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Sepsis is a disease with a high morbidity and mortality rate. At present, there is a

lack of ideal biomarker prognostic models for sepsis and promising studies using

prognostic models to predict and guide the clinical use of medications. In this

study, 71 differentially expressed genes (DEGs) were obtained by analyzing

single-cell RNA sequencing (scRNA-seq) and transcriptome RNA-seq data, and

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment pathway analyses were performed on these genes. Then, a

prognosis model with CCL5, HBD, IFR2BP2, LTB, and WFDC1 as prognostic

signatures was successfully constructed after univariate LASSO regression

analysis and multivariate Cox regression analysis. Kaplan–Meier (K-M) survival

analysis, receiver operating characteristic (ROC) time curve analysis, internal

validation, and principal component analysis (PCA) further validated the model

for its high stability and predictive power. Furthermore, based on a risk prediction

model, gene set enrichment analysis (GSEA) showed that multiple cellular

functions and immune function signaling pathways were significantly different

between the high- and low-risk groups. In-depth analysis of the distribution of

immune cells in healthy individuals and sepsis patients using scRNA-seq data

revealed immunosuppression in sepsis patients and differences in the abundance

of immune cells between the high- and low-risk groups. Finally, the genetic

targets of immunosuppression-related drugs were used to accurately predict the

potential use of clinical agents in high-risk patients with sepsis.
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Introduction

Sepsis causes life-threatening organ dysfunction due to

dysregulated host response to infection (1, 2). The tissue and

organ damage caused by sepsis can be attributed to excessive

activation of the inflammatory response, immune dysfunction,

and coagulation disorders (3). There are significant differences in

the primary sources of sepsis, with community infections

accounting for 60%–70% of all cases, 20%–30% of cases in

non-intensive care units (non-ICUs), and 5%–9% of primary

cases acquired in the ICU (4, 5). Mortality rates vary

considerably from region to region, with a combination of

social, economic, political, health, and even climatic factors

influencing the epidemiological data on sepsis, which still

approaches 60% in some developing countries (6), while in

developed countries, the mortality rate is usually reported as

20%–30% (7–9).

The ability of biomarkers to diagnose sepsis and determine

its severity often falls short of expectations. Many of the classical

biomarkers associated with the degree of the inflammatory

response, such as interleukin-6 (IL-6), interleukin-10 (IL-10),

C-reactive protein (CRP), platelet (PLT), and procalcitonin

(PCT), have been shown to correlate well with sepsis severity

and clinical outcome in population-based studies (10, 11).

However, the clinical application of these markers is largely

reflected in a commonality of an inflammatory response to early

disease and a lack of specificity, so their use in the progression of

sepsis is greatly compromised. With advances in molecular

biology, biomarkers also include chemokines, damage-

associated molecular patterns (DAMPs), endothelial cell

markers, leukocyte surface markers, non-coding RNAs,

miRNAs, soluble receptors, and alterations in metabolite and

gene expression (transcriptomics). A series of new biomarkers,

such as heat shock proteins (HSPs), high mobility group box 1

(HMGB-1), C-Cmotif chemokine ligand 2 (CCL2), C-X-C motif

chemokine ligand 10 (CXCL10), S100 calcium binding protein B

(S100B), intercellular adhesion molecule 1 (ICAM-1), and E-

selectin (12, 13), are closely associated with the progression of

sepsis. Biomarkers can classify patients with sepsis into

biological phenotypes, such as hyperinflammatory versus

immunosuppressive (14). However, studies have demonstrated
Abbreviations: scRNA-seq: single-cell RNA sequencing; DEG: differentially

expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes

and Genomes; GEO: Gene Expression Omnibus; BP: biological process; MF:

molecular function; CC: cellular component; CCL5: C-C motif chemokine

ligand 5; PCA: principal component analysis; GSEA: gene set enrichment

analysis; non-ICU: non-intensive care unit; OS: overall survival; UMAP:

Uniform Manifold Approximation and Projection; Tregs: T cells regulatory;

SIRS: systemic inflammatory response syndrome; HbA2: hemoglobin subunit

alpha 2; COVID-19; coronavirus disease 2019; LPS: lipopolysaccharide.
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a lack of strong evidence for the ability of these markers to

predict the prognosis of sepsis (7).

