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The landscape of chimeric
antigen receptor T cell therapy
in breast cancer: Perspectives
and outlook

Hao Zhang, Shuangli Zhu, Wanjun Deng, Rui Li ,
Haiting Zhou and Huihua Xiong*

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive

cell therapy, which could modify and redirect T cells to specific tumor cells.

Since CAR-T cell therapy was first approved for B cell-derived malignancies in

2017, it has yielded unprecedented progress in hematological tumors and has

dramatically reshaped the landscape of cancer therapy in recent years.

Currently, cumulative evidence has demonstrated that CAR-T cell therapy

could be a viable therapeutic strategy for solid cancers. However, owing to

the immunosuppressive tumor microenvironment (TME) and heterogenous

tumor antigens, the application of CAR-T cell therapy against solid cancers

requires circumventing more challenging obstacles. Breast cancer is

characterized by a high degree of invasiveness, malignancy, and poor

prognosis. The review highlights the underlying targets of CAR-T cell therapy

in breast cancer, summarizes the challenges associated with CAR-T cell

therapy, and proposes the strategies to overcome these challenges, which

provides a novel approach to breast cancer treatment.

KEYWORDS

chimeric antigen receptor, CAR-T cell, immunotherapy, breast cancer, tumor
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Introduction

According to the most recent global cancer statistics in 2020, breast cancer has

overtaken lung cancer to become the most commonly diagnosed cancer, with

approximately 2.3 million newly diagnosed cases and 680,000 deaths (1). Breast cancer

severely threatens women’s health because of its high malignancy and extremely poor

prognosis. Breast cancer is categorized into the following subtypes based on the

expression level of estrogen receptor (ER), progesterone receptor (PR), and human

epidermal receptor 2 (HER2): basal‐like breast cancer, luminal A, luminal B, triple-
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negative breast cancer (TNBC), and human epidermal growth

factor receptor 2 (HER-2) amplified subtype (2). Surgery,

chemotherapy, and radiotherapy remained the mainstream

treatments for breast cancer (3). Fatal complications such as

damage to normal breast tissues, recurrence, and metastasis after

treatment seriously limit the effect of breast cancer treatment (4,

5). The continuous clinical application of targeted therapies such

as trastuzumab has led to a better prognosis and fewer adverse

reactions in HER2-positive breast cancer patients (6). However,

its overall therapeutic effect is still limited due to the molecular

specificity of targeted therapies, and alternative treatments are

urgently required.

The tumor microenvironment (TME) consists of tumor cells,

immune cells, mesenchymal cells, and secreted chemokines and

cytokines, which jointly regulate the physiological process of

tumor cells (7). In recent decades, the regulatory mechanisms of

the TME in tumorigenesis have been elucidated, and tumor-

infiltrating immune cells play a significant role in the TME.

Immunotherapy based on immune checkpoints such as

programmed death-1/programmed death ligand-1 (PD-1/PD-

L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA4),

has been extensively applied in multiple tumors. The suppression

of immune checkpoints can block the immunosuppressive signals

in immune cells and activate them to recognize and destroy tumor

cells (8). Immunotherapy has achieved satisfactory clinical

therapeutic effects in lung cancer, melanoma, and renal cell

carcinoma, which has revived the field of cancer treatment (9).

Chimeric antigen receptor T (CAR-T) cells are artificially

engineered T cells that express a synthetic tumor cell-specific

receptor on their surface. The preparation process of CAR-T

cells is shown in Figure 1. T cells were initially isolated from

peripheral blood mononuclear cells and transfected with a

lentivirus to express CAR. The modified CAR-T cells were

subsequently amplified in vitro and reinfused back into the

patients (10). The CAR-T cells can recognize specific tumor

antigens and activate an immune response ultimately

eliminating tumor cells (11). CAR-T cell therapy has achieved

impressive success against hematologic tumors (12). Since 2017,

the FDA has approved six types of CAR-T cells for hematologic

tumors (13). (Figure 2) The considerable effects of CAR-T cell

therapy against hematological malignancies have facilitated its

application in solid tumors, including breast cancer. In this

review, we introduced the novel CAR-T cell engineering

strategy, summarized the potential targets and clinical trials in

breast cancer, and discussed the challenges and engineering

strategies of CAR-T cell therapy.
The construction of CARs

CARs are divided into four main components based on their

structure and function, including an antigen-binding domain, a

hinge domain, a transmembrane domain, and an intracellular
Frontiers in Immunology 02
signaling domain (14). The diagrams of the specific structure

patterns are shown in Figure 3. Optimization of the four

domains of CARs during their development can effectively

increase their effectiveness and safety in tumor treatment.

The antigen-binding domain is located on the extracellular

membrane of CAR-T cells, and mainly plays the role of

recognizing the tumor antigen and transducing the recognized

antigen signal into the cell (15). The antigen-binding region is a

single-chain variable fragment (scFv) composed of a variable

heavy chain and light chain of antibodies linked by Gly4Ser

peptide, the most common linker in CARs (16). The scFv

sequence is usually part of a monoclonal antibody derived

from mice or humans. Currently, smaller natural monoclonal

antibodies (nanobodies) are also being designed using the scFv

sequences (17). This domain recognizes cell tumor-specific

antigens and activates T cells, which are independent of major

histocompatibility complex (MHC) molecules. It provides a

method to overcome immune escape due to the

downregulation of MHC molecules in tumor cells (18). The

recognition ability of the antigen-binding region and affinity of

tumor cells in CAR-T cells directly affect the antitumor effect.

The hinge region is responsible for connecting the

extracellular antigen binding domain and the transmembrane

region of the cell membrane. It provides more flexibility for the

antigen-binding domain to cope with spatial barriers in binding

to tumor cells so that CAR-T cells can identify and interact with

tumor cells more easily (19).

The transmembrane domain connects with the

intracellular and extracellular domains of CAR-T cells and

fixes the basic construction of CARs into the cell membrane.

Type I proteins are the main component of transmembrane

regions such as CD3z, CD4, CD28, or CD8a (20, 21). Savoldo

et al. found that the CARs transmembrane region containing

CD28 has a more stable structure than that containing

CD3z (22).

The intracellular signal domain is the intracellular

localization component of CARs, which usually consists of an

activation domain and costimulatory domains. The

identification signals of tumor antigens were transmitted to

CAR-T cells, activating the intracellular signal domain, and

prompting T cells to destroy tumor cells. Most of the

activation domains of CARs are derived from CD3z
immunoreceptors based on tyrosine activation motifs (22).

However, the activation signals conveyed by CD3z alone are

not sufficient to induce a durable immune response in T cells

(23). Therefore, costimulatory regions such as OX40, CD27,

CD28, 4-1BB, or ICOS are introduced into the structure of

CARs. The activation of the costimulatory region was found to

dramatically promote the antitumor effect and persistence of

CAR-T cells by generating cytokines such as IL-2 (24). The

CD27 molecule was confirmed to enhance the killing effect of

Trop2-targeted CAR-T cells and to prolong their survival time in

breast cancer (25).
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The development of CAR-T
cell therapy

With advances in biotechnology, the construction of CAR-T

cells has evolved over several generations. The general

development process is illustrated in Figure 3.

