB were significantly decreased,
while the expression of ATP1A3 was increased in high-risk
patients. Unfortunately, we found that age and grade did not
appear to be significantly different between high and low risk.
Nevertheless, we further performed a survival analysis on
clinical characteristics, and we found that in patients younger
Frontiers in Immunology | www.frontiersin.org 7
than and older than 65 years and pathological grade 3-4, the
survival prognosis of patients with low-risk scores was
significantly better than that of high-risk groups. This also
confirmed that the risk model we constructed was an
independent risk factor (Figures 3D, E).

Construction of the Nomogram and
Model Comparison
To achieve the goal of establishing a clinical strategy for
predicting the probability of survival in OC, the nomogram
and calibration curves were generated based on the TCGA
cohort to assess the probability of 1-, 3-, and 5-year OS
(Figures 4A, B). The predictors of the nomogram consisted of
3 prognostic factors, including age, grade, and risk score. ROC
analysis showed that the model had an AUC value of 0.629 for
the risk score and 0.714 for the nomogram, which was higher
than that of grade (AUC = 0.546) and patient age (AUC = 0.711)
(Figure 4C). However, the AUC only measured the diagnostic
accuracy of the predictive model and did not take the clinical
utility of a particular model into account, so we also employed
another method for evaluating clinical predictive models,
diagnostic tests, and molecular markers, DCA. Based on the
ggDCA package, we obtained DCA plots comparing age, class,
risk score, and nomogram, and the results showed that the
nomogram had better predictive power than risk score, age,
and pathological grade (Figure 4D). Next, we also compared the
A B

D E

C

FIGURE 3 | Independent prognosis analysis of the signature. (A) Univariate analysis for the TCGA cohort. (B) Multivariate analysis for the TCGA cohort. (C) Heatmap
integrated by the expression profile and the clinical parameters. (D) Survival analysis between the groups with Stage III-IV. (E) Survival analysis between the groups with
different age.
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accuracy and predictive ability of previously published risk
models. By calculating and comparing the c index values of
various models, we found that the model was superior to the
previously established models, which also demonstrated the
promising predictive power of the model (Figure 4E).

Difference Analysis Between High and
Low Risk Groups
In order to further explore the gene expression and functional
enrichment between the high and low risk groups, we firstly
performed differential expression analysis on the high and low
risk groups in the training set and validation set respectively as the
criteria of log FC=1 and FDR=0.05, of which there were a total of 6
DEGs in the training set and 9 DEGs in the validation set. In-
depth study of function enrichment analyses found that DEGs
were enriched in chemokine receptor binding, chemokine activity
function, chemokine signaling pathway, etc., which were closely
related to the occurrence and development of OC (Figure 5A).
Besides, it was also enriched in Toll-like receptor signaling
pathway, RIG-I-like receptor signaling pathway and IL-17
signaling pathway, which were closely related to immunity,
indicating that there might be significant differences in tumor
immune microenvironment between high-risk and low-risk
patients (Figure 5B). Except for that, GSEA enrichment analysis
illustrated that in the high-risk group, cell morphogenesis involved
in neuron differentiation, cilium organization, sensory organ
development, synaptic signaling, and ason were significantly
Frontiers in Immunology | www.frontiersin.org 8
enriched (Figure 5C). While in the low-risk group, activation of
immune response, acute inflammatory response, adaptive
immune response, adaptive immune response based on somatic
recombination of immune receptors and alpha beta T cell
activation were significantly enriched (Figure 5D). Meanwhile,
axon guidance, basal cell carcinoma, hedgehog signaling pathway,
melanoma and proximal tubule bicarbonate reclamation were
significantly enriched in the high- risk group (Figure 5E), while
allograft rejection, antigen processing and presentation, hedgehog
thyroid disease were significantly enriched in the high-risk group
(Figure 5F). Eventually, metascape website was applied to explore
the enriched gene function analysis, indicating that innate
immune response and so on were noted (Figure 5G). Based on
the above findings, we calculated the abundance of 13 types of
immune cells and 16 types of immune functions enriched in each
patient by ssGSEA, scored and compared the differences between
high and low risk groups. It was found that among the 13 types of
immune cells, except for iDCs and mast cells, all immune cells
were significantly enriched in the low-risk group, and there were
similar results in the immune function (Figures 5H, I). Except for
type II IFN Response, the immune functions were all active in the
low-risk group, and the same results were obtained in the
validation set (Figures 5J, K). Furthermore, the abundance of
infiltrating cells verified the above results via CIBERSORT
(Figure 5L). Based on the immune infiltration in tumor,
survival analyses were performed to investigate the role of
immune cells and functions in patients ’ prognosis
A
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C