The incidence of sepsis in China is about 200–270 per

100,000 people (8), and has become one of the most

economically burdensome diseases for society and families,

with a poor prognosis and a persistently high mortality rate

(15). To date, there is a lack of prognostic models with ideal

biomarkers for clinical application. As single-cell sequencing is

increasingly used in various diseases, multi-omics studies will be

more beneficial for disease diagnosis and prognosis, and models

will be constructed with greater precision and reliability. In the

current study, we focused on obtaining differentially expressed

genes (DEGs) between septicemic and healthy individuals using

RNA-seq and scRNA-seq data from the GEO database, and

carried out GO and KEGG enrichment analyses. The co-

expressed DEGs were subjected to univariate LASSO

regression analysis, multivariate Cox regression analysis,

construction of a predictive signature for sepsis, KM survival

analysis, ROC analysis, nomogram survival charts, internal

validation, and principal component analysis (PCA) to further

validate the diagnostic and prognostic value of the model in

sepsis. We analyzed the differences in immune cell abundance

between high- and low-risk groups and gene set enrichment

analysis (GSEA) to explore possible mechanisms. Finally, we

combined scRNA-seq data with gene target ing of

immunosuppressive-related drugs to accurately predict the

future of immune-targeted drugs in sepsis and its high-

risk patients.
Materials and methods

Patients and datasets

Both scRNA-seq data and transcriptomic RNA data for

sepsis were obtained from the GEO database. GSE167363 was

the scRNA-seq data, with 12 subsets included in the study,

containing data from 2 healthy individuals and 10 patients with

sepsis (5 survived and 5 died). GSE65682 is RNA-seq data, and a

total of 802 people were included in the study, of whom 42 were

healthy, 760 had sepsis, and 479 had survival status.
Analysis of DEGs

The 12 subsets of GSE167363 scRNA-seq data were

integrated and analyzed using R software, and single-cell

profiles of normal and sepsis groups were constructed,

followed by identification of DEGs. DEGs from the GSE65682

RAN dataset were identified by the GEO2R (http://www.ncbi.

nlm.nih.gov/geo/geo2r/) tool that comes with the GEO database.

The cutoff value for DEGs of both datasets were | log2 fold

change (log2 FC) | > 1 and p-values < 0.01, and DEGs common
frontiersin.org
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to both datasets were defined as hub-DEGs and visualized by

Venn diagrams.
Functional analysis

Gene function analysis is often considered an important part

of the translation of molecular research results from high-

throughput methods to biological significance. Statistical

analysis of gene function was performed using the

clusterProfile package, and bubble plots were used to visualize

the functional profiles of DEGs containing GO and KEGG. p <

0.05 was considered statistically significant.
Construction of the prognostic
signatures

Univariate Cox regression analysis was performed on each of

the co-expressed DEGs to screen for genes significantly

associated with sepsis overall survival (OS) in the GSE65682

dataset. These identified genes were then subjected to LASSO

Cox regression analysis and multivariate Cox regression analysis

to construct a multivariate model of genes associated with sepsis

prognosis. The formula used to calculate the prognostic risk

score for the analysis of each patient is as follows: risk score =

gene1 expression level × i1 + gene2 expression level × i2 +…+

geneN expression level × iN, where i represents the coefficient

value. Using the median value of the risk score as a cutoff,

patients with sepsis were divided into high- and low-risk groups.

We randomly distinguished patients into a train set and a test set

by setting a head count ratio value of 1:1, which was used for

internal validation.
Patient enrollment and quantitative real-
time PCR

Patients diagnosed with sepsis in the ICU department of

Shenzhen Hospital of Southern Medical University from 31 July

2022 to 5 September 2022 were enrolled. Enrollment criteria

were as follows (1): age: 18–90 years old, and (2) patients met

sepsis 3.0 diagnostic criteria. We excluded patients who have

been discharged or who have died within 24 h after admission;

those who needed emergency surgery after admission; those who

participated in other clinical research; those with tumors,

autoimmune diseases, and immunodeficiencies; or those on

long-term immunosuppressant therapy.