The first-generation CAR-T cells transmit activation signals

only through the intracellular region of the CD3z domain. They

have shown limited efficacy in clinical trials due to a lack of

costimulatory signaling, leading to more rapid CAR-T cell death

(26). The costimulatory signal domain 4-1BB or CD28 was

added into the second generation of CAR-T cells based on the

construction of the previous generation. Combined activation of
Frontiers in Immunology 03
the two signals significantly improved the tumor-killing efficacy

and persistence of CAR-T cells. Multiple clinical trials have

confirmed that second-generation CAR-T cells targeting CD19

achieved significant clinical efficacy in B-cell acute lymphoblastic

leukemia (B-ALL) treatment (27, 28). Moreover, the third

generation of CAR-T cells with an additional costimulatory

signaling molecule was designed to further enhance the

activation ability of CAR-T cells. Costimulatory signaling

molecules such as CD27, CD28, ICOS, 4-1BB, and OX40 were

commonly used in this generation of CAR-T cells, providing

superior antitumor efficacy to their predecessors (29). The third

generation of CAR-T cells has become the main widely used

technology in the construction of CAR structures. NKG2D
FIGURE 1

Flowchart for manufacturing engineered CAR-T cells. First, a blood sample was taken from the patient. Secondly, T cells were isolated and
collected from the human blood samples. Then, the lentivirus was transfected into the T cells genome of the patients, facilitating the T cells to
express artificially modified CARs. Finally, the designed CAR-T cells were massively amplified in vitro and subsequently injected into tumor
patients.
FIGURE 2

The process of FDA-approved CAR-T cells for tumor treatment.
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CAR-T cells with CD27 or 4-1BB costimulatory signaling

molecules could promote the expansion and self-enrichment

of CAR-T cells without the presence of IL-2, effectively

enhancing the ability to recognize and eliminate breast cancer

(30). EGFR‐targeted CAR‐T cells containing CD28, 4‐1BB and

CD3z costimulatory signaling molecules showed a strong

inhibitory effect on tumors (31).

In addition, some novel strategies have started to be carried

out to identify CAR-T cell therapies with a better therapeutic

effect and minimum adverse reactions. It was found that CD28

can promote cytokine secretion, 4-1BB can increase T cell

proliferation, and CD27 can enhance T cell survival. The

fourth generation of FRa-targeted CAR-T cells containing the

costimulatory domains CD28, 4-1BB, and CD27 demonstrated

superior therapeutic efficacy in breast cancer due to the o

combined benefits of the three costimulatory domains (32).

Switch-based recombinant dual-function antibody

engineering has been developed to address safety concerns

associated with CAR-T cell therapy. The structure of the
Frontiers in Immunology 04
switch includes a Fab molecule that binds specifically to tumor

antigens and a peptide epitope that specifically binds to CAR-T

cells. CAR-T cells only bind to the peptide epitopes of the switch

but not to endogenous tissues or antigens on tumor cells. Hence,

the recognition and activation processes are severely dependent

on the existence of the switch. This switch strategy could reduce

the occurrence of adverse reactions by controlling CAR-T cell

activity and cytokine release with the same effect compared with

traditional CAR-T treatment (33).

The design of two ligand-binding domains in single-stranded

CAR structures is a strategy for the more efficient identification of

tumor cells. The CARs can recognize two distinct tumor antigens,

either of which is adequate to activate T cells. This activation

pattern markedly improves the efficiency of tumor cell recognition

(34). In Yang et al.’s study, a bivalent tandem CAR (TanCAR) was

designed to target both CD70 and B7-H3, which enhanced

antitumor functionality and improved the problem of antigenic

heterogeneity and variant in breast cancer (35).

The signal transmission domain, the new structure domain in

current CARs, maybe another important signal to activate CAR-T

cell function in addition to the costimulatory domain. Kagoya

et al. have designed a novel generation of CAR-T cells which add a

new signaling molecule domain compared to the traditional CAR-

T cells. The signal domain was constructed from the IL-2 receptor

b-chain and STAT3 binding tyrosine-X-X-glutamine (YXXQ)

motif. These novel CAR-T cells could improve proliferation,

antitumor capacity, and persistence compared to traditional

CAR-T cells through the activation of JAK kinases and the

STAT3/STAT5 transcription factor signaling pathways (36).
Therapy targets of CAR-T cells in
breast cancer

In solid tumors, the construction of CAR-T cells is more

complex, and recognition of targeted tumor-specific antigens is

an important challenge for CAR-T cell therapy. Over the years,

several tumor surface antigens have been determined as

promising therapeutic targets for CAR-T cell therapy in breast

cancer. In the next sections, we summarize some recent advances

of targets in CAR-T cells for breast cancer. Moreover, the

summarized targeted information is presented in Table 1.
HER2

Human epidermal growth factor receptor 2 (HER2), one of

the most widely studied molecules in breast cancer, is elevated in

20-25% of breast cancer patients. The overexpression of HER2 is

related to higher rates of metastasis and recurrence in breast

cancer (57). Since the FDA approved trastuzumab in 1998,

specific therapies with monoclonal antibodies have
FIGURE 3

Fundamental structure diagram of a CAR-T cell and the
development flowchart from the first-generation to the new-
generation CAR-T cell. The fundamental structure of CAR-T cells
is composed of extracellular tumor antigen-binding domains,
hinge domains, transmembrane domains, and intracellular
signaling domains. The first generation of CAR-T cells contained
only a CD3z intracellular signaling domain. The second or third
generation of CAR-T cells added one or more costimulatory
molecules based on the previous generation. The next
generation of CAR-T cells applied a variety of new engineering
strategies, including bispecific CARs, the switch, nanobodies,
caspase 9, and the cytokine pathway.
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revolutionized the mainstream treatment concept for HER2-

positive breast cancer. Although HER2-targeted therapies have

been widely used in breast cancer patients and achieved good

therapeutic results, drug resistance still limits their therapeutic

effects in patients (58). The constructed HER2-targeted CAR-T

cells can actively recognize tumors and achieved better efficacy

and safety in a clinical trial of sarcoma (59, 60). Gábor et al.

designed HER2-targeted CAR-T cells with trastuzumab-derived

scFv and a CD28 costimulatory domain. The results showed that

complete tumor remission was achieved within 57 days in these

trastuzumab-resistant breast cancers when only 7% of CAR-T
Frontiers in Immunology 05
cells consisted of the T cells. The results confirmed that a small

quantity of CAR-T cells can have a strong antitumor effect on

the anti-HER2 antibodies-resistant xenografts (37). In another

study of trastuzumab-resistant breast cancer, HER2-targeted

CAR-T cells could infiltrate the core region of the tumor

globule, showing tumor cell cytotoxic activity, whereas anti-

HER2 antibodies failed. Moreover, CAR-T cells can penetrate

the tumor matrix and eradicate tumors in trastuzumab-resistant

breast cancer xenografts. This study demonstrated that CAR-T

cells can effectively overcome antibody therapy failure by

masking the tumor epitope and blocking the tumor stroma
TABLE 1 The summary of targeted of CAR-T cell therapy in breast cancer.

Targets Targets site Experimental
model

Research Progress Researcher

HER2 Tumor In vitro/SCID mice
model

HER2-targeted CAR-T cells recognized and eliminated trastuzumab-resistant tumor
cells.

Gábor et al. (37)

Tumor In vitro/NSG mice CAR-T cells penetrate the tumor matrix against HER2 antibody-resistant tumors. Szöőr et al. (38)

Tumor In vitro/NSG mice CAR-T cells is a prospective treatment in breast cancer brain metastases patients. Saul et al. (39)

HER3/4 Tumor In vitro/Balb/c
nude mice

CAR-T cells can damage breast cancer with HER family expression and overcome
HER2-targeted therapy resistance.

Zuo et al. (40)

EGFR Tumor In vitro/SCID mice
model

The potential of EGFR CAR-T therapy for TNBC was demonstrated. Xia et al. (31)

Tumor In vitro/nude mice CAR-T is a promising treatment strategy for TNBC patients with high EGFR
expression.

Liu et al. (41)

MSLN Tumor In vitro/NCG mice CAR-T cells significantly inhibited the proliferation of MLSN - positive breast cancer. Zhang et al. (42)

ICAM1 Tumor In vitro/NSG mice CAR-T cells have high therapeutic potential against ICAM1-positive TNBC tumors. Wei et al. (43)

AXL Tumor In vitro/NSG mice CAR-T cell are a promising therapeutic strategy against TNBC. Wei et al. (44)

MUC1 Tumor In vitro/NSG mice CAR-T cells have high therapeutic potential against tMUC1-positive TNBC tumors
with minimal damage.

