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The SARS-CoV-2 Omicron (B.1.1529) variant was designated as a variant of concern
(VOC) by the World Health Organization (WHO) on November 26, 2021. Within two
months, it had replaced the Delta variant and had become the dominant circulating variant
around the world. The Omicron variant possesses an unprecedented number of
mutations, especially in the spike protein, which may be influencing its biological and
clinical aspects. Preliminary studies have suggested that increased transmissibility and the
reduced protective effects of neutralizing antibodies have contributed to the rapid spread
of this variant, posing a significant challenge to control the coronavirus disease 2019
(COVID-19) pandemic. There is, however, a silver lining for this wave of the Omicron
variant. A lower risk of hospitalization and mortality has been observed in prevailing
countries. Booster vaccination also has ameliorated a significant reduction in
neutralization. Antiviral drugs are minimally influenced. Moreover, the functions of Fc-
mediated and T-cell immunity have been retained to a great extent, both of which play a
key role in preventing severe disease.

Keywords: COVID-19, SARS-CoV-2 variants, mutations, neutralizing antibodies, vaccines, sublineages
INTRODUCTION

Over the past two years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread
rapidly around the world. It has caused more than 479 million confirmed cases of coronavirus
disease 2019 (COVID-19) cases and 6 million deaths worldwide (1). The SARS-CoV-2 virus has
evolved continuously since its emergence. During late 2020, a variant named B.1.1.7 emerged and
spread rapidly (2). Subsequently, to alert the public, the World Health Organization (WHO)
categorized these variants into variants of concern (VOCs) and variants of interest (VOIs).

In November 2021, the B.1.1.529 variant was first reported in South Africa and Botswana. This
variant was found to possess at least 35 mutations in the spike protein, and increasing cases in South
org April 2022 | Volume 13 | Article 8771011
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Africa were consistent with the detection of the B.1.1.529 variant
(3, 4) (Figure 1). The WHO designated the B.1.1.529 variant as a
new VOC, named the Omicron variant. It is predicted that the
Omicron variant will infect more than 50% of the world
population (5).

In this review, we will summarize the epidemiological
features, biological characteristics, and clinical significance of
the Omicron variant.
1 OMICRON VARIANT: BURST ONTO THE
SCENE AND SPREAD WORLDWIDE
RAPIDLY

The emergence of the Omicron variant is seemingly an
unexpected event, because it likely did not evolve from other
known circulating SARS-CoV-2 variants (4). Notably, the
Omicron variant was first detected in Africa, but the exact
origin has not been confirmed. Through time-calibrated
Bayesian phylogenetic analysis, the most recent common
progenitors may have been present in early October 2021 (6).
As for the confusing origin of the Omicron variant, there are
three main explanations. First, the Omicron variant may spread
and evolve in the blind area of surveillance systems. Second, the
Omicron variant may evolve in immunocompromised patients.
Frontiers in Immunology | www.frontiersin.org 2
This latter assumption is based on clinical observations. For
example, the ancestral virus existed for more than six months in
an advanced acquired immune deficiency syndrome (AIDS)
patient and some mutations evolved that were associated with
an immune escape effect (7). Third, the Omicron variant may
have come from the virus reservoirs of rodents or other hosts.
Some mutations, such as Q493R and Q498R, which are
uncommon in circulating variants, also were found in mouse-
adapted variants (8).

As of 31 March, 2022, the Omicron variant had been detected in
188 countries and already had become the dominant strain on a
global scale, accounting for 99.7% submitted sequences from 23
February to 24 March 2022 (1, 9). The Omicron variant has
diverged into four sublineages: BA.1, BA.1.1, BA.2, and BA.3 (6,
10). Most of the circulating Omicron variants are BA.1, BA.1.1 and
BA.2. The Omicron BA.1 variant, also known as the original form,
can be identified by S-gene target failure (SGTF). The Omicron
BA.1.1 variant is a subvariant of BA.1 with an R346K mutation.
Notably, the proportion of BA.2, which cannot cause SGTF, has
been on the rise and the Omicron BA.2 variant has become
dominant in many countries such as Denmark, India, Norway,
Singapore, indicating it may have a selective advantage over the
Omicron BA.1 variant (11). One epidemiological study in Denmark
suggested that the effective reproduction number of BA.2 was about
1.26 times larger than that of BA.1 (12) (Table 1).
FIGURE 1 | Spike mutations in the Omicron variant. Cartoon representation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein
(PDB: 7CWU_A). Red spheres represent the mutations found in the Omicron variant. The receptor binding domain (RBD) and amino terminal domain (NTD) are
shown in blue and purple, respectively. The mutations are marked according to the immune escape (green) and increased infectivity (yellow).
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2 OMICRON VARIANT MUTATIONS