RNA was extracted from whole blood using TRIzol reagent

(12183-555, Invitrogen) following the manufacturer ’s

instructions. Prime-Script RTase (Takara) was used for reverse

transcription. With the help of the premix Ex-Taq (Takara), the

gene expression level was determined by qPCR and normalized
Frontiers in Immunology 03
to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

We used the 2−DCT method to calculate the expression level. The

primer pairs used in the experiments are listed in Data S1. The

study was approved by the Ethics Committee of Shenzhen

Hospital, Southern Medical University (Registration number:

MCSC-20220909-0001).
Construction and validation of
the nomogram

We combined risk scores with clinical characteristics of age,

sex, ICU-acquired infection, pneumonia, and diabetes to

construct nomogram survival charts that predicted 7-, 14-, and

21-day OS in patients with sepsis. Calibration curves were used

to test the agreement of predicted survival with actual survival.
Principal component analysis and GSEA

Patients were divided into high-risk and low-risk groups

based on risk scores. Differences in gene expression profiles

between patients in the low- and high-risk groups were verified

by PCA. Identification of relevant pathways and molecular

mechanisms in high- and low-risk groups in a cohort of

patients with sepsis by GSEA (https://www.gsea-msigdb.org/

gsea/index.jsp). We visualized the top five GO and KEGG

pathways for positive and negative correlations. p < 0.05 and

false discovery rate (FDR) < 0.25 were considered to be

statistically significant thresholds.
Immune infiltration analysis

The CIBERSORTx tool is used to estimate gene expression

profiles and to estimate the abundance of member cell types in

mixed cell populations using gene expression data (16). We used

the gene expression matrix for 22 classes of immune cells

provided on the website in combination with our sample gene

expression matrix data to compare immune infiltration and

function in the high- and low-risk groups using a two-sample

Wilcoxon test. The expression abundance of each cell type in the

normal, sepsis survivor, and sepsis death groups was analyzed by

scRNA-seq data.
Statistical analysis and R package

All statistical analyses were performed using R software

(version 4.0.2). The Seurat and harmony packages were used

mainly for integration analysis of single-cell sequencing data and

removal of batch effects. The limma package was used mainly for

the identification of DEGs. The Survival, survminer, glmnet,
frontiersin.org
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caret, timeROC, and survivalROC packages were used for

univariate LASSO regression analysis, multivariate Cox

regression analysis, construction of survival curves, ROC

curves, and determination of area under the curve (AUC)

values. The rms package is used for the construction of

column line tables and calibration plots. p < 0.05 and p < 0.01

are considered to be statistically significant differences.
Results

Single-cell sequencing analysis of
peripheral blood cell composition in
patients with sepsis

Twelve subsets of single-cell data were integrated into a

dataset containing 20,696 genes, and 18,462 cells, clustered into

19 cell groups by the Uniform Manifold Approximation and

Projection (UMAP) method of the Seurat package. There were
Frontiers in Immunology 04
5,257 cells in healthy people and 13,205 cells in sepsis patients

(Figure 1A). Identification and visualization of marker genes in

clustered cells were carried out using the FindAllMarkers

function (Figure 1B). A total of 13 cell types were identified by

marker gene combinations combined with a review of the HPC

database combined with typical cel l marker genes

(Figures 1C, D).
Identification of hub-DEGs and
functional analysis

Analysis of the scRNA-seq dataset identified 256 DEGs

between healthy individuals and septicemic patients

(Figure 2A), while a total of 1,711 DEGs were identified in the

RNA-seq dataset (Figure 2B), with a total of 71 genes co-

expressed in both datasets, which are considered hub-DEGs

(Figure 2C). We continue to analyze GO functional enrichment

and KEGG analysis of hub-DEGs through the DAVID web tool.
B

C

D

A

FIGURE 1

Single-cell RNA sequencing profiles of peripheral blood cells from patients with sepsis. (A) UMAP map consisting of 18,462 cells in 19 clusters,
namely, 5,257 cells in healthy individuals and 13,205 cells in sepsis patients. (B) Heat map visualization of the top three marker genes for each
cluster of cells. (C) Annotation of peripheral blood cells showing a total of 13 blood cell compositions. (D) Violin plots show the distribution of
the 16 typical immune cell marker genes in each cell cluster, again validating the accuracy of the annotation.
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In the BP category, the enrichment was mainly in translation

and translational initiation; in the CC category, the enrichment

was mainly in membrane and focal adhesion; and in the MF

category, the enrichment was mainly in protein binding poly(A)

RNA binding (Figure 2D). In the signaling pathway analysis, the

KEGG pathways identified for these candidate genes were

ribosome, hematopoietic cell lineage, antigen processing, and

presentation (Figure 2E).
Construction of the hub-DEG prognostic
signatures and experimental validation of
expression in sepsis patients