FIGURE 4 | Evaluation of the risk signature. (A) Nomogram of the model integrated by the risk score and clinical parameters. (B) Calibration curve of the model.
(C) ROC analysis of the nomogram and clinical features. (D) DCA curve based on the risk score and the clinical parameters. (E) Comparison between the
signature and other established model. ***P < 0.001.
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(Supplementary Figures 4, 5). These results indicated that the
immune function in the tumor immune microenvironment of
patients in the low-risk group functioned actively, with high
expression of immune cells and robust anti-tumor ability,
verifying the close relationship between the risk model and the
tumor immune microenvironment.
Frontiers in Immunology | www.frontiersin.org 9
Associations Between the Model and
Immune Cell Markers
To explore the different abundances of infiltrated immune cells
between the two groups, the associations between the model and
the gene markers. The risk model was significantly correlated with
CD8A, CD8B for CD8+ T cell, CD4 for CD4+ T cell, CD80, CD86
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FIGURE 5 | Functional analysis based on the DEGs between the two-risk groups in the TCGA cohort. (A) GO enrichment analysis. (B) KEGG pathways enrichment
analysis. (C–F) GSEA analysis of the DEGs. (G) Functional analysis via “Metascape” website. (H–K) The abundance of the immune cells and functions between
groups via ssGSEA. (L) Comparison of the enrichment of the immune cells via CIBERSORT. *P < 0.05, **P < 0.01 and ***P < 0.001.
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for M1 macrophage, CD163 for M2 macrophage, CD14, CD33 for
Monocyte, CD19, CD79A for B cell, HLA-DRA for Dendritic cell,
BCL6 for Tfh, STAT1, STAT4 for Th1, FOXP3, STAT5B for Tregs.
It was suggested by these findings that the risk model was strongly
correlated with tumor immune microenvironment since it was
linked with immune cells (Supplementary Figures 6A, B).

Deciphering Mutational Spectrum
We next studied the mutation spectrum of all patients. Among
the 436 samples, 420 samples had gene mutations (96.33%). The
most common mutation classification was missense mutation,
and the most common mutation type was SNP, followed by DEL,
and finally INS. Besides the most SNV class is C>T mutation
(Figure 6A). The top three genes with the highest mutation
probability were TP53, TTN and MUC16 (Figure 6B). Further,
we also compared the mutation status of patients in the high and
low risk groups. There was a certain difference between the two
groups. In the low risk group, the top three genes with mutation
probability were TP53 (84%), TTN (23%) and MUC16 (11%)
(Figure 6C), while the top three genes with mutation probability
in the high-risk group were TP53 (84%), TTN (24%) and USH2A
(9%) (Figure 6D). In addition, we searched the mutation status
of 5 risk genes on the cBioPortal website. The gene mutation
frequencies from high to low are UBD, ISG20, HLA-DOB,
ATP1A3 and CXCL11 (Figure 6E). Among them, amplification
was the most common type of mutation, followed by missense
mutation, and finally deep deletion (Figures 6F, G). Tumor
mutational burden (TMB) was defined as the total number of
somatic gene coding errors, base substitutions, and gene
insertion or deletion errors detected per mega base. Therefore,
we calculated the TMB of all samples and analyzed the
relationship between TMB and risk score, and found that TMB
was significantly negatively correlated with risk score (R=-0.13,
P=0.034) (Figure 6H), but there was no obvious difference
between the two groups (P=0.083) (Figure 6I). Eventually, we
deeply investigated the link between the TMB, risk score and the
immune cells (Figure 6J). Not surprisingly, there was significant
correlation between them, suggesting that the risk model might
have a promising prospect for immunotherapy.