Zhou et al. (45)

GD2 Tumor In vitro/NSG mice CAR-T is a promising novel approach for GD2-positive breast cancer, especially in
disseminated and metastasis tumor cells.

Seitz et al. (46)

FRa Tumor In vitro The feasibility of FRa-targeted CAR-T cells therapy was confirmed in breast cancer. Luangwattananun
et al. (32)

PD-L1 Tumor In vitro/C57BL/6
mice

The chPD1 T cells can reduce the tumor burden in breast cancer and release cytokines. Parriott et al. (47)

Tumor In vitro/NSG mice CAR-T cells can trigger the expression of PD-L1 on target cells, and enhance the
cytotoxicity of PD-L1 CAR-T cells.

Bajor et al. (48)

PTK7 Tumor In vitro/NSG mice PTK7-targeted CAR-T cells significantly prevented the growth of breast cancer. Jie et al. (49)

Trop2 Tumor In vitro/NCG mice CAR-T cells enhanced the CAR-T cell tumor-killing effect. Chen et al. (25)

SLC3A2 Tumor In vitro/NSG mice SLC3A2-targeted CAR-T cell is a novel, efficacious, and potentially safe approach for
tumor cell therapies.

Pellizzari et al. (50)

B7-H3 Tumor In vitro/NSG mice A low dose of SAHA significantly enhanced the antitumor activity of B7-H3-targeted
CAR-T cells in breast cancer.

Lei et al. (51)

CD70 Tumor In vitro/NSG mice TanCAR-T cells targeting CD70 and B7-H3 exhibit enhanced antitumor functionality in
breast cancer.

Yang et al. (35)

VEGFR 2/
3

Tumor/vascular
endothelial cells

In vitro/nude mice VEGFR-2/3 CAR-T cells showed cytotoxicity against tumor cells and umbilical vein
endothelial cells.

Xing et al. (52)

TEM8 Tumor/vascular
endothelial cells

In vitro/SCID mice TEM8-targeted CAR-T cells enhanced the secretion of cytokines and killed tumor cells
and endothelial cells.

Byrd et al. (53)

NKG2DLs Tumor In vitro/NSG mice Self-enriched CAR-T cells effectively recognized and eliminated TNBC cell lines. Han et al. (30)

avb6 Tumor In vitro/NSG mice avb6-targeted CAR-T cells exhibited strong cytotoxicity to breast cancer cells. Whilding et al. (54)

CD32A131R Antibody Fc fragment In vitro CD32A131R CAR-T cells recognize and damage cetuximab-bound tumor cells. Caratelli et al. (55)

ROR1 Tumor In vitro/NSG mice Oxaliplatin and anti-PD-L1 synergistically improved ROR1-targeted CAR-T cell anti-
tumor ability.

Srivastava et al.
(56)
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components of breast cancer (38). Meanwhile, Saul et al. found

that the delivery of HER2-targeted CAR-T cells to the brain led

to a strong antitumor function in breast cancer with brain

metastases by the orthotopic xenograft model, which solved

the difficulty of drugs breaking through the blood-brain barrier

in tumor brain metastasis (39).
HER3/4

As a heterodimer and signal transduction partner of HER2,

HER3/HER4 is related to oncogenic signaling and treatment

resistance in breast cancer (61). Heregulin (HRG), a secreted

soluble growth factor in cells, contains an epidermal growth

factor subdomain and has a high affinity for HER3/4 receptors. It

can induce heterodimerization of the HER tyrosine kinase

receptor family by binding to specific receptors (62). This

extracellular domain of HRG was designed to construct HER3/

4-targeted CAR-T cells. Those cells have been found to

specifically recognize and have a strong tumor-killing effect on

HER3-overexpressing breast cancer cells by in vitro experiments

and transplanted tumor models (40).
EGFR

EGFR, one of the important members of the EGFR tyrosine

kinases family, is found to be overexpressed in approximately half

of TNBC and has a significant regulatory ability in breast cancer

progression and malignant transformation (63). The activation of

EGFR causes the autophosphorylation of its tyrosine kinase

domain by binding to the EGFR receptor and activates

downstream PI3K/AKT signaling pathways (64, 65). EGFR-

specific CAR-T cell have shown anticancer potential in lung

cancer (66), and better safety and anti-tumor effect in phase I

clinical trials of pancreatic cancer (67). Xia et al. found that EGFR-

targeted CAR-T cells showed a specific and strong tumor-killing

ability on TNBC in vitro, and this ability was further confirmed in

xenograft mouse models. Mechanism studies have confirmed that

EGFR-targeted CAR-T cells can activate the granzyme-perforin-

PARP and Fas-FADD-caspase signaling pathways in TNBC cells,

which may be an important mechanism for increasing the

antitumor effect (31). In another study, Liu et al. designed two

different types of EGFR-targeted CAR-T cells, which have

different DNA sequences in the scFv region. These CAR-T cells

can identify TNBC cells with high EGFR expression and trigger

TNBC cell death in vitro assays and xenograft mouse models (41).
MSLN

Mesothelin (MSLN) is a glycoprotein on the surface of

mesenchymal cells. Its expression has been found to be
Frontiers in Immunology 06
upregulated in various types of cancers, including breast

cancer, making MSLN-targeted CAR-T cells a potential

opinion in breast cancer therapy (68, 69). Zhang et al.

designed a third-generation MSLN-targeted CAR-T cell

containing CD28 and 4-1BB costimulatory domains. In in

vitro and in vivo xenograft models of breast cancer, MSLN-

targeted CAR-T cells specifically damaged MSLN-positive breast

cancer cell lines and prominently inhibited the growth of breast

cancer tumors. Concurrently, T cell and cytokine secretion levels

were found to be significantly increased in the presence of CAR-

T cells (42, 70).
ICAM1

Intercellular adhesion molecule-1 (ICAM1) is a type of cell

surface transmembrane glycoprotein receptor and a member of

the immunoglobulin superfamily. The function of ICAM1 was

found to be correlated with tumor cell adhesion, cell growth

signaling pathway, and the transport of immune cells to

inflammation sites. The expression level of ICAM1 is higher in

TNBC than in normal breast tissues (71). Mg2, an ICAM1-

specific scFv, was selected as an extracellular antigen-binding

domain. In vitro tumor cell and TNBC mouse model

experiments have revealed that ICAM1-targeted CAR-T cells

possess a strong ability to specifically destroy TNBC cells,

significantly reduce the growth of TNBC tumors, and improve

the survival rate of the mouse model (43).
AXL

AXL is a type of tyrosine kinase receptor (RTK) originally

discovered in patients with chronic myeloid leukemia. AXL is

overexpressed in the breast cancer cell membrane, and its

overexpression is related to lower survival in patients (72).

Previous studies have suggested that it could be implicated in

tumor physiological processes, including proliferation,

apoptosis, migration, inflammation, and angiogenesis.