2.1 Omicron Variant: Key Amino Acid
Mutations in the Spike Protein
SARS-CoV-2, including the Omicron variant, infects cells that rely
on its obligate receptor-angiotensin-converting enzyme 2 (ACE2)
(22–24). The entry process of the SARS-CoV-2 is mediated by furin
cleaving the spike protein into two noncovalently associated
subunits: the S1 subunit binds the ACE2, and the S2 subunit
anchors the spike protein to the membrane and mediates
subsequent membrane fusion (25). The S1 subunit consists of the
receptor-binding domain (RBD), amino-terminal (N-terminal)
domain (NTD), and two carboxy-terminal (C-terminal) domains
(26). To better understand the biological characteristics of the
Omicron variant, it is crucial to learn its amino acid mutations.

2.1.1 RBD Mutations
RBD, part of the S1 subunit, binds to the ACE2, which is the
fundamental first step for entry into the membrane. In addition,
in one study of serological analyses among 650 individuals
infected with SARS-CoV-2, 90% of the neutralizing antibodies
targeted the RBD (27). Despite its crucial role, the selective
pressure leads to the emergence of mutations for maintaining or
increasing viral fitness. Shockingly, the Omicron variant carries
15 mutations in the RBD, whereas the Delta variant carries only
two mutations in this area (4) (Figure 2). Of the 15 mutations,
only four sites—E484A, N501Y, K417N, and T478K—were
previously present in other VOCs.

The E484 residual has been identified as the immunodominant
site on the RBD through a deep-mutational scanning method (28).
Both the Beta variant and the Gamma variant have a substitution at
E484 to K. The E484K substitution confers extensive resistance to
Frontiers in Immunology | www.frontiersin.org 3
monoclonal antibodies (mAbs) and plasma from convalescent or
vaccinated individuals (28–34). In an escape mutation study, the
E484A substitution in the Omicron variant possessed a similar
escaping effect (35). In contrast to its vital impact on the resistance
to neutralization, this binding affinity reduces significantly because
the side chain of A484 is too short to come into contact with
ACE2 (36).

The N501Y substitution is also present in the Alpha variant,
Beta variant, and Gamma variant. Several studies have shown
that N501Y confers increased ACE2 binding affinity (37–42). In
one functional study on eight spike substitutions of the Alpha
variant, only the N501Y substitution exhibited consistent
replication capacity in hamsters and primary human airway
epithelial cells, which indicated that N501Y might be one of
the decisive sites increasing transmissibility (43). Notably, one
study reported that Q498R was epistatic to N501Y (44). Because
the N501Y substitution has a marginal impact on the availability
of the spike epitopes, individual substitution at N501Y is less
likely to be associated with immune escape (29, 37, 45).

The K417N substitution is also present in the Beta variant. It
has been shown that the mutation at the site K417 reduces
neutralization by some mAbs (40, 46, 47). K417N causes the
absence of polar interaction with D30 from ACE2 and decreases
the binding affinity (36).

The T478K substitution is a uniquemutation of the Delta variant
and is predominantly found in Mexico and the United States (48).
Previous studies have shown that substitution at 478 retains the
susceptibility to monoclonal or polyclonal antibodies (28, 46, 47).

2.1.2 NTD Mutations
VOCs harbor numerous deletions and mutations in the NTD,
which are associated with prolonged infection and escape from
TABLE 1 | The differences and similarities between the Omicron BA.1 and BA.2 variants.

BA.1 BA.2 Ref.