Hub-DEGs identified 11 significant genes that were strongly

associated with OS after univariate and LASSO Cox regression

analyses (Figure 3A), and the regression coefficients for these
Frontiers in Immunology 05
significant genes are calculated in Figure 3B. Multivariate Cox

regression analyses showed that five genes (CCL5, HBD, IRF2BP2,

LTB, and WFDC1) were identified as construct prognostic

signatures (Figure 3C). The risk score is calculated using the

following formula: risk score = (−0.292 × CCL5 expression) +

(0.231 × HBD expression) + (0.442 × IRF2BP2 expression) +

(−0.484 × LTB expression) + (0.177 × WFDC1 expression). The

risk score was calculated for each patient according to the formula

and the median risk score was used as the threshold to classify

patients into high- and low-risk groups. The heat map shows the

expression of the five prognostic risk genes between the high-risk

and low-risk groups (Figure 3D). The distribution of risk scores

for patients with sepsis and the correlation between risk scores and

survival data are shown in the scatter plot (Figures 3E, F).

Subsequently, K-M survival curves were plotted and the OS

time profiles of the high-risk and low-risk groups were analyzed

to determine the ability of the model to predict the clinical
B C

D E

A

FIGURE 2

Obtaining hub-DEGs and their GO and KEGG enrichment analysis by analyzing scRNA-seq and RNA-seq datasets. (A) Volcano plot showing
DEGs between healthy and sepsis populations in the scRNA-seq dataset. Red dots represent upregulated genes and blue dots represent
downregulated genes. (B) Volcano plot showing DEGs between healthy and sepsis populations in the RNA-seq dataset. Red dots represent
upregulated genes and blue dots represent downregulated genes. (C) Venn diagram showing 71 hub-DEGs co-expressed in both datasets.
(D) Bubble plots showing the results of top five GO functional enrichment of 71 hub-DEGs. BP is shown in circles, CC is shown in triangles, and
MF is shown in squares, with the horizontal coordinates representing ratio. (E) Bubble plots showing the results of the KEGG signaling pathway
of 71 hub-DEGs, and the horizontal coordinate represents ratio.
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prognosis of patients with sepsis, and the results showed that

patients in the high-risk group had significantly lower 28-day OS

than those in the low-risk group, p = 1.43e-4 (Figure 3G). The

AUC values for 7-, 14-, and 21-day OS were 0.76, 0.72, and 0.7,

respectively, indicating good predictive performance of the risk
Frontiers in Immunology
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score (Figure 3H). The expression of five genes was compared

between healthy controls (n = 5) and patients with sepsis (n = 20)

using quantitative real-time PCR. The results showed that the

expression of all these genes was significantly higher than that in

the healthy control group (Figure 3I).
B C

D E

F

G H I

A

FIGURE 3

Construction of prognostic signatures by hub-DEGs. (A) Lasso regression analysis showing that 11 genes are strongly associated with OS in
sepsis. (B) Curve diagram showing the calculated regression coefficients for the hub-genes. (C) Forest plot showing five genes (CCL5, HBD,
IRF2BP2, LTB, and WFDC1) as prognostic signatures of the prognosis model after multivariate Cox regression analysis. (D) Heat map showing the
expression of five prognostic risk genes between the high- and low-risk groups. CCL5 and LTB were higher in the low-risk group than in the
high-risk group, while IRF2BP2, HBD, and WFDC1 were lower in the low-risk group than in the high-risk group. (E, F) Distribution of risk scores
for sepsis patients and correlation between risk scores and survival data in scatter plots. Patients in the high-risk and dead groups are indicated
by red dots and those in the low-risk and alive groups are indicated by green dots. (G) K-M survival curves, analysis of OS time curves between
the high-risk and low-risk groups. Patients in the high-risk group had a significantly higher 28-day survival rate than those in the low-risk group.
(H) ROC curves showing AUC values for predicting signed 7-, 14-, and 21-day survival. The AUC curves for 7, 14, and 28 days are shown as red,
green, and orange lines, respectively. (I) The expression of five genes (CCL5, HBD, IRF2BP, LTB, and WTDC1) in peripheral blood was compared
between healthy controls and sepsis patients by quantitative real-time PCR. Differences between two groups were analyzed using the t-test
(**p < 0.001).
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Risk score as an independent risk factor
for prognosis of sepsis