Moreover, it can activate various intracellular downstream

signaling pathways such as NF-kB, MAPK, mTOR, AKT, and

PI3K (73, 74). Wei et al. constructed AXL-targeted CAR-T cells

and detected their antigen-specific cytotoxicity and cytokine

release ability in AXL-positive tumors in vitro . The

experimental result showed that AXL-targeted CAR-T cells

have a significant antitumor ability and stronger persistence in

TNBC xenograft models (44).
MUC1

MUC1 is a type of transmembrane mucin protein that is

heavily glycosylated and often expressed on most glandular
frontiersin.org
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epithelial cells and organs (75). Overexpression and aberrant

glycosylation of MUC1 were found in over 90% of breast cancer

patients (76). Abnormally glycosylated MUC1 (tMUC1) can be

specifically recognized by synthetic monoclonal antibody

TAB004 in breast cancer, but not in normal structured MUC1

(77). Zhou et al. designed the MUC28z chimeric antigen

receptor using TAB004 construction as the antigen-binding

domain. These types of CAR-T cells enhanced the expression

and secretion of cytokines and chemokines such as Granzyme B

and IFN-g after recognizing the tMUC1. tMUC1-targeted CAR-

T cells showed significant cytotoxicity and anti-tumor effect and

decreased TNBC tumor proliferation and growth in vitro and in

xenograft models (45, 78).
GD2

Ganglioside (GD2) is an acidic glycosphingolipid with two

sialic acid residues, identified as a marker in breast the stem cell-

like cells of breast cancer (79). The expression level of GD2 is

upregulated in TNBC (80). Seitz et al. designed a novel GD2-

targeted CAR-T cell to recognize and damage GD2-positive

tumor cells. The construction of the scFv in the CAR was

based on dinutuximab beta, a type of monoclonal antibody

CH14.18. This research found that the activation of GD2-

targeted CAR-T cells mediated tumor cell death and prevented

progression and metastasis in breast cancer (46, 81).
FRa

Folate receptor a (FRa) is a membrane-binding protein with

a high affinity for folic acid, which has the function of

transporting folic acid into cells. FRa is overexpressed on the

surface of breast cancer cells, but not in normal tissues, making it

a promising targeting antigen in breast cancer (82).

Luangwattananun et al. generated FRa-targeted CAR-T cells

by the lentiviral system. These specific CAR-T cells have a

significant antitumor ability when co-cultured with TNBC

cells expressing FRa. Moreover, its cytotoxic effect was more

obvious in cell with increased FRa expression and not observed

in FRa-negative normal breast cells. Concurrently, CAR-T cells

did not produce this specific cytotoxicity on FRa-negative
MCF10A normal breast cells (32).
PD-L1

Programmed death receptor 1 (PD-1, CD279) and

programmed death ligand 1 (PD-L1) can activate immune cell

inhibitory signals, and their expression is usually upregulated in

tumor patients with continuous T cell activation (83). Targeting

PD-L1 is a promising target and has achieved good results in
Frontiers in Immunology 07
clinical trials in a variety of tumors (84, 85). A chimeric PD-1

(chPD1) receptor has been developed, which can recognize PD-

L1 expressed in breast cancer. Parriott et al. designed ChPD1-T

cells for recognizing and damaging tumor cells by secreting

inflammatory factors such as IL2, IL-17, IL-21, IFN g, TNF, and
GM-CSF and decreasing the inflammatory suppressor cytokine

IL-10. ChPD1-T cells significantly reduced the tumor burden

and prolonged tumor-free survival in tumor-bearing mice (47).

Bajor et al. found that the PD-L1-targeted CAR-T cells showed a

strong degranulation response and cytokine production in

TNBC cells with a higher expression of PD-L1. The co-culture

of low PD-L1-expressing tumor cells and CAR-T cells can result

in delayed tumor cell clearance by inducing PD-L1 expression

on tumor cells. Further research confirmed that HER-2-targeted

CAR-T cells could enhance the expression level of PD-L1 on

breast cancer cells, synergistically increasing the tumor-killing

function of PD-L1-targeted CAR-T cells (48).
PTK7

Protein Tyrosine kinase 7 (PTK7), an important member of

the receptor tyrosine kinases (RTKs) family, has an intracellular

domain structure that catalyzes inactive tyrosine kinase (86).

The expression of PTK7 has been shown to be increased in

breast cancer (87). Three different types of PTK7-specific CARs

(PTK7-CAR1/2/3) were constructed, all of them containing an

artificial modified PTK7-specific scFv domain, CD8a molecules

transmembrane domain, CD3z intracellular domain sequences,

and 4-1BB intracellular costimulatory domain. These CAR-T

cells all led to increased cytokine production and cytotoxicity to

high PTK7-expressing breast cancer without causing obvious

damage to normal tissue (49).
Trop2

Trophoblast cell surface antigen 2 (Trop2), a cell surface

glycoprotein, is overexpressed in TNBC and has a significant

function in tumor growth, proliferation, migration, and

metastasis (88). Chen et al. developed a novel Trop2-targeted

CAR-T cell. These constructed CAR-T cells showed a strong

tumor-killing ability in breast cancer cells expressing Trop2 by

in vitro experiments. The addition of CD27 in Trop2-targeted

CAR-T cells increased their antitumor effect in tumor cells and

tumor-bearing mouse models by enhancing the expression of IL-

7Ra and reducing the expression of PD-1 (25).
SLC3A2

Ansari et al. found that higher expression of the tumor-

associated antigen SLC3A2, a cell surface protein, played a
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significant role in tumor metabolism and predicted a worse

prognosis in breast cancer (89). SLC3A2-targeted CAR-T cells

have shown cytotoxicity against breast cancer tumor cells by

simultaneously stimulating the production of INF-g and IL-2

production in vitro. In an in vivo xenograft model, SLC3A2-

targeted CAR-T cells significantly improved overall survival and

reduced subcutaneous xenograft tumor growth and tumor

burden without weight loss and cytokine release syndrome

(CRS) (50).
B7-H3

B7-H3 is an immune checkpoint molecule also regarded as

CD276, which is part of the B7 superfamily of immune

checkpoint inhibitors (90, 91). Chen et al. revealed that B7-H3

was overexpressed in breast cancer, and that upregulation of B7-

H3 was correlated with poor prognosis and clinical outcomes in

breast cancer, implying that B7-H3 could be a prospective target

for CAR-T therapy (92). Lei et al. found that B7-H3-targeted

CAR-T cells could specifically damage B7-H3-expressing solid

tumor cells, including breast cancer. Meanwhile, a low dose of

SAHA, an inhibitor of histone deacetylases, significantly

increased the antitumor effect of B7-H3-targeted CAR-T cells

in vitro by enhancing the expression of B7-H3 and reducing the

secretion of CTLA-4 and TET2 with their immunosuppressive

function (51).
CD70

CD70, a key member of the necrosis factor receptor

superfamily, is expressed on the cell surface and widely

overexpressed in a variety of tumors (93, 94). Yang et al.

designed a type of bivalent tandem CAR (TanCAR) both

targeting CD70 and B7-H3 molecules. The modified CAR-T

cells can specifically bind to CD70 and have a higher persistence

and antitumor capacity on CD70-positive breast cancer cells.

TanCAR-T cells increased the capacity to induce tumor cell

damage and cytokine release in breast cancer cells compared to

single-chain specific CAR-T cells when they were applied to

breast cancer cells expressing both target antigens (35).
VEGFR 2/3

Vascular endothelial growth factor (VEGF) and vascular

endothelial growth factor receptor (VEGFR) have a crucial

physiological function in angiogenesis and lymphangiogenesis,

which are closely associated with tumor cell molecular and

biological functions including growth, invasion, migration, and

metastasis (95, 96). Blocking or interfering with the interaction

between VEGF and VEGFR has become a possible method for
Frontiers in Immunology 08
tumor therapy. VEGFR-2 and VEGFR-3 are important members

of the VEGFR family, and VEGFR-2 or VEGFR-3-targeted

CAR-T cells were designed to verify their potential in the

treatment of breast cancer. Xing et al. found that these CAR-T

cells exhibited strong cytotoxicity against both VEGFR-2/3-

positive breast cancer cells by up-regulating the production

capacity of INF-g, TNFa, and IL-2 cytokines. Moreover,

VEGFR-2/3-targeted CAR-T cells significantly inhibited the

proliferation, invasion, and metastasis capacity of xenograft

tumors in nude mice models and disrupted the tubular

structures of endothelial cells (52).
TEM8

Tumor endothelial marker 8 (TEM8), a glycoprotein with

highly conserved integrin, is involved in endothelial cell invasion

and metastasis and is initially regarded as a tumor endothelial

marker (97). The expression of TEM8 is elevated in breast cancer

cells, and higher expression of TEM8 is associated with higher

growth, metastasis, and recurrence rates of breast cancer (98).