Difference
Unique spike mutations RBD S371L, G446S, G496S, R346K(BA.1.1) S371F, T376A, D405N, R408S (2)

NTD A67V, Del69-70, T95I, Del143-145,
Del211, L212I, Ins214EPE

T19I, Del24-26, A27S, V213G

Other domains T547K, N856K, L981F ——

S-gene target failurea Yes No (13)
Generation timeb 2.77 - 2.91 days 2.35 - 2.44 days (12, 14)
Effective reproduction number (Re)c

ROmicron/RDelta

1.99 (95%CI: 1.98 - 2.02) times 2.51 (95%CI: 2.48 - 2.55) times (12)

Effective therapeutic monoclonal antibody S309 (sotrovimab) COV2-2130 (cilgavimab) (15–18)
Similarity
Common spike mutations RBD G339D, S373P, S375F, K417N, N440K, S477N, T478K, E484A,

Q493R, Q498R, N501Y, Y505H
(2)

NTD G142D
Other domains D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

Clinical severity Similar risks of hospitalization and severe diseases (19)
Polyclonal antibody
(vaccine/infection induced)

Similar neutralization titers against BA.1 and BA.2 (15, 20, 21)

Antiviral drugs Still effective against BA.1 and BA.2 (16)
April 2022 | Volume 13 | A
RBD, receptor-binding domain; NTD, amino terminal (N-terminal) domain; 95%CI, 95% confidence interval.
aS-gene is not detected by the real-time reverse transcriptase polymerase chain reaction (RT-PCR) testing methods. The Omicron BA.1 sublineage can be identified by RT-PCR testing
because of Del69-70 in the spike protein.
bThe interval between individuals becoming infected and transmitting the Omicron variant.
cEstimate the average number of infections generated by a case infected with the Omicron variant in a population that includes not only naïve people.
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NTD-directed antibodies (49–52). Indeed, most of the potent
NTD antibodies target a single “supersite”, where N3 hairpin
(residual 141–156), N5 loop (residual 246–260), and the lower
relative glycan density enhance immunogenicity. The Omicron
variant bears deletions at residual 142–144, which most likely
reduces susceptibility to NTD-directed antibodies (35, 49).
△H69/V70 appears to not render the variant less sensitive to
immune sera but enhances infection rates (53). Remarkably,
△H69/V70 can lead to SGTF in real-time fluorescence
quantitative polymerase chain reaction (RT-qPCR) assays,
which has been used to rapidly distinguish the Omicron
variant from the Delta variant (19).

2.1.3 Mutations Close to the Furin Cleavage Site
Cleavage of the S1/S2 boundary by furin is necessary to initiate
membrane fusion, which has implications for pathogenesis (25).
In the absence of the furin cleavage site, viral replication
significantly attenuates in vitro and in vivo experiments (54, 55).
The substitutions adjacent to S1/S2 boundary—that is, P681H,
H655Y, and N679K—are predicted to affect viral entry and to
increase transmissibility (56–58).

2.2 Molecular Basis of Immune Evasion
and Binding Capacity to ACE2
Numerous mutation sites related to immune escape have been
identified by a multitude of studies. These sites are shown in
Figure 2 (4, 6, 35, 40, 47, 59, 60).

To some extent, the binding capacity of the RBD to ACE2 (i.e.,
the ACE2 binding affinity) reflects the infection rate of
coronaviruses (61). Of the 15 mutations in the RBD of the
Omicron variant, nine are located at the ACE2 binding interface:
Y505H, N501Y, Q498R, G496S, Q493R, E484A, S477A, G446S, and
K417N (60). Regarding the effect of a single mutation on ACE2
affinity, some mutations—including N501Y, S477N, and Q498R—
increase the affinity, whereas others decrease the affinity (36, 60).
Nevertheless, explanations of the overall impact on ACE2 binding
affinity have been controversial. One study found a 2.4-fold
increased binding capacity in comparison with the wild-type
(WT) virus (62). In contrast to the view that the Omicron variant
has increasing affinity, another study investigated the binding
affinity of VOCs and the prototype SARS-CoV-2 by analyzing the
crystal structure and found that the Delta and Omicron variants
unexpectedly exhibited similar affinity to the prototype (36).
Another study measured the affinity constant and found that the
binding capacity of the Omicron variant was weaker than the Delta
variant (63). Notably, because these results may be influenced by
many factors, including the host and variant itself, they cannot
completely represent real-world situations in vivo and may have
weaker or higher infection rates.
3 OMICRON VARIANT APPEARS TO
CAUSE LESS SEVERE DISEASE