CNV of the Necroptosis-Related
Genes in OC
Genomic alterations were characteristic of cancer, and different
kinds of cancers were characterized as specific aberrations that
provided clues to the cause and prognosis of disease. Abnormal
DNA copy number changes (CNVs) were an important
molecular mechanism in many human diseases (cancer,
hereditary diseases, cardiovascular diseases). Therefore, we
explored the CNV landscape of the necroptosis-related genes
in OC via UCSC (https://xena.ucsc.edu/), which demonstrated
that nearly all genes had CNV referred to the loss or gain of
copies of a genomic DNA region in OC. The most frequent gain
of function of gene was MYC, while the loss was SIRT3
(Supplementary Figure 7A). Not only that, we also depicted
the spectrum of these genes via RCircos presented a circos plot
(Supplementary Figure 7B).
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Tumor Immune Landscape and Tumor
Immunogenicity
CIBERSORT was used to assess immune cell infiltration in
different risk groups and the results were visualized by bar
plot. Naive B cells, CD8+T cells, T cells CD4 memory resting,
T cells CD4 memory activated, M1 Macrophages, Mast cells
activated and Neutrophils were enriched in different risk groups.
The levels of memory CD8+T cells, M1 Macrophages and
Neutrophils were higher in the low-risk group than in the
high-risk group. The levels of Naive B cells, T cells CD4
memory resting, T cells CD4 memory activated and Mast cells
activated were higher in the high-risk group than in the low-risk
group (Figure 7A). The correlation analysis plot showed that
immune cells such as T cells, CD8+T cells, Cytotoxic
lymphocytes, B cells, NK cells, Monocytic cells and Myeloid
dendritic cells were significantly negatively correlated with the
risk score (Figure 7B). Next, survival analysis was performed to
explore the relationship between high and low levels of immune
cells and patient prognosis. The results showed that high levels of
M1 macrophages (P<0.001), T cells CD4 memory activated
(P<0.001), T cells follicular helper (P<0.001), T cells gamma
delta (P=0.002) had significantly higher prognosis than low-level,
low-level M2 macrophages (P=0.028), Mast cells activated
(P=0.038), Monocytes (P=0.002), Neutrophils (P=0.006),
Plasma cells (P=0.011), T cells CD4 memory resting (P=0.028),
Tregs (P=0.028) had significantly better prognosis than highly
enriched patients (Supplementary Figure 8). Meanwhile, we
also studied the relationship between immune function
enrichment and survival prognosis, and found that high levels
of aDCs (P=0.004), APC co inhibition (P<0.001), B cells
(P=0.005), CCR (P=0.006) and other immune cells
(Supplementary Figure 9). The functional prognosis was
significantly higher than the low level, which were also
consistent with those of the ssGSEA analysis. We next
calculated the immune score, mesenchymal score, tumor
purity, and ESTIMATE score for each patient using the
estimate package, and compared the differences between
patients in the high- and low-risk groups (Figure 7C). The
results showed that the tumor purity of patients in the high-risk
group was significantly higher than that of the low-risk group,
while the stromal score, immune score, and ESTIMATE score
were significantly higher in the low-risk group than the high-risk
group, suggesting that the patients in the low-risk group had
active immunity and strong anti-tumor immunity with a better
prognosis (Figure 7D).