TEM8-targeted CAR-T cells can secrete immune-stimulating

cytokines and block tumor angiogenesis by damaging TEM8-

overexpressing TNBC cells and tumor vascular endothelial cells

after TEM8-specific recognition. These cells can also induce the

regression of TNBC-derived xenograft tumors and counteract

the formation of mammary globules by targeting stem cell-like

breast cancer cells (53).
NKG2DLs

NKG2D (Natural Killer Group 2, member D) is a type of

receptor highly expressed in NK cells and T cells. NKG2D

ligands (NKG2DLs) are frequently upregulated in multiple

tumor cells, including breast cancer cells. The combination of

NKG2D in immune cells and NKG2DLs on tumor cells plays a

significant role in the activation of their tumor-killing effect in

immune cells (99). In vitro, NKG2DLs-targeted CAR-T cells

could effectively recognize and eliminate TNBC overexpressing

NKG2DLs. Furthermore, the costimulatory domains with 4-1BB

or CD27 molecule specifically enhanced the persistence of CAR-

T cells (30, 100).
avb6 integrin

The integrin avb6, a member of the heterodimeric cell

surface receptors family, mediates cell-cell and cell-

extracellular matrix interactions. The avb6 integrin was up-

regulated in breast cancer and its overexpression correlated with

the prognosis of cancer patients (101). The integrin avb6 could

activate the TGFb signaling pathway and promote cell
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proliferation and migration, epithelial-mesenchymal transition,

and matrix metalloproteinase activity (102, 103). A highly

selective avb6-targeted CAR-T cell was constructed by

combining the fused CD28+CD3 domain with the A20 peptide

derived from the foot-and-mouth disease virus. IL-4-responsive

fusion gene (4ab) was co-expressed in CAR-T cells to increase

the proliferation and expansion ability and persistence of these

cells in vivo. Whilding et al. found that avb6-targeted CAR-T

cells exhibited strong cytotoxicity to breast cancer cells with less

damage to normal tissues in vivo and in vitro (54, 104).
CD32A131R

Antibody-dependent cell-mediated cytotoxicity (ADCC) is a

common method by which the immune cells kill tumor cells.

The recognition and dissolution process of tumor cells is affected

by the affinity with which the Fc fragment of the antibody binds

to the FcgR domain of immune effector cells. CD32, a member of

the FcgR family, is composed of three different variants A, B, and

C which have affinities for Fc segments (105). CD32A131R was

defined based on arginine at position 131. Caratelli et al.

designed a low-affinity chimeric receptor CD32A131R to induce

the elimination of EGFR-overexpressing breast cancer by

crosslinking with cetuximab. These CAR-T cells could

effectively recognize specific cetuximab-bound tumor cells and

promote the expression and secretion of INF g and TNFa by

combining cetuximab and CAR-T cells (55).
Combination therapy with CAR-T

Although there have been significant advances in CAR-T cell

therapy in solid tumors, the efficacy of CAR-T cells alone in solid

tumors treatment remains limited. Consequently, effective

approaches to promote CAR-T cells therapy are still needed.

Several studies have shown that the persistence and tumor-

killing ability of CAR-T cells are influenced by numerous

molecules or genes expression. We summarize several

prospective approaches for combining CAR-T cells with other

molecules to improve therapeutic efficacy.
Combination therapy in HER2-targeted
CAR-T

Il-21 is a cytokine in the TME that can promote T cell

proliferation and drive the T cell memory effect and has the

function of preventing tumor metastasis or recurrence (106). Du

et al. found that IL-21 can augment the aggregation and

amplification capacity of poorly differentiated CAR-T cells and

effectively increase the cytotoxicity of HER2-targeted CAR-T

cells to HER2-overexpressing cells by increasing cytokine
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secretion in breast cancer. Their study demonstrated that the

addition of IL-21 significantly increased strong cytotoxicity

against trastuzumab-resistant breast cancer cells with the

synthesis and secretion of IFN-g and IL-2, after combining

HER2-targeted CAR-T cells with trastuzumab-resistant

HCC1954 and BT474 cells (107).

Furthermore, Li et al. found that the anti-PD1 antibody can

enhance the therapeutic effect of HER2-targeted CAR-T cells

(108). In another study of homologous mouse models, more

HER2-targeted CAR-T cells were shown to reside in the tumor

stroma with the addition of an anti-PD1 antibody, significantly

increasing the ability to recognize tumors and maintain T cell

persistence. The results suggested that the anti-PD1 antibody

can increase the tumor-killing ability of CAR-T cells and reduce

the tumor weight (109).

The IKZF family proteins contain a zinc finger domain that

can recognize specific DNA sequences, bind other proteins, and

activate or inhibit targeted genes by reshaping chromatin and

binding to RNA Pol II transcription initiation complexes (110).

The knockout of transcription factor IKZF3 in HER2-targeted

CAR-T cells can significantly improve the ability to kill cancer

cells by increasing T cell activation and proliferation without

affecting the activity and function of CAR-T cells (111).
Combination therapy in EGFR-targeted
CAR-T cells

Polyinosinic-polycytidylic acid (poly I: C) is a type of

synthetic double-stranded RNA (dsRNA) analog. It can be

recognized and bound by toll-like receptor 3 (TLR3) and

protein kinase (PKR) activated by dsRNA. It may mediate

immune functions and has extensive antitumor effects on a

variety of cancers (112, 113). The joint application of EGFRVIII-

targeted CAR-T cells with Poly I: C prominently increased the

tumor-killing ability of CAR-T cells against tumor cells and

promoted the production and secretion of IFN g and IL-2. It also
improved the tumor growth and proliferation inhibitory effect of

CAR-T cells in subcutaneous breast cancer-transplanted mice.

Meanwhile, this composition resulted in a huge decrease in the

number of myeloid-derived suppressor cells (MDSC) in the

spleen and peripheral blood, which may reduce the

immunosuppressive effect of MDSC in the tumor immune

process (114).

Olaparib, an oral poly ADP-ribose polymerase (PARP)

inhibitor, was shown to have clinical benefits against mutated

BRCA-positive metastatic breast cancer (115). Sun et al. found

that olaparib could prominently increase the antitumor effect of

EGFRVIII-targeted CAR-T cells by inhibiting the migration and

aggregation of MDSC and promoting the survival and

persistence of T cells in the TME. Mechanistically, olaparib

was shown to decrease the migration of MDSC by preventing the

expression of SDF1a released by cancer-associated fibroblasts
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(CAFs), increasing the immune effect of CAR-T cells on the

tumor (116).

CDK7 is a key component of the transcription factor TFIIH,

which is introduced to the transcription initiation site adjacent

to PolII to promote the initiation of transcription (117). Xia et al.

found that EGFR-targeted CAR-T cells-resistant breast cancer

cells are particularly susceptible to THZ1, a CDK7 inhibitor. The

combination of THZ1 and EGFR-targeted CAR-T cells exhibit a

better ability to inhibit immune resistance and prevent tumor

proliferation and metastasis processes compared to applying to

CAR-T cells alone in TNBC tumor models (118).
Combination therapy in ROR1-targeted
CAR-T cells

Receptor tyrosine kinase-like orphan receptor 1 (ROR1), a

type I transmembrane receptor in the ROR family, has an

extracellular ligand-binding domain and an intracellular

tyrosine kinase domain (119). Nicholas et al. summarized that

ROR1 was involved in inhibiting cell apoptosis, enhancing the

EGFR signaling pathway, and inducing tumor epithelial-

mesenchymal transformation (EMT) (120). However, ROR1-

targeted CAR-T cells showed limited efficacy in breast cancer.