Preliminary clinical studies have reported that the rapidly
spreading Omicron variant was less dangerous than its
Frontiers in Immunology | www.frontiersin.org 4
predecessor, the Delta variant. In South Africa, Wolter et al.
found that people with SGTF infections (as a proxy for
Omicron) had an 80% lower chance of being admitted to the
hospital compared with people with non-SGTF infections (19).
Among hospitalized patients, admission to intensive care and
death rates were 18.5% versus 29.9% (p < 0.001) and 2.7%
versus 28.1% (p < 0.001) for the Omicron wave and the Delta
wave, respectively (64). In accordance with the analysis by the U.K.
Health Security Agency, people infected with the Omicron variant
were estimated to be between 50% and 57% less likely to present to
emergency care than if they had been infected with the Delta
variant and 30% to 37% less likely to be admitted to the hospital
(65). In comparison, the hospitalization rates of children under 1
year old have risen rapidly, accounting for 42.4% of admissions,
whereas they accounted for 30.2% of admissions during the period
when the Delta variant was dominant. Less severity has been
monitored in children (66). Additionally, the hospitalization rates
of the omicron BA.2 variant are similar to that of the Omicron
BA.1variant (67) (Table 1). It is hard to determine, however,
whether the Omicron variant is less pathogenic than earlier
variants because of the preexisting acquired or natural immunity
and its limited spread into the elderly population.

In addition to clinical observations, researchers have tried to
identify Omicron’s pathogenicity using in vitro and in vivo
models. In one cell culture study, the Omicron variant
replicated poorly in the Calu-3 cell line with a high expression
of transmembrane serine protease 2 (TMPRSS2), whereas the
Delta variant replicated well in this cell line (68). TMPRSS2-
mediated spike protein activation induces ACE2-mediated
endocytosis and then initiates fusion pore formation (25).
TMPRSS2 and ACE2 were co-expressed in type II
pneumocytes, and the Delta variant grew more rapidly and
replicated well inside people’s lungs and throats (69, 70). These
results suggested that the Omicron variant may have poorer
replication in the lungs and be less risky than the Delta variant.
Likewise, primary 3D lower airway organoids were applied to
evaluate the entry efficiency of SARS-CoV-2, and the Omicron
variant exhibited weaker infection rates relative to the Delta
variant and the Wuhan/D614G strain. Thus, reduced access to
the lower respiratory tract might mean milder symptoms than
experienced with other circulating VOCs (71). The hamster is a
suitable experimental animal model for exploring SARS-CoV-2
infections, as the pathogenic patterns of the SARS-CoV-2 virus
in hamsters are similar to those in COVID-19 patients (72). In
one preprint study, hamsters infected with the SARS-CoV-2
WA1/2020, the Alpha variant, the Beta variant, and the Delta
variant quickly experienced weight loss. In contrast, those
infected with two different Omicron variant challenge doses
maintained their weight, even at doses that were 100-times
higher than the doses of other strains. In contrast to WA1/
2020 infection, higher viral loads in the nose and lower viral
loads in the lung were found in hamsters infected with the
Omicron variant (73). These data suggest that the Omicron
variant may lead to more potent upper-respiratory tract infection
but less severe lower-respiratory tract infection compared with
prior SARS-CoV-2 variants.
April 2022 | Volume 13 | Article 877101
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4 OMICRON VARIANT: STRIKING
REDUCTION IN NEUTRALIZATION
ACTIVITY

As neutralization antibodies are thought to play an important role
in protection against SARS-CoV-2 infection, concern is growing
worldwide regarding the neutralization activity against the Omicron
variant (74, 75). The reasonable assumption of the impact caused by
the single mutation on resistance to neutralization was discussed
previously. We next summarize the neutralization efficiency of
polyclonal and monoclonal antibodies through either live virus-
based or pseudotyped virus assays.
4.1 Neutralization Activity of Polyclonal
Antibodies
It has been corroborated that polyclonal antibodies, namely, the
infection or vaccine-induced neutralizing antibodies, show a
significant and approximately equivalent reduction in
neutralization activity against the Omicron BA.1 and BA.2
variants (15, 20, 21) (Tables 1, 2 and Figure 3).
Frontiers in Immunology | www.frontiersin.org 5
The Omicron variant displayed a 1.7-fold to 58-fold reduced
neutralization activity to convalescent plasma or sera (59, 60, 78,
79). In one live virus-based neutralization study, samples from 40
convalescent subjects were collected at a median of 6 and 12
months post-symptom onset, and only 36% (at 6 months) and
39% (at 12 months) remained active against the Omicron
variant, whereas 91% to 94% remained active against the Delta
variant (80). Similarly, the Omicron variant displayed a
significant reduction (>32-fold) in activity compared with the
reference WT virus containing the D614G substitution (59).
Furthermore, the association between variants and the
neutralization activity was observed in a recent pseudotyped
virus assay, which resulted in 33.8-fold, 11.8-fold, 3.1-fold, and
1.7-fold reduced activity to sera obtained from convalescent
participants infected with the Alpha, Beta, Gamma, and Delta
variants, respectively (60). A similar study showed that only 0 in
10 (infected with Alpha), 1 in 8 (infected with Beta), and 1 in 7
(infected with Delta) serum samples exhibited detectable
neutralization titers against the Omicron variant (84). It is
indicated that pre-infection with any previous VOCs can result
in breakthrough infections with high risks in this wave of the
A B