Evaluation of the Response
to Immunotherapy
Based on the above results, it was found that patients in the
different risk groups had different immune landscape, indicating
that patients responded to the immunotherapy in different
degrees. Therefore, we investigated the relationship between
risk scores and expression of common immune checkpoints in
OC. We found that the expressions of CD274, CTLA4, HAVCR2,
LAG3, PDCD1, PDCD1LG2, TIGIT and SIGLEC15 were
significantly increased in the low-risk group (Figure 8A), and
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FIGURE 6 | Mutation spectrum of the patients between two groups. (A, B) Mutation profile of the patients in TCGA cohort. (C) Mutation profile of the patients in
low-risk group. (D) Mutation profile of the patients in high-risk group. (E) Frequency of mutation in hub genes in serous ovarian cancer. (F, G) Mutation of each hub
gene. (H) Correlation between TMB and risk score. (I) Comparison of TMB between two groups. (J) Link between the TMB, risk score and the immune cells.
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the correlation analysis further proved that the expression of
these immune checkpoint molecules was negatively correlated
with the risk score (Figure 8B). Finally, we used the TIDE
algorithm to explore the response of patients in the high- and
low-risk groups to immunotherapy. The results found that the
Dysfunction, MSI and TIDE scores in the low-risk group were
significantly higher than those in the high-risk group, and the
Exclusion score was significantly lower than that in the high-risk
group, suggesting that patients in the low risk group were less
effective with immune checkpoint inhibition, while those in the
high-risk group benefited more (Figure 8C). Subsequently,
immune cytolytic activity (CYT) based on the expression levels
of granzyme A (GZMA) and perforin 1 (PRF1), which were
significantly upregulated with cytotoxic T cell activation, was
utilized to estimate the immunogenicity and the favorable
immune TME of patients. The results showed that the
expression of GZMA, PRF1 and CYT score were significantly
increased in low risk group and negatively correlated with risk
Frontiers in Immunology | www.frontiersin.org 12
score, suggesting enhanced immune activity and better OS
(Figure 8D). Furthermore, the relationship between the
expression of GZMA, PRF1 and tumor purity and immune
cells was investigated, which indicated the similar
findings (Figure 8E).