Srivastava et al. found that oxaliplatin can activate tumor

macrophages and release T cell recruitment chemokines,

which could improve ROR1-targeted CAR-T cell infiltration.

Moreover, oxaliplatin combined with anti-PD-L1 can

synergistically improve the function of damaging tumors by

ROR1-targeted CAR-T cells (56).

Transforming growth factor (TGF) b is one of the

commonly accepted immunosuppressive cytokines in the TME

and is correlated with the antitumor effect of ROR1-targeted

CAR-T cells. Cytokine production and the proliferation function

of ROR1-targeted CAR-T cells were prominently impaired in

the presence of TGF-b. Tanja et al. found that blocking the TGF-
b receptor signaling by inhibitor SD-208 can promote the

tumor-killing function of ROR1-targeted CAR-T cells (121).
Combination therapy in other
CAR-T cells

Interleukin-7 receptor (IL7R) is present on the surface of

lymphoid progenitor cells surface and is essential for normal

lymphocyte development (122). The up-regulation of IL7 or the

IL-7 receptor was found to prolong the persistence of immune

cells and enhance antitumor effects (123). Zhao et al. found that

the activation of the IL-7 receptor could enhance the antitumor

function and prolong the survival time of traditional AXL-

targeted CAR-T cells by increasing the growth, proliferation,

activation, and cytotoxicity capacity of CAR-T cells in vitro and

in vivo (124).
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The P38 pathway, a stress-activated protein kinase pathway,

is also often disrupted and associated with cancer survival and

migration in humans (125). By CRISPR-Cas9 screens and

functional testing of T cells, it was found that interfering in

the P38 pathway could enhance the expansion ability and limit

the oxidation and differentiation pressures of T cells. P38

inhibitors (P38i) were found to cause CAR-T cells to be more

effective in T cell-mediated tumor-specific lysis, manifesting the

promising clinical application of P38i in increasing the

antitumor function of CAR-T cells (126).

The persistence ability of CAR-T cells in the TME is an

important factor in impeding their therapeutic effect in solid

tumors (127). The CD8+ T 17 (Tc17) cells and T helper 17

(Th17) cells were found to be more persistent in the TME (128).

A study has found that CAR-T cells produced by Th/Tc17 cells

could improve the persistence ability and tumor-suppressive role

of CAR-T cells in the TME when the stimulator of STING

agonists DMXAA or cGAMP were combined with anti-PD-1

antibodies. Single-cell RNA sequencing demonstrated that

DMXAA could promote the transport of CAR-T cells and

regulate their immune effect in the TME by producing a

chemokine (129).

The rAd.sT is a type of oncolytic adenovirus targeting

TGF-b signaling. Li et al. reported that the combination of

MSLN-targeted CAR-T cells and rAd.sT in breast cancer

therapy can increase the production of cytokines IL-6 and

IL-12 in the TME, resulting in a stronger tumor inhibition

effect (130).
Clinical Trials in breast cancer

In several years of research on breast cancer, human trials of

some prospective targets of CAR-T cells have been confirmed all

over the world to verify the clinical treatment effectiveness and

safety of the therapy. Specific clinical trials are summarized in

Table 2. In 2017, a Phase I clinical trial (NCT01837602) with c-

Met-targeted CAR-T cell was conducted in metastatic breast

cancer patients. The mRNA of CAR was detected in the blood

of 2 patients and tumor tissue of 4 patients, and cell injection was

well tolerated, with no grade greater than 1 associated adverse

reaction. The tumor was killed and immunohistochemical

analysis showed that the CAR-T cells caused an inflammatory

response within the tumor, resulting in extensive tumor necrosis

(131). However, another phase 1 clinical trial targeting c-Met

CAR-T (NCT03060356) was terminated due to the halt in

funding. By far, the CAR-T cell therapy clinical trials targeting

HER 2 were conducted the most widely in breast cancer patients.

There has been a total offive phase 1/2 clinical trials. Two of them

have been withdrawn (NCT02547961) (NCT02713984) and three

are being recruited (NCT04650451) (NCT03740256)

(NCT04430595). In addition, the phase 1 clinical studies on

MUC1-targeted CAR-T cells are also widely carried out.
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(NCT02587689) (NCT04020575) (NCT04025216). Phase 1/2

clinical trials of CAR-T cells targeting CEA in the CET-positive

breast cancer are also ongoing (NCT02349724) (NCT04348643).

Moreover, there are several other clinical trials targets, including

EpCAM (NCT02915445), NKG2DL (NCT04107142), ROR1

(NCT02706392) , CD70 (NCT02830724) , C7R/GD2

(NCT03635632), CD133 (NCT02541370) and CD44v6

(NCT04427449). In the future, more CAR-T cell clinical
Frontiers in Immunology 11
treatment trials for breast cancer patients will still be carried out

to obtain the best therapeutic effect.
Challenges of CAR-T cell therapy

Although CAR-T therapy for solid tumors has been widely

studied in the laboratory and clinic and has shown good progress,
TABLE 2 The summary of clinical trials of CAR-T cell therapy in breast cancer.

Targeting
antigen

Study Title Estimated
Enrollment

Phase Indication Clinical
Trials ID

Status

HER-2 Chimeric Antigen Receptor-Modified T Cells for Breast Cancer 0 Phase
1/2

Breast Cancer NCT02547961 Withdrawn

EpCAM EpCAM CAR-T for Treatment of Nasopharyngeal Carcinoma and
Breast Cancer

30 Phase
1

Recurrent Breast Cancer NCT02915445 Recruiting

MUC1 Autologous huMNC2-CAR44 T Cells for Breast Cancer Targeting
Cleaved Form of MUC1 (MUC1)

69 Phase
1

Metastatic Breast Cancer NCT04020575 Active, not
recruiting

HER2/GD2/
CD44v6

Multi-4SCAR-T Therapy Targeting Breast Cancer 100 Phase
1/2

Breast Cancer NCT04430595 Recruiting

cMet cMet CAR RNA T Cells Targeting Breast Cancer 6 Phase
1

Metastatic Breast Cancer/
Triple Negative Breast
Cancer

NCT01837602 Completed

MLSN T-Cell Therapy for Advanced Breast Cancer 186 Phase
1

Breast Cancer NCT02792114 Active, not
recruiting

NKG2DL Haplo/Allogeneic NKG2DL-targeting Chimeric Antigen Receptor-
grafted gd T Cells for Relapsed or Refractory Solid Tumor

10 Phase
1

Triple Negative Breast
Cancer

NCT04107142 Unknown

MUC1 Phase I/II Study of Anti-Mucin1 (MUC1) CAR T Cells for Patients
with MUC1+ Advanced Refractory Solid Tumor

20 Phase
1/2

Triple Negative Breast
Cancer

NCT02587689 Unknown

cMET Autologous T Cells Expressing MET scFv CAR (RNA CART-cMET) 77 Phase
1

Breast Cancer NCT03060356 Terminated

HER2 Safety and Activity Study of HER2-Targeted Dual Switch CAR-T
Cells (BPX-603) in Subjects with HER2-Positive Solid Tumors

220 Phase
1

HER2-positive Breast
Cancer

NCT04650451 Recruiting

CEA A Clinical Research of CAR T Cells Targeting CEA Positive Cancer 75 Phase
1

Breast Cancer NCT02349724 Unknown

CEA Safety and Efficacy of CEA-Targeted CAR-T Therapy for Relapsed/
Refractory CEA+ Cancer

40 Phase
1/2

Breast Cancer NCT04348643 Recruiting

TnMUC1 A Study of CART-TnMUC1 in Patients with TnMUC1-Positive
Advanced Cancers

112 Phase
1

Triple Negative Breast
Cancer

NCT04025216 Recruiting

HER-2 A Clinical Research of CAR T Cells Targeting HER2 Positive Cancer 0 Phase
1/2