DC

FIGURE 2 | RBD mutations in the Omicron variant. Surface representation of the receptor-binding domain (RBD) in complex with the angiotensin-converting enzyme
2 (ACE2) (PDB: 7A94) (A). Surface representation of the RBD mutations (PDB: 7A94) in three orientations. The receptor binding motif (RBM) is shown in purple. The
mutations are marked according to the immune escape (green), increased infectivity (yellow) and unknown (pink) (B–D).
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TABLE 2 | Neutralization activity of polyclonal antibodies against the Omicron variant.

Convalescent
plasma
or sera/Vaccine
name
(Manufacturer)

Platform Neutralization
assay

Fold reduction/
Proportiona

(Omicron/Reference
strain)

Reference
strain

Characteristic of
participants

Sampling time point
(After Infection/2nd

doseb)

Ref.

Convalescent plasma
or sera

– Live virus > 11.1-fold WT Infected with ancestral strain in New
York (N=15)

~ 58 days (76)

– Live virus ~ 33.8-fold Victoria Infected with Alpha (N=18) ~ 42 days (60)
– Live virus ~ 11.8-fold Victoria Infected with Beta (N=14) ~ 61 days (60)
– Live virus ~ 3.1-fold Victoria Infected with Gamma (N=16) ~ 63 days (60)
– Live virus ~ 1.7-fold Victoria Infected with Delta (N=42) ~ 38 days (60)
– Live virus ~ 10.6-fold WT Infected before the pandemic of the

Omicron variant
143-196 days (77)

– Pseudotyped
virus

> 32-fold WT
(D614G)

Presumably infected with WT (N=10) 9-120 days (59)

– Pseudotyped
virus

58 ± 51-fold WT Infected early in the pandemic (N=20) ~1.2 months (78)

– Pseudotyped
virus

32 ± 23-fold WT Infected early in the pandemic (N=20) ~ 6 months (78)

– Pseudotyped
virus

43 ± 23-fold WT Infected early in the pandemic (N=20) ~ 12 months (78)

– Pseudotyped
virus

~ 44-fold Delta Mild or severe patients (N=17) < 2 months (79)

BNT162b2
(Pfizer–BioNTech)

mRNA Live virus ~ 22-fold WT
(D614G)

Infected (N = 13)
Vaccinated only (N=6)

~ 26 days (24)

Live virus 6%/100% WT
(D614G)

Vaccinated only (N=16) ~ 5 months (80)

Live virus > 23.3-fold WT Vaccinated only (N=10) ~ 18 days (76)
Live virus ~ 13.7-fold WT Infected with ancestral strain in

New York (N=10)
~ 26 days (76)

Live virus ~ 14.9-fold WT Vaccinated only (N=20) ~ 165.6 days (81)
Live virus ~ 29.8-fold Victoria Vaccinated only (N=21) ~ 28 days (82)
Live virus ~ 31.3-fold WT Vaccinated only (N=31) 3-5 weeks (77)
Pseudotyped
virus

~ 37-fold WT
(D614G)

Vaccinated only (N=17) 2-4 weeks (62)

Pseudotyped
virus

~ 122-fold WT Vaccinated only (N=21) < 3 months (83)

Pseudotyped
virus

~ 12-fold WT Infected (N=27) 6-12 months (83)

Pseudotyped
virus

~ 33.8-fold WT
(D614G)

Vaccinated only (N=11) < 3 months (79)

Pseudotyped
virus

> 21-fold WT
(D614G)

Infected (N =1)
Vaccinated only (N=12)

15-213 days (59)

mRNA-1273
(Moderna)

mRNA Live virus ~ 42.6-fold WT Vaccinated only (N=10) ~ 26 days (79)

Live virus ~ 10.6-fold WT Infected with ancestral strain in New
York (N=10)

~ 20 days (76)

Pseudotyped
virus

~ 39-fold WT
(D614G)