Chemosensitivity
Chemotherapy drugs were very indispensable for the treatment
of OC, and the main indicator that affected the efficacy of drug
treatment was drug sensitivity. Therefore, we analyzed the drug
sensitivity of patients in the high and low risk groups to common
chemotherapeutic drugs. The IC50 of Imatinib and AG.014699
were significantly higher than that of the high-risk group, and the
sensitivity was worse than that of the high-risk group. The IC50
of ATRA, Bortezomib, Cyclopamine, Dasatinib, Metformin,
Methotrexate, Paclitaxel, Parthenolide were significantly lower
than that of the high-risk group, and the sensitivity was better
than that of the high-risk group (Supplementary Figure 10A).
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FIGURE 7 | Tumor immune landscape in OC. (A) Bar plot of 24 kinds of immune cells between high and low risk groups via CIBERSORT. (B) The correlation
between immune cells and risk score. (C) Heatmap integrated by the immune scores and immune cells and functions. (D) Comparison of tumor purity, stromal
score, immune score and ESTIMATE scores between the two groups. *P < 0.05, **P < 0.01 and ***P < 0.001.
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FIGURE 8 | Evaluation of the sensitivity to immunotherapy (A) Expression profiles of immune checkpoint molecules between groups. (B) Correlation between risk
score and immune checkpoint molecules. (C) Evaluation of the sensitivity to immunotherapy via TIDE score. (D) Evaluation of the immunogenicity and the favorable
immune TME of patients via CYT score. (E) Pearson analyses between the expression of GZMA, PRF1 and tumor purity, immune cells via TIMER. *P < 0.05,
**P < 0.01 and ***P < 0.001.
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We then investigated the correlation between core genes and
chemotherapeutic drug sensitivity, which indicated that the
expression of HLA-DOB was positively correlated with the
sensitivity of Nelarabine, Dexamethasone, Fluphenazine,
Cyclophosphamide, Arsenic trioxide, Fludarabine, Vorinostat
and Axitinib, the expression of ATP1A3 was positively
correlated with Nelarabine, Fludarabine and Digoxin, and the
expression of ISG20 was positively correlated with Dabrafenib,
Vemurafenib, and Denileukin Diftitox Ontak, negatively
correlated with Dasatinib (Supplementary Figure 10B).
Subsequently, we identified the potential drugs via the DEGs
between high and low risk groups, and found that several drugs
targeted CXCL10 such as NI-0801, ELDELUMAB and so on. Not
only that, we searched and obtained the 2D and 3D structure of
the targeted drugs (Supplementary Figure 11). Eventually,
cancer stem cells referred to cells in tumors that had self-
renewal ability and could generate heterogeneous tumor cells,
which were closely related to tumor survival, proliferation,
metastasis and recurrence. Stemness index was an indicator of
the similarity between tumor cells and stem cells. Therefore, we
ought to figure out the relationship between risk score and
stemness. RNAss and DNAss were indices calculated based on
RNA expression data and methylation data, respectively, which
were between 0 and 1. The larger the value, the lower the degree
of cell differentiation and the stronger the stem cell
characteristics. However, there was no difference between them
(Supplementary Figure 10C).
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Evaluation of Immunotherapy
Based on the above results, we next performed analyses to estimate
the responsiveness of CTLA-4 and PD-1 immunotherapy via the
public dataset TCIA (The Cancer Immunome Atlas, https://tcia.
at/home). Interestingly, the findings showed that patients in high
risk group respondedmore sensitively to the low risk group via the
CTLA-4 and PD-1 immunotherapy (Figure 9A). Finally, we
investigated the association of immunotherapy with risk scores
using previous datasets, such as IMvigor, but unfortunately, we
found no significant difference in risk scores between
immunotherapy-responsive and ineffective groups (Figure 9B).
Expression Levels of Key Genes in Cells
and Clinical Samples
First, we performed analysis to identify the role of the key genes
in OC, and the results indicated that high expression of CXCL11,
HLA-DOB, ISG20 andUBD predicted better prognosis, while low
expression of ATP1A3 indicated worse prognosis (Figure 10A).
To verify the expression level of the key genes, qRT-PCR was
performed to explore the clinical significance between IOSE and
SKOV3 cells, normal and tumor tissues. The results indicated
that the mRNA expression levels of UBD, ATP1A3, ISG20 and
CXCL11 are lower in SKOV3 and tumor samples than IOSE and
normal tissues, which was consistent with the results of TCGA
cohort, while HLA-DOB showed no difference, indicating the
indispensable role of the key genes in the occurrence and
A
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FIGURE 9 | Evaluation of Immunotherapy to CTLA-4 and PD-1. (A) Evaluation of the IPS score in different groups. (B) Response to immunotherapy and survival
analysis in different groups.
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development of OC (*: P<0.05, **: P<0.01, ***: P<0.001, ***:
P<0.0001) (Figure 10B). Eventually, we also explored the protein
expression of the candidate genes in Human Protein Atlas, and
the results was similar with the previous results, while UBD and
ISG20 were not retrieved (Figure 10C).

DISCUSSION

Evidences suggested that necroptosis played a crucial role in
tumorigenesis, tumor progression, and tumor immune
Frontiers in Immunology | www.frontiersin.org 15
regulation (4). So far, the net effect of necroptosis in cancer
had not been determined, and the tumor effect of promoting or
anti-necroptosis might depended on the cell type and stage of the
cancer (14). On the one hand, necroptosis could promote
tumorigenesis and progression by triggering the tumor-
promoting tumor immune microenvironment and regulating
stromal cell responses (15–17). However, in some cases,
necroptosis could also inhibit tumor progression and
experimental studies on tumor immunology have found that
necroptosis might play a central role in triggering
A
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FIGURE 10 | Survival analyses and the mRNA expression level of the key genes in the clinical samples and cells. (A) Kaplan–Meier curves for comparison of the OS
between low- and high-expression groups (B) Comparison of the mRNA expression of the key genes in the clinical samples and cells (C) Comparison of the protein
expression of the key genes in the Human Protein Atlas. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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immunogenicity and promoting natural or therapeutically
driven anticancer immune surveillance (18).