After inclusion of clinicopathological characteristics (age,

gender, pneumonia, ICU-acquired infection, and diabetes), both

univariate Cox regression analysis (HR = 1.482, 95% CI = 1.367–

1.607, p < 0.001) and multivariate Cox regression analysis (HR =

1.504, 95% CI = 1.383–1.636, p < 0.001) found model risk score

as an independent prognostic indicator for patients with sepsis

(Figures 4A, B) . We visual ized the differences in
Frontiers in Immunology 07
clinicopathological variables between the high- and low-risk

groups by heat map and only found differences in age (p <

0.05) as well as risk score (p < 0.05) between the high- and low-

risk groups (Figure 4C). The AUC value of risk score was 0.713,

significantly higher than age (0.503), gender (0.475), pneumonia

(0.467), ICU-acquired infection (0.449), and diabetes (0.473),

indicating that the risk score was superior to the

clinicopathological variables in predicting the prognosis of

patients with sepsis (Figure 3D). To further predict the

prognosis of sepsis, we constructed a nomogram containing
B

C D

E F G

A

FIGURE 4

Risk score as an independent risk factor for prognosis of sepsis. (A) Forest plot showing results of univariate Cox regression analysis after
inclusion of clinical clinicopathological characteristics (age, sex, pneumonia, ICU-acquired infection, and diabetes). The results show that the
risk score has a good predictive value. (B) The forest plot shows the results of the multivariate Cox regression analysis, with statistically
significant p-values for the two indicators risk score and age. (C) ROC curves showing the AUC values of clinicopathological characteristics and
risk scores. The AUC value for the risk score was 0.713, much greater than the other clinicopathological characteristics. (D) Construction of
nomogram plots of clinicopathological characteristics and risk scores. The risk score showed good predictive value at 7, 14, and 21 days for
sepsis. (E–G) Calibration curves showing the agreement between actual OS rates and predicted 7-, 14-, and 21-day survival rates.
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clinicopathological variables and risk scores that predicted the

prognosis of patients with sepsis at 7, 14, and 21 days

(Figure 4D). The calibration curves showed a high degree of

agreement between actual OS rates and predicted 7-, 14-, and

21-day survival rates (Figures 4E–G).
Relationship between prognostic
signatures and prognosis of patients
with sepsis under different
clinicopathological variables

To investigate the relationship between predictive signature

and prognosis in patients with sepsis classified by different

clinicopathological variables, patients with sepsis were grouped

by age, diabetes, gender, ICU-acquired infection, and

pneumonia. Among the clinicopathological groups, patients in

the high-risk group had significantly shorter OS than those in

the low-risk group (Figure 5). These results suggest that
Frontiers in Immunology 08
clinicopathological variables have little effect and that

prognostic signatures can predict the prognosis of patients

with sepsis.
Internal verification of the
prognostic signatures

To verify the applicability of the dataset, we performed an

internal validation of the data. The entire dataset samples were

randomly assigned in a 1:1 ratio to the train cohort (240 cases)

and test cohort (239 cases). In the train set and test set, the 28-

day OS rate was significantly lower in the high-risk group than in

the low-risk group, and their p-values were 1.305e-3 and 5.453e-

3, respectively (Figures 6A, B). Further ROC curve analysis

showed better predictive performance in both the train and

test groups, especially in the early stages of the disease. In the

train cohort, the AUCs for 7-, 14-, and 21-day OS were 0.78, 0.8,

and 0.74, respectively (Figure 6C). In the test cohort, the AUCs
B C

D E F

G H I

A

FIGURE 5

Survival curves for clinicopathological variables. (A–I) Kaplan–Meier survival curve shows the relationship between high- and low-risk groups
and sepsis prognosis under different clinicopathological variables. The high-risk group is shown in red and the low-risk group is shown in blue.
The data showed that patients in the high-risk group had lower survival rates than those in the low-risk group across different
clinicopathological variables.
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for 7-day, 14-day, and 21-day survival were 0.77, 0.67, and 0.68,

respectively (Figure 6D).
PCA and GSEA

The differences in the prognostic model constructed by

predictive signature between the low-risk and high-risk groups

were detected by PCA. Based on the results of the prognostic

model, the low-risk and high-risk groups were clearly

distinguished, which verified that the predictive signature

could better distinguish the low- and high-risk groups

(Figure 7A). Because of the significant differences in prognosis

between patients in the high-risk and low-risk groups, we

conducted the GSEA study to examine the differences in GO

and KEGG between the high-risk and low-risk groups. We

found that in the GO functional analysis, cell recognition,

cellular response to toxic substance, glycolytic process through

fructose-6-phosphate, iron ion transport, and NAD metabolic
Frontiers in Immunology 09
processes were significantly enriched in the high-risk group