Vaccinated only (N=14) 2-4 weeks (62)

Pseudotyped
virus

~ 43-fold WT Vaccinated only (N=24) < 3 months (83)

Pseudotyped
virus

~ 9-fold WT Infected (N=8) 6-12 months (83)

Pseudotyped
virus

> 8.6-fold WT
(D614G)

Vaccinated only (N=12) 6-177 days (59)

AZD1222
(AstraZeneca)

Adenoviral
vector

Live virus 11%/89% WT
(D614G)

Vaccinated only (N=18) ~ 5 months (80)

Pseudotyped
virus

~ 21-fold WT
(D614G)

Vaccinated only (N=17) 2-4 weeks (62)

Pseudotyped
virus

0%/20% WT
(D614G)

Infected (N =1)
Unkown (N=4)

91-159 days (59)

Ad26.COV2-S
(Janssen
Pharmaceutical)

Adenoviral
vector

Live virus ~ 13.3-fold Victoria Vaccinated only (N=22) ~ 28 days (82)

(Continued)
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Omicron variant. Notably, despite the substantial extent of
evasion of an infection-induced neutralizing response against
the Omicron variant, most convalescent individuals who had
received a primary vaccination series (involving mRNA-1273,
BNT162b2, and Ad26.COV2-S) for 6 to 12 months had
detectable neutralization titers, whereas only a minimal
percentage of vaccinated-only participants remained active
against the Omicron variant (83). This finding was in line with
another study on convalescent individuals who had received one
dose of BNT162b2 or CoronaVac (77).

As vaccination is generally accepted to be one of the best ways
to control the pandemic, an increasing number of studies have
explored the neutralization activity of widely used vaccines.
Recent studies have suggested that there is a significant impact
on the neutralization activity of sera or plasma from participants
receiving vaccines. In one study, sera from two doses of
BNT162b2 at five months showed no neutralization activity
against the Omicron variant except one sample (80). Other in
vitro studies have shown a 12-fold to 122-fold reduced
neutralization activity to the Omicron variant compared with
the reference virus (24, 59, 62, 76, 77, 79, 81–83). Another
mRNA-based vaccine (i.e., mRNA-1273) showed an 8.6-fold to
42.6-fold reduction in neutralization activity (59, 62, 76, 83).
Other common approved vaccines, including AZD1222,
Ad26.COV2-S, BBIBP-CorV, Sputnik V, and CoronaVac, also
exhibited dramatic impairment in neutralizing capacity (59, 62,
77, 78, 80, 83). These data were supported initially by one clinical
study, and the effectiveness of vaccination with BNT162b2
against hospitalization was 70% [95% confidence interval (CI),
62 to 76] during the proxy Omicron period but was 93% (95%
CI, 90 to 94) before this period (85).

Nonetheless, the booster vaccination, which did reduce the
risk of SARS-CoV-2 infection, could reverse the trend of
compromised neutralization (86, 87) (Table 3). Of sera
samples obtained from individuals receiving a third-dose
mRNA vaccine, only moderately reduced neutralization
Frontiers in Immunology | www.frontiersin.org 7
activity was detected compared with the WT virus. In
comparison with the non-boosted vaccinees, vaccinees boosted
with mRNA-1273 and BNT162b2 had 19-fold and 27-fold
increased neutralization titers, respectively (83). Booster
vaccines also enhanced the neutralization activity among
patients with cancer and pregnant women (88, 92).
Interestingly, in contrast to the homologous and booster
vaccinations, the heterologous booster vaccination appears to
induce higher neutralization titers (77, 79, 90). Moreover, a
longer interval between the second dose and the booster dose
also contributes to higher neutralizing antibody titers against the
Omicron variant (93). However, it is not clear how beneficial the
fourth dose of vaccine to target the Omicron variant will be. A
recent study showed that the antibody response to the fourth
dose of mRNA vaccine was slightly higher than to the third dose,
suggesting that maximal immunogenicity was achieved after
three doses of mRNA vaccines (94).

Collectively, the Omicron variant has a great impact on the
humoral immunity elicited by infection and vaccines, although
the booster vaccination can ameliorate this reduction to
some extent.