A number of previous studies have shown that necroptosis
plays an important role in various tumors, and inhibition of
necroptosis in breast cancer significantly promoted malignant
biological behaviors such as cell proliferation and migration (19).
In gastric cancer, induction of necroptosis inhibited the
migration and invasion of gastric cancer (20). Not only that,
Wang et al. performed a comprehensive bioinformatics analysis
in gastric cancer, and constructed a prognostic model of
necroptosis, and identified the lncRNA SNHG1/miR-21-5p/
TLR4 regulatory axis to demonstrate the role of necroptosis (21).

In our study, firstly, we identified the expression of
necroptosis genes in OC, and found that most necroptosis-
related genes were differentially expressed, suggesting that
necroptosis was involved in the occurrence and development
of OC. Stepwise GO and KEGG analysis based on these DEGs
indicated that these key genes were mainly involved in tumor
necrosis factor-mediated signaling pathway, NF-KB signaling
pathway. Accumulating evidence revealed that NF-kappa B
signaling pathway played a vital role in inflammation and
cancer progression (22). Moreover, TNF signaling pathway was
also found to be involved in balancing cell survival and
necroptosis (23).

Then we constructed a 5-gene risk model, UBD, ISG20,
CXCL11, ATP1A3 and HLA-DOB, which could well predict
the survival prognosis of patients. Independent analysis also
clearly proved that the model was an independent risk factor
for OC patients.

UBD is a ubiquitin-like protein, and its function of
targeting protein degradation is similar to that of ubiquitin,
which is also the only known ubiquitin-like protein that can
directly mediate ubiquitin-independent proteasomal degradation
(24). Studies have shown that UBD is overexpressed in CRC
tumor tissue, and its overexpression is positively correlated
with tumor size and TNM stage in CRC patients. Functionally,
UBD significantly accelerated CRC cell viability and proliferation
in vitro and promoted tumorigenesis in vivo (25). Increased
UBD expression was also found in breast cancer tissues.
Overexpression of UBD was explored to be associated with
epirubicin resistance in TNBC in vitro. Furthermore, UBD was
highly expressed in TNBC compared to non-TNBC, which
played a positive role in epirubicin resistance, suggesting a
poor prognosis for TNBC treatment. But the role of UBD in
OC was currently unclear. In this study, UBD is a prognostic
favorable gene of OC, which is contrary to previous studies.
Therefore, in-depth mechanism studies are still needed to
explore the molecular pathways of OC.

Located on human chromosome 15q26, ISG20 is an RNA
exonuclease that cleaves single-stranded RNA and DNA (26).
Previous studies have found that ISG20 plays a role in mediating
the antiviral activity of interferon and controlling cell
proliferation and differentiation (27, 28). A study in clear cell
renal cell carcinoma identified ISG20 as a potential biomarker
and therapeutic target for clear cell renal cell carcinoma which
promoted cell proliferation and metastasis (29). Not only that,
Frontiers in Immunology | www.frontiersin.org 16
ISG20 was also screened in the OC glycolysis gene model
constructed by Yu et al. It is differentially expressed in ovarian
cancer and was associated with patient survival prognosis, but its
specific molecular mechanism as a necroptosis gene had not been
elucidated (30).