(Figure 7B). In the KEGG analysis, amino sugar and

nucleotide sugar metabolism, biosynthesis of unsaturated fatty

acids, cardiac muscle contraction, chemokine signaling pathway,

and Fc epsilon RI signaling pathway were significantly enriched

in the high-risk group (Figure 7C).
Immune cell and drug target
gene analysis

We showed that immune cells differed between healthy and

sepsis patients by analyzing scRNA-seq data from 12 patients,

where B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells,

dendritic cells, and NK cells were higher in the normal group

than in the sepsis group, indicating the presence of

immunosuppression in the latter (Figures 8A, B). To further

explore the relationship between sepsis prognosis and immune

cells, we quantified 22 immune cell scores in the high-/low-risk
B

C

D

A

FIGURE 6

Internal validation of prognostic signatures for the entire sepsis dataset. (A, B) Kaplan–Meier survival curve in the train and test cohorts. Patients
in the high-risk group had a significantly lower number of days of survival than those in the low-risk group. The red and blue lines represent the
high-risk and low-risk groups, respectively. (C, D) ROC curve and AUCs at 7-, 14-, and 21-day survival in the train and test cohorts. Both the
train and test cohorts showed better predictive performance, especially at 7 days, with the highest AUC values of 0.78 and 0.77, respectively.
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group using the CIBERSORTx algorithm. The relationship

between different clinicopathological characteristics and

immune landscape is shown by the heat map in Figure 8C.

We found that a total of nine immune cells differed between the

two groups, with CD4 memory activated T cells, regulatory T

cells (Tregs), resting NK cells, M0 macrophages, M2

macrophages, resting mast cells, and eosinophils higher in

number, while in the low-risk group, CD8 T cells and

activated NK cells were higher in number (Figure 8D). These

results suggest that patients in the high-risk group showed a

significant decrease in immune cytotoxicity and a significant

increase in the regulation of humoral immunity. Analysis of

drug targets of immune function-related drugs predicted the

future of immune-targeted drugs in sepsis, and the results

showed that nine target loci (CSF2RA/B, CSF3R, IFNGR1/2,

IL7R, PDL1, CTLA4, and LAG3) were higher in sepsis than in
Frontiers in Immunology 10
healthy populations, as well as differences in high-/low-risk

groups (Figures 8E, F).
Discussion

Sepsis is a systemic inflammatory response syndrome (SIRS)

caused by bacterial, fungal, and viral infections, which can lead

to multi-organ dysfunction and is a highly lethal clinical disease

(17, 18). The ideal biomarker should possess features such as

affordability, utility, and the ability to achieve a highly specific

and sensitive diagnosis of sepsis. Although hundreds of markers

are clinically available for the evaluation of sepsis, many are not

used in clinical practice because of their lack of sensitivity and

specificity (19–21). No single biomarker can diagnose, predict,

and follow sepsis treatment, and the real challenge is to select the
B

C

A

FIGURE 7

PCA and GSEA based on risk score groupings. (A) PCA distribution of clinical samples based on high- and low-risk groups. The three-
dimensional graphs distinguish well between the distribution of patients in the high- and low-risk groups, where the distribution of the sample
in the high-risk group is represented by red dots and the distribution in the low-risk group is represented by green dots. (B) GSEA showing the
results of GO functional enrichment analysis for the high- and low-risk groups. The value 0 of the enrichment score is used as the cutoff value
to show the top five GO functional enrichment analysis for high and low expression, respectively. (C) GSEA showing the results of KEGG
signaling pathway enrichment analysis in the high- and low-risk groups. The value 0 of the enrichment score is used as the cutoff value to show
the top five KEGG signaling pathway analysis for high and low expression, respectively.
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best and validate clinically useful biomarker models from a large

number of biomarkers (22). In recent years, studies have been

conducted to construct the prognosis of sepsis from RNA-seq

data (4, 23, 24). However, the study of constructing sepsis

prognosis by scRNA-seq combined with RNA-seq data has not

been reported, and the present study fills this gap.