4.2 Neutralization Activity of Monoclonal
Antibodies in Clinical Use
Several mAbs, most of which target the RBD, have been
approved for clinical use. The anti-RBD mAbs are classified
into four classes (class I, class II, class III, and class IV) according
to the RBD binding characteristics (95). Combination with
different classes of mAbs, also known as the cocktail of
antibodies, is considered to be a strategy to suppress the
immune escape effect. For the Omicron BA.1 variant, there is
evidence that most therapeutic mAbs partly and even completely
lose the neutralization activity. Class I and class II mAbs,
involving CB6 (etesevimab), REGN10933 (casirivimab),
COV2-2196 (tixagevimab), CT-P59 (regdanvimab), Brii196
(lamubarvimab), and LY-CoV555 (bamlanivimab) exhibited
TABLE 2 | Continued

Convalescent
plasma
or sera/Vaccine
name
(Manufacturer)

Platform Neutralization
assay

Fold reduction/
Proportiona

(Omicron/Reference
strain)

Reference
strain

Characteristic of
participants

Sampling time point
(After Infection/2nd

doseb)

Ref.

Pseudotyped
virus

8%/83.3% WT
(D614G)

Vaccinated only (N=12) 1-19 weeks (62)

Pseudotyped
virus

22.2%/55.6% WT
(D614G)

Infected (N =2)
Vaccinated only (N=3)
Unkown (N=4)

50-186 days (59)

Pseudotyped
virus

~ 17-fold WT Infected (N=6) 6-12 months (83)

Sputnik V
(Gamaleya)

Adenoviral
vector

Pseudotyped
virus

9%/81.8% WT
(D614G)

Vaccinated only (N=11) 2-4 weeks (62)

BBIBP-CorV
(Sinopharm)

Inactivated
virus

Pseudotyped
virus

57%/100% WT
(D614G)

Vaccinated only (N=13) 2-4 weeks (62)

CoronaVac
(Sinovac Biotech)

Inactivated
virus

Live virus ~ 6.5-fold WT Vaccinated only (N=30) 3-5 weeks (77)
April 2022 |
 Volume 13 | Article 87
WT, wild type SARS-CoV-2; ~, around.
aProportion of detectable neutralization titers against the Omicron variant.
bAll samples were collected after 2nd dose except for the 1st Ad26.COV2-S.
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more than 100-fold reduced potency or completely lost the
neutralization activity, as did some class III antibodies,
including REGN10987 (imdevimab) and COV2-2130
(cilgavimab). Likewise, antibodies in combination, such as the
REGN-COV2 cocktail (REGN10933+ REGN10987), Lily
cocktail (LY-CoV555+CB6), and AstraZeneca’s antibody
cocktail (COV2-2130+COV2-2196) experienced significantly
reduced neutralization activity (Figure 3). Conversely, the
Omicron variant escapes from most mAbs, but S309
(sotrovimab), which is a class III mAb, still retains potent
neutralization activity because of its ability to target one highly
conserved epitope on the RBD (35, 59, 60, 62, 79, 80, 96, 97).
Considering the Omicron BA.2 variant has 4 unique mutations
in the RBD, it is reasonable to conclude that there will be
differences in the effectiveness of therapeutic mAbs from the
Omicron BA.1 variant. Recent laboratory neutralization assays
have shown that sotrovimab is largely inactive whereas
cilgavimab and AstraZeneca’s antibody cocktail retain
neutralization activity (15–18) (Table 1). Taken together, none
of the current therapeutic monoclonal antibodies retain
neutralization activity to all variants, although sotrovimab
possesses the ability to defend against numerous mutations
(92). In light of adaptive variants, it may be a more effective
strategy to screen mAbs binding to relatively conserved epitopes.
5 OMICRON VARIANT: GOOD NEWS
EXISTS BEYOND “NEUTRALIZATION”

The neutralization of SARS-CoV-2, which is dependent on the
Fab fragments of antibodies, can protect against infection, but it
Frontiers in Immunology | www.frontiersin.org 8
does not, on its own, solve the problem of viral clearance.
Another defense mechanism of antibodies is the activation of
immune cells bearing Fc receptors. It has been reported that Fc-
effector functions contribute to reducing the burden of SARS-
CoV-2 and alleviating lung inflammation in hamster and mice
models (98, 99). Moreover, mRNA vaccine-induced antibodies
retain robust Fc-effector functions against VOCs, which may
partially account for less severe symptoms among vaccinees (100,
101). Further studies are required to elucidate the impact of Fc-
mediated responses elicited by infection and vaccination against
the Omicron variant.