Chemokine ligand CXC motif chemokine ligand 11
(CXCL11), also known as IFN-inducible T cell alpha
chemokine, primarily mediates the recruitment of T cells,
natural killer (NK) cells, monocytes and macrophages at the
site of infection via cognate G protein-coupled receptors CXCR3,
such as CXCL9 and CXCL10 (31, 32). This signaling axis has
been implicated in a variety of physiological activities, including
immune cell migration, differentiation, and activation. CXCL11
is involved in the progression of various cancers. Upregulation
of CXCL11 was associated with better prognosis in colon
adenocarcinoma, which promoted antitumor immunity to
benefit survival, identified as an independent prognostic
biomarker in colon adenocarcinoma patients. In OC,
downregulation of CXCL11 restrained angiogenesis and tumor
growth, however, in our study, CXCL11 predicted better
prognosis, contrary to previous studies, so further studies were
still needed to explore the mechanism.

Na+/K+ ATPase is a heterotrimeric a-b-g protein complex, in
which four alpha isoforms (a1-4) express in humans, encoded by
the ATP1A 1-4 genes. The a3 isoform encoded by ATP1A3
located on chromosome 19q, which expressed almost exclusively
in neurons (33). At present, there is no research on the
relationship between ATP1A3 and tumor, and our research
shows that ATP1A3 may be involved in tumorigenesis and
development as an oncogene of ovarian cancer, so above
results may be a new direction for future research.

In terms of HLA-DOB, it belongs to the HLA class II beta
chain paralogues. This class II molecule is a heterodimer
consisting of an alpha (DOA) and a beta chain (DOB), both
anchored in the membrane. At present, there are few studies on
the involvement of HLA-DOB in tumor mechanisms. The
expression of HLA-DOB in multiple myeloma was significantly
higher than that in normal plasma cells, suggesting that it was a
potential target for immunotherapy (34). Meanwhile, a
bioinformatic analysis of high-grade serous OC by Chang et al.
showed that HLA-DOBmight act as a prognostic protective gene
and participate in the composition of the risk model, which was
consistent with our study (35).

Over the past few years, the link between necroptosis and
tumors has been gradually elucidated, but the underlying
regulatory role between tumor immunity and necroptosis
remains elusive. Therefore, we analyzed the differences
between high- and low-risk groups to find out the specific
mechanism. Functional analysis suggested that DEGs were
enriched in chemokine receptor binding, chemokine activity
function, chemokine signaling pathway, etc., which was closely
related to the occurrence and development of OC. Not only that,
the immune pathways are significantly enriched in the low-risk
group, suggesting that there are significant differences in the
tumor immune microenvironment between patients in the high-
and low-risk groups, further indicating that the model is closely
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associated with immunity. On this basis, we identified the
expression levels of immune cells and immune functions in the
high- and low-risk groups, and the results were consistent with
the previous ones, clearly indicating that patients in the low-risk
group had high immune levels and strong anti-tumor immunity,
indicating better prognosis.

Notably, the complex interaction between tumor cells and the
tumor microenvironment not only plays a pivotal role in tumor
development, but also has a significant impact on patient
immunotherapy efficacy and overall survival. It has been
reported that the intratumoral and peritumoral distribution of
immune cells, the composition of immune cells, and the overall
immune environment and histology of breast tumors can affect
not only the degree of tumor malignancy, but also the effect of
immunotherapy (36, 37). The high immune infiltration in the
low-risk group partly reflects the lower degree of malignancy and
better response of various treatments, which means that our
signature can not only differentiate the survival prognosis of
patients, but also reflect the level of immune infiltration cells.