Breast Cancer NCT02713984 Withdrawn

ROR1 Genetically Modified T-Cell Therapy in Treating Patients with
Advanced ROR1+ Malignancies

60 Phase
1

Stage IV Breast Cancer NCT02706392 Recruiting

CD70 Administering Peripheral Blood Lymphocytes Transduced with a
CD70-Binding Chimeric Antigen Receptor to People with CD70
Expressing Cancers

2 Phase
1/2

Breast Cancer NCT02830724 Suspended

HER2 Binary Oncolytic Adenovirus in Combination with HER2-Specific
Autologous CAR VST, Advanced HER2 Positive Solid Tumors
(VISTA)

45 Phase
1

Breast Cancer NCT03740256 Recruiting

MSLN Treatment of Relapsed and/or Chemotherapy Refractory Advanced
Malignancies by MSLN targeted CAR-T

20 Phase
1

Triple Negative Breast
Cancer

NCT02580747 Unknown

C7R/GD2 C7R-GD2.CART Cells for Patients with Relapsed or Refractory
Neuroblastoma and Other GD2 Positive Cancers (GAIL-N)

94 Phase
1

Breast Cancer NCT03635632 Recruiting

CD133 Treatment of Relapsed and/or Chemotherapy Refractory Advanced
Malignancies by CART133

20 Phase
1/2

Breast Cancer NCT02541370 Completed

CD44v6 4SCAR-CD44v6 T Cell Therapy Targeting Cancer 100 Phase
1/2

CD44v6-Positive Breast
Cancer

NCT04427449 Recruiting
fron
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its clinical efficacy remains unsatisfactory. Severe adverse

reactions, tumor cell heterogeneity, immunosuppression in the

TME, and the persistence of CAR-T cells are the obstacles faced

in CAR-T cell therapy, which are shown in Figure 4. Therefore,

better engineering strategies should be developed in future

research to improve the clinical efficacy of and minimize

adverse reactions in CAR-T cell therapy. In the following, we

summarize the problems and possible solutions of CAR-T

cell therapy.
Specific target

Due to the specific mechanism and characteristics by which

CAR-T cells recognize and damage tumor cells, it is very

important to identify specific tumor targets expressed on the

tumor cells’ surface and that have higher expression levels in

tumor tissue than in normal tissue. In the previous section, we

summarized some potential specific target molecules in breast

cancer. However, most targets are only effective against specific

types of breast cancer on account of the heterogeneity of tumor

cells. Concurrently, the escape of target antigens, characterized

as the complete or partial loss of tumor antigens, is another huge

problem. Although CAR-T cells possessed a high initial response

rate to tumor cells, a significant reduction in response rate was

reported in a substantial proportion of patients who injected

CAR-T cells repeatedly (132).

The joint identification of multiple targets is an alternative

mean of overcoming antigen escape. Bivalent tandem CAR
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(TanCAR) targeting both CD70 and B7-H3 has shown the

ability to enhance tumor recognition by CAR-T cells (35).

Meanwhile, a phase 1 clinical trial (NCT04430595) combined

with HER2, GD2, and CD44v6 targets are currently underway,

which can effectively reduce antigen escape and increased

recognition of tumor cells.
Treatment-related toxicities

Neurotoxicity and cytokine release syndrome (CRS) are the

two most common severe and unpredictable reactions to CAR-T

cell therapy. Current studies suggest that these adverse reactions

are associated with the high level of cytokines secreted by CAR-T

cells (133). Neurotoxicity usually presents with seizures,

delirium, memory loss, and acute cerebral edema, while CRS

typically presents with fever, hypotension, and respiratory

insufficiency (134, 135). In a case of metastatic colon cancer,

the patient had respiratory distress within 15 min after HER2-

targeted CAR-T cell injection and died 5 days later. The chest

radiograph and serum samples showed significant immune

infiltration in the lung. It is speculated that numerous CAR-T

cells migrate to the lung immediately after infusion and trigger

cytokine release by recognizing the low levels of HER2 on the

lung epithelial cells. The expression of immune cytokines

including IL-6, TNF-a, IL-10, GM-CSF, and IFN-g was

significantly increased. The cytokine storm caused by CAR-T

treatment could result in respiratory distress and death (136).

Although this was a case report about severe adverse reactions
FIGURE 4

Summary of the challenges affecting CAR-T cell function. Specifically designed CAR structures and the production and release of some
cytokines promoting immune function such as INF-g, TNFa, IL-2, and CCL2 effectively enhanced the antitumor ability of CAR-T cells. The
recruitment of immunosuppressive cells such as TAMs, MDSCs, and Treg cells, the release of immunosuppressive cytokines including TGFb,
VEGF, IL-4, and IL-10 in the TME, and the activation of PD-1 signaling all inhibit tumor immunity. Abnormal formation of extracellular matrix and
dysregulation of the vascular system are also important factors affecting CAR-T cells.
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caused by HER2-targeted CAR-T cell therapy for colon cancer,

effectively avoiding damage to normal lung tissue is still a

problem that needs to be discussed and solved, as HER2-

targeted CAR-T is widely used in breast cancer treatment.

Therefore, we believe that a serious cytokine storm can also

occur in breast cancer treatment.

In the research of CAR-T exosomes, purified exosomes from

CAR-T cells were found to express perforin, granzyme B, and

cell membrane molecules including CARs, CD3, CD8, and

TCRs. The application of CAR-T exosomes in the treatment of

breast cancer can effectively control toxicity and improve safety

(137). Furthermore, Sterner et al. and Giavridis et al. found that

IL-1, IL-6, and GM-CSF participated in the CRS regulation

process, and the knockdown of cytokine coding genes or specific

cytokine inhibitors may significantly decrease the occurrence

rate of CRS (138–140). Moreover, suicide genes, which could

lead to cell death through a small molecule-mediated activation

process, have been introduced in CAR-T cells as a new possible

mechanism to avoid the unpredictable therapeutic reactions of

CAR-T cells. The fusion of the modified caspase 9 protein into

the human FK506 binding protein (FKBP) can effectively and

specifically eliminate CAR-T cells expressing the suicide gene

without affecting the growth and proliferation of normal CAR-T

cells, which reduces damage to normal tissue (141).

Glucocorticoid is a potent anti-inflammatory drug that

effectively relieves patients’ brain inflammation and vasogenic

edema symptoms due to CAR-T cell therapy (142). Kloss et al.

found that the recognition of different antigens on tumor cells by

CAR-T cells can effectively increase the specificity of tumor

recognition and reduce the damage to normal cells (143). Based

on this opinion, Srivastava et al. designed logic-gated ROR1-

targeted CAR-T cells. The synthetic Notch (synNotch) receptors

were designed to recognize EpCAM or B7-H3 on the tumor.