Using scRNA-seq and RNA-seq data, we identified 71 hub-

DEGs that were significantly different in sepsis and normal

subjects. After GO and KEGG analysis, these genes were mainly

associated with ribosome, hematopoietic cell lineage, and immune

dysfunction. Immediately after, for these hub-DEGs, using

univariate and LASSO Cox regression analysis, 11 significant

genes were associated with OS, and finally, multivariate Cox

regression analysis showed that 5 genes (CCL5, HBD, IRF2BP2,

LTB, and WFDC1) were identified as the prognostic signatures.

CCL5 not only acts as a chemokine involved in the inflammatory
Frontiers in Immunology 11
response and mediates the wandering and infiltration of immune

cells, but also regulates cell growth and differentiation (25). Studies

have shown that the expression of CCL5 is significantly higher in

septic patients than in non-sepsis patients and is also strongly

associated with the prognosis of sepsis (26, 27). HBD encodes the

hemoglobin d chain, and HbA2 is a tetramer composed of two a
and d bead chains, which account for 2%–3% of the total in normal

individuals (28). Anemia symptoms are also one of the important

clinical manifestations of sepsis. It has also been shown that some

viral infections can alter the ratio of HbA2, and even the recently

prevalent COVID-19 infection can cause changes in HbA2, but the

mechanism is not clear (29–32). Animal models of sepsis have

shown that cardiac overexpression of IRF2BP2 effectively inhibits

sepsis-induced cardiac dysfunction, inflammatory response, and

cell death through activation of the AMPK signaling pathway (33).

During sepsis, lipopolysaccharide (LPS) activates the pro-
B

C D

E F

A

FIGURE 8

Changes in immune cells and drug target gene analysis in patients with sepsis. (A) Proportions of 13 immune cell species in 12 scRNA-seq
datasets. The proportion of immune cells is significantly reduced in non-survivor sepsis patients. (B) The proportional distribution of 13 immune
cell types in normal and sepsis populations and the differences between them. The B cells, CD14+ monocytes, CD4+ T cells, CD8+ T cells,
dendritic cells, and NK cells were all higher in the normal group than in the sepsis group. (C) Heat map showing the correlation analysis of
different clinicopathological features with 22 immune cell landscapes, where we used the high- and low-risk groups as the main differentiating
boundary. (D) Further study of 22 immune cells between the high- and low-risk groups, with an asterisk (*) sign indicating a significant
difference and more asterisks indicating more significant cell differences. (E) Violin diagram showing the expression of 13 drug target genes in 13
cell clusters. Light blue denotes the normal group and red indicates the sepsis group. (F) The distribution of immune function-related drug
target genes in high- and low-risk populations showed that nine target genes differed between high- and low-risk groups.
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inflammatory effects of the miR-155-5p/IRF2BP2/NFAT1 axis,

leading to loss of lung or heart function (34). Knockdown of

IRF2BP2 cells promoted the binding of IRF2 to the PD-L1

promoter, which, in turn, inhibited PD-L1 promoter activity and

suppressed PD-L1 expression (35). LTB anchors lymphotoxin to

the cell surface through the formation of heterogeneous trimers.

The predominant form on the lymphocyte surface is one LT-a
binding two LT-b to form a complex that is the primary ligand for

the LT-b receptor (36). LTB is an inducer of the inflammatory

response system and is involved in the normal development of

lymphoid tissue, which, in turn, affects the immune function of the

body (37). Studies have shown that LT-a was tested in sepsis

patients’ sera, and compared to normal volunteers, LT-a was

detected in 33% of sepsis sera, and 16% of normal sera. There

was no difference in LT-a in sepsis sera even when grouped by

pathogen type (38). Recent findings show that SNP LTA +252 is

associated with the development of sepsis (39). Although studies

have shown a direct correlation between LT-a and sepsis, direct

evidence for a correlation between LTB and sepsis is lacking in

studies. WFDC1 is a whey acidic protein four-disulfide core

member that exhibits diverse growth and immune-associated

functions in vitro. WFDC1 is a key regulator of the

inflammatory response and may be associated with macrophage

recruitment (40). In addition, it is involved in the regulation of

memory T cells during human immunodeficiency virus infection

(41). Except for HBD, all of the above four prognostic signature

genes are closely related to the regulation of immune function in

the organism. Our study showed that all five prognostic signature

genes were significantly higher in sepsis patients than in

normal subjects.