Assessing the tumor immune microenvironment is helpful
to understand the molecular characteristics of patients with
different types of tumors, and more importantly, it may provide
more individualized treatments for different patients. Therefore,
we next identified the expression of immune checkpoint molecules
and potential responses to immunotherapy in patients with high
and low risk groups. Immune checkpoint molecules are inhibitory
pathways in the immune system that are regulated by ligand/
receptor interactions, which plays an important role in
maintaining autoimmune tolerance and regulating the duration
and magnitude of physiological immune responses, thereby
avoiding damage and destruction of normal tissues by the
immune system. The high expression of immune checkpoint
molecules in tumor cells is closely related to tumor immune
escape. Our results suggested that the expression of immune
checkpoint molecules is significantly increased in the low-risk
group, which may demonstrate that patients in the low-risk group
have a high possibility of immune escape. Currently, one of the
most promising approaches to activate therapeutic antitumor
immunity is to block immune checkpoints. The TIDE score is
an algorithm used to assess the ability of a potential immune
checkpoint to block the immune response, and the TIDE score
serves as a valid surrogate for traditional single biomarkers for
predicting ICB response. A higher TIDE score not only indicates
that the tumor has an immune escape phenotype, but also predicts
a poorer response to ICB in cancer patients (38). Similar to the
previous results, our results found that patients in the high-risk
group were significantly more responsive to immunotherapy than
those in the low-risk group, indicating that ICB therapy in the
high-risk group could effectively enhance the original antitumor
immune activity and provide a durable immune response.

At present, immunotherapy has become a new treatment
strategy for OC, but in clinical practice, the effect of
immunotherapy on OC is still limited. Therefore, our above
results provide a certain possibility for OC immunotherapy.
Notably, combination therapy is playing an increasingly important
role because single immunotherapy is not ideal for patients. In this
Frontiers in Immunology | www.frontiersin.org 17
manuscript, the sensitivity of Metformin, Methotrexate, Paclitaxel
and other drugs for patients in the low-risk group was better than
that in the high-risk group, suggesting that the patients in the low-
risk group might benefit from chemotherapy. Therefore, the
constructed model could better analyze the sensitivity to
chemotherapy and immunotherapy in high and low risk groups,
which also provided the possibility of combining the two treatment
strategies in OC, such as the combination of immunotherapy with
chemotherapy or PARP inhibitor, etc.

However, this study has several limitations. First, our
prognostic model was constructed and validated using
retrospective data from public databases. More prospective
real-world data are needed to validate its clinical utility.
Second, the link between the model and other clinical
characteristics was not assessed, and third, the association
between risk score and immune activity has not been
experimentally resolved. Finally, because there are no enough
gene expression data from patients receiving immunotherapy,
prospective studies are needed to validate the ability of the model
to predict immunotherapy response.

In conclusion, we constructed a 5-gene model based on
necroptosis-related genes, which could not only effectively
predict the survival and prognosis of OC patients as an
independent risk factor, but also reveal a close correlation with
the tumor microenvironment and immunotherapy, providing
sensitive and effective biomarkers and a new direction for
personalized immunotherapy.
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Supplementary Figure 2 | The identified key genes via random Forest.

Supplementary Figure 3 | Validation of the risk signature in the GEO cohort (A)
Distribution of the patients based the median risk score in the TCGA cohort (B) PCA
and tSNE analyses classified patients into two groups in GEO cohort (C) The risk
score and survival status of each patient in GEO cohort (D) Kaplan–Meier curves for
comparison of the OS between low- and high-risk groups (E) The AUC values of the
risk model in TCGA.
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Supplementary Figure 4 | Survival analysis of different abundance of the immune
cells.

Supplementary Figure 5 | Survival analysis of different abundance of the immune
functions.

Supplementary Figure 6 | Association between the model and immune cells (A)
The expression profile of the immune cell markers and the correlation with the model
between high and low risk groups (B) The association between the risk score and
immune cell markers.

Supplementary Figure 7 | CNV of the necroptosis-related genes in OC(A) CNV
frequency of the necroptosis-related genes (B) Circos plot of the CNV spectrum.

Supplementary Figure 8 | Survival analysis between high and low degrees of
immune cells.

Supplementary Figure 9 | Survival analysis between high and low degrees of
immune functions.

Supplementary Figure 10 | Chemosensitivity and stemness of different groups
(A) IC50 of multiple chemotherapy drugs between groups(B) Correlation between
the risk genes and chemotherapy drugs (C) Assessment of the association of
stemness and risk score.

Supplementary Figure 11 | The structure of predicted targeted drugs based on
the DEGs in different groups.
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