ROR1 CAR expression is induced by synNotch receptor

activation. In breast cancer studies, this strategy mediates

antitumor effects on ROR1+ breast cancer without toxicity

reaction to normal tissues (144).
The proliferation and persistence of
CAR-T cells

The proliferation and persistence ability of CAR-T cells are

often directly related to the antitumor effect. The function of

some genes in CAR-T cells affects their persistence. As

mentioned above, the addition of costimulatory domains to

the structure of CARs was the traditional method of

significantly increasing the proliferation and persistence of

CAR-T cells (30). Agnes et al. found that colony stimulating

factor-1 (CSF-1) was associated with immune cell proliferation

by binding to the CSF-1 receptor, which was encoded by a c-fms

gene in the cancer cells. The c-fms gene was expressed in T cells

by gene-modified. The addition of CSF-1 stimulated the
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proliferative effect of CAR signals by the secretion of IFN and

IL-2 without compromising the cytotoxicity in these gene

modification cells (145). In another study, Boucher et al.

reported that CAR-T cells with mutated CD28 subdomains

had better survival and function. The expression of various

genes relevant to T cell depletion, such as Nfatc1, Nr42a, and

Pdcd1, were significantly reduced through null mutations of the

CD28 subdomain (146). In addition, several transcription

factors are known as inductors of T cell exhaustion. Khan

et al. found that TOX can transform effector T cells with

antitumor function into non-functional exhausted T cells by

driving epigenetic remodeling of exhausted T cells (147). TCF-1

is another transcription factor that could regulate the

transformation of exhausted T cells by mediating the

expression of Eomes and c-Myb (148). The activation of

transcription factor NR4A is related to the expression of

immunosuppressive molecules such as PD-1 and TIM3. CAR-

T cells showed stronger tumor-killing activity and better

persistence with the knockout of NR4A (149). Furthermore,

the poorly differentiated T cell subsets including stem cell

memory T (TSCM) cells, naive T cells, and central memory T

(TCM) cells have a high proliferative capacity. The use of these

to design CAR-T cells is an effective method to prolong the

proliferation and persistence and enhance the antitumor activity

of CAR-T cells in patients when constructing CAR-T cells (150).
Immunosuppressive effect of the tumor
microenvironment

Immune evasion is a major challenge in antitumor

immunotherapy, which directly determines the effectiveness of

tumor immunity. The change of cytokines and chemokines in the

TME is an important factor affecting immune escape. The process

of antitumor immune activation releases numerous cytokines. The

expression of the chemokine pattern in the TME has changed to

preferentially recruit and inhibit inflammation cell types and

avoid recruiting antitumor immune cells. This physiological

process resulted in numerous immunosuppressive cells existing

in the TME, which suppressed the antitumor function of immune

cells (151–153). Immunosuppressive cells, including MDSCs,

TAMs, and Treg cells, are recruited by cytokines in the TME,

which is a key reason for the immunosuppression effect (154–

158). In addition, Binnewies et al. suggested that chemokines and

cytokines, including IL-4, IL-10, TGFb, and VEGF in the TME

can directly suppress the T cell effect and improve the aggregation

of immune inhibitory cells. Concurrently, the assembled

inhibitory cells also secrete numerous immunosuppressive

cytokines, which further enhance the immunosuppressive effect

with a positive feedback process (159).

It is a common method to enhance the immune response of

CAR-T cells by promoting the expression of immune-enhancing

genes and cytokines secretion. Adachi et al. found that
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upregulation of IL-7 and CCL19 genes in CAR-T cells may

improve the invasion of T cells or dendritic cells in solid tumor

tissue in mouse models, promoting tumor regression (160).

Moreover, the overexpression of IL-18 and IL-12 genes in

CAR-T cells could activate endogenous immune cells and

enhance antitumor responses (161). Research has shown that

cytokines such as INF-g, TNFa, and IL-2 can enhance the anti-

tumor function of CAR-T cells (52).

The activation of T cell immunosuppressive signal in the TME

is an important obstruction in CAR-T cells therapy. PD-1/PD-L1

is one of the most characterized and studied signals in breast

cancer. Previous research has shown that the inhibition of PD-1

signaling has been shown to produce significant clinical benefits in

various tumor patients, including breast cancer. The activation of

the PD-1 signal induces the depletion and inactivation of CAR-T

cells (9). The anti-PD1 antibodies significantly improved the

antitumor role of targeting HER2 CAR-T cells (108).
Physical barriers

Cancer-associated fibroblasts (CAF) are stromal cells in the

TME. They could promote the deposition of abnormal extracellular

matrix (ECM) around the tumor to form a dense fibrotic

environment and limit CAR-T cell transport to tumor tissues.

The tumor immunosuppression effect induced by CAF is an

obstacle to promoting the therapeutic efficacy of CAR-T cells

(162). The activation process of TGF-b could enhance the

secretion of ECM proteins by CAF, leading to the formation of a

physical network and restricting the movement of T cells. Although

previous studies have confirmed that HER2-targeted CAR-T cells

have a stronger ability to penetrate ECM than traditional antibody

drugs (38), the presence of ECM in the TME can still hinder the

ability of CAR-T cells to recognize and kill tumors.

NOX4 is a downstream molecule of TGFb signaling. The

inhibition of NOX4 not only blocks TGF-b signaling but also

prevents CAF differentiation, which reduces EMC protein

secretion and promotes immune cell infiltration into tumor

tissues (163, 164). Caruana et al. reported that the lack

expression of the enzyme heparinase (HPSE) after in vitro

manipulation of T cells may be responsible for the reduced

ability to degrade and penetrate the ECM. HPSE can degrade

heparin sulfate proteoglycan, the main component of ECM. GD2-

targeted CAR-T cells expressing HPSE were designed to enhance

the ability to degrade ECM and promote T cell invasion and

antitumor activity to tumors, including breast cancer cells (165).
Dysregulation of the vascular system

The vascular system of tumors often undergoes remodeling and

shows severe vascular abnormalities and dysfunction. The

penetrability of immune cells from blood vessels to solid tumors
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is impaired, leading to the diminished antitumor effect of CAR-T

cells (166). Vascular system dysregulation and inadequate

endothelial energy in tumor tissues downregulate the expression

level of intercellular adhesion molecule 1(ICAM1) and adhesion

molecules VCAM1, which limits T cell infiltration in tumor tissues

(167). Meanwhile, normalization of the tumor vascular system can

enhance tissue blood perfusion to improve the infiltration and

viability and promote the antitumor ability of CAR-T cells.

Bevacizumab, a humanized monoclonal antibody against

VEGF, not only inhibits the germination of new blood vessels

but also normalizes the vascular system. Meanwhile, bevacizumab

was found to inhibit the down-regulation process of cell adhesion

molecules and increase the invasion capacity of CAR-T cells in the

tumor (168). Xing et al. designed targeted VEGFR2/3 CAR-T cells

and achieved remarkable results in the treatment of breast cancer,

which provides a new idea for both antitumor formation and anti-

angiogenesis (52). Injecting CAR-T cells into the tumor location

directly, keeping them away from the vascular transport system, is

another effective treatment strategy. The intraperitoneal injection

of CAR-T cells in mesenchymal mesothelioma induced better

response and tolerability compared with intravenous injection,

which provides a new prospect for local injection therapy of CAR-

T cells (169).
Future outlook

The successful application of CAR-T cells in hematological

tumors has made it a promising approach for solid cancer

therapy. Moreover, the FDA approval of CAR-T cells for

clinical application has greatly facilitated the exploration of

CAR-T cell therapy in treating solid tumors. Several CAR-T

cells targeting breast cancer-related antigens have been

manufactured to exert better therapeutic effects against breast

cancer. Although CAR-T cell therapy has demonstrated

remarkable antitumor function both in vitro and in vivo, the

severe treatment-related toxicity, less T cell persistence, and

immunosuppression in the TME continue to hinder its clinical

application in breast cancer and other solid tumors.

Furthermore, it is worth noting that molecule-targeted

therapies including monoclonal antibodies and ADC have also

achieved excellent results in breast cancer (170). In addition, the

preparation and clinical application of these types of drugs were

more convenient compared to CAR-T cell therapy. However, the

killing effect of monoclonal antibodies such as trastuzumab and

pertuzumab on HER2-overexpressing breast cancer cells still

depends on the activity of immune cells, and drug resistance due

to epitope masking and steric hindrance remains a major

difficulty that needs to be addressed appropriately (171).

Moreover, ADC depended on antibodies to recognize tumor

cells and carry cytotoxic drugs to kill tumor cells. Specific

recognition of tumor cells, antibody-drug decoupling, and

drug resistance still hinder the widespread use of ADC drugs
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in breast cancer (172). CAR-T cells can directly recognize and

damage tumor cells, which can effectively avoid the difficulties

faced in antibody therapy. Hence, CAR T cell therapy remains a

promising and indispensable treatment for breast cancer and

more engineering strategies are required to enhance the safety

and efficacy in future studies.
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