The ROC curves showed that the prognostic signatures had

good predictive performed and performed best in the early stages

of the disease. The nomogram survival charts show that the

prognosis of sepsis is strongly correlated with two elements, risk

score and age, and poorly correlated with gender, diabetes, ICU-

acquired infection, and pneumonia. Prognostic signatures appear

more reliable and precise than clinicopathological variables in

predicting the prognosis of patients. We also found that the

prognostic signatures predicted the prognosis of sepsis,

conditional on the exclusion of relevant clinicopathological

variables. The prognostic signatures also have good predictive

performance as verified by internal validation. PCA validation

shows that the prognostic signatures can distinguish well between

high- and low-risk group sample distributions.

Subsequently, we performed GO and KEGG enrichment

analysis by the GSEA method, and GO was mainly enriched in

cell–cell recognition, cellular response to toxic substance,

glycolytic process through fructose 6-phosphate, iron ion

transport, and NAD metabolic process. All five of these GO

functions are closely related to sepsis (42–45). The results of

KEGG analysis were mainly enriched in amino sugar and

nucleotide sugar metabolism, biosynthesis of unsaturated fatty

acids, cardiac muscle contraction, chemokine signaling pathway,
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and Fc epsilon RI signaling pathway. The aforementioned

signaling pathways and sepsis are also closely associated and

are mainly related to the immune function of the cells (46–50).

To further explore the changes in immune cells in sepsis, we

analyzed by scRNA-seq dataset, and the results showed that T/B/

NK cells were lower in sepsis than in normal subjects, which is

consistent with the findings of Wang et al. (51). These data provide

ample evidence for the presence of significant immunosuppression

in patients with sepsis. An in-depth analysis of the differences in

immune cell abundance between the high- and low-risk groups for

sepsis showed that CD4memory activated T cells, Tregs, resting NK

cells, M0 macrophages, and M2 macrophages were higher in the

high-risk group than in the low-risk group. It was suggested that

patients in the high-risk group showed a more significant reduction

in cytotoxic function and a more active performance in the

regulation of humoral immunity, fully reflecting the fact that

sepsis is a complex mechanism of both transitional inflammation

and immunosuppression. The main classes of drugs used for the

evaluation of sepsis treatment are immunostimulatory drugs

(immune targets CSF2RA/B, CSF3R) (52), immunostimulatory

cytokines (immune target is IFNGR1/2) (53), and

immunosuppressants (PDL1 and CTLA4) (54). We analyzed the

immune targets of immune-related drugs to predict their potential

use in sepsis and showed that nine target loci (CSF2RA/B, CSF3R,

IFNGR1/2, IL7R, PDL1, CTLA4, and LAG3) differed in the high-/

low-risk block. IL-7 is perhaps the most promising potential

immunotherapy for sepsis (55). IL-7 acts extensively on cells of

the adaptive immune system, promoting the proliferation and

survival of primary and memory CD4+/CD8+ T cells (56), and

can reverse the immune deficiency of sepsis (57).

Although our study has initially validated five prognostic

signature genes as being elevated in sepsis, there are some

limitations. First, new machine learning and artificial intelligence

algorithms are increasingly being used in the diagnosis and

prognosis of diseases; however, this study still uses classical

methods to construct a prognostic model for sepsis (58, 59).

Second, the expression and mechanism of action in predictive

features in sepsis need to be further refined and validated

experimentally. Third, the drug treatment corresponding to the

immune target is yet to be confirmed by more clinical studies.

In summary, the prognostic signatures have good

properties to predict the prognosis of patients with sepsis,

and provides a reliable and precise basis for the possible

mechanism and clinical treatment of the prognostic signature

in sepsis by analyzing the prospect of immunotherapeutic

targets for immunosuppressive-related drugs in sepsis. Our

study validated prognostic signatures but failed to elucidate

their expression in different immune cells. In future work, we

will construct animal models of sepsis, validate the expression

of prognostic signature genes in different immune cells, and

further investigate the mechanisms of action of different genes

in different immune cells to provide sufficient evidence for the

treatment of sepsis.
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