In contrast to the neutralization antibodies, the non-
neutralizing antibodies against the influenza virus also have
demonstrated that they play a key role in protection according
to their Fc-mediated responses (102, 103). Indeed, a large
number of non-neutralizing antibodies can broadly cross-react
with coronaviruses (104). Whether or not the non-neutralizing
antibodies of the Omicron variant infection exhibit similar
functions in influenza infection, however, remains unclear.

In addition to B-cell immunity, which is mainly oriented
toward secretion of high-affinity neutralizing antibodies, the
function of T-cell immunity in SARS-CoV-2 infection cannot
be neglected. Prior studies have demonstrated that both
infection-induced and vaccine-induced T-cell immunity are
less affected by mutations and retain their ability to prevent
severe COVID-19 cases (105–108). Whether or not the
preexisting and cross-reactive T-cell immunity still work is of
significant concern. Through an initial analysis of the epitopes in
the Omicron variant, 94.4% of CD8+T cell epitopes and 90% of
CD4+T cell epitopes were fully conserved, which indicated that
T-cell immunity was spared (109). In another study, T-cell
FIGURE 3 | Bad news and good news about the Omicron variant. Bad news, the activity of neutralizing antibodies elicited by the SARS-CoV-2 infection and
vaccines is reduced significantly. Most of the therapeutic monoclonal antibodies lose the neutralization activity. Good news, the booster vaccination can ameliorate
the significant reduction. T cell immunity is minimally influenced. Antiviral drugs such as Remdesivir, Molnupiravir, Nirmatrelvir are less affected by the Omicron variant.
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2, angiotensin-converting enzyme 2; TMPRSS2, transmembrane serine protease 2; MHC-I,
major histocompatibility complex class I; MHC-II, major histocompatibility complex class II; TCR, T-cell receptor; APC, antigen presenting cell. Image created by Yifei
Guo using BioRender (https://biorender.com/).
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response to the Omicron variant was detected in individuals with
a prior history of SARS-CoV-2 infection or BNT162b2
vaccination. In addition, 84% spike-specific CD4+T cells and
70% spike-specific CD8+T cells were detectable in convalescent
patients. Notably, 91% spike-specific CD4+T cells and 92% spike-
specific CD8+T cells were detectable in vaccinees. In the same
study, the function and phenotype of T cells (involving CD4+T
cells and CD8+T cells) were examined, and in accordance with
the frequencies, they were not affected (110) (Figure 3). Besides,
booster vaccines may facilitate a more robust T-cell
immunity (111).

Because antiviral drugs target RNA-dependent RNA
polymerase (RdRp) and the main protease bearing fewer
mutations in the Omicron variant, the accumulated evidence
has demonstrated that the antiviral activity of remdesivir,
molnupiravir, and nirmatrelvir against the Omicron variant
including BA.1 and BA.2 is similar to its activity against other
variants (16, 96, 112) (Table 1 and Figure 3).
Frontiers in Immunology | www.frontiersin.org 9
6 CONCLUSION

Battling the Omicron variant involves guesswork. Vaccination is the
bestway topreventCOVID-19, particularly severe diseases, although
the neutralization activity against the Omicron variant elicited by
current vaccines has been a substantial reduction. Moreover, among
individuals who had recovered from infection with the Omicron
variant without previous SARS-CoV-2 infection, serum from
vaccinated persons exhibited high levels of neutralization titers
against all the VOCs whereas serum from unvaccinated persons
mainly showed neutralization activity against the Omicron variant
(113, 114).Therefore,with the emergence of recombination lineages -
XD, XF and XE, it should not be neglected the role of vaccination in
cross-reactiveneutralization(13). Inaddition,given theSARS-CoV-2
infection belongs to the mucosal infection and higher viral loads of
the Omicron variant in the nose than other variants, novel mucosal
vaccines possess the potential to elicit effectively protective immune
responses in the first place (115).
TABLE 3 | The impact of the booster vaccination on neutralization activity against the Omicron variant.

Vaccination regimen Neutralization
assay

Fold changea/
Proportionb

(Booster/2nd dosec)

Referencetime
point

(After 2nd dosed)

Sampling time
point

(After Booster)

Characteristic of
participants

Ref.

Primary vaccination
series

Booster

BNT162b2 (×2) BNT162b2 (×1) Live virus 100%/6% ~ 5 months ~ 1 month Vaccinated only (N=20) (80)
BNT162b2 (×1) Live virus ↓7.5-fold/↓23.3-fold ~ 18 days ~ 19 days Vaccinated only (N=10) (76)
BNT162b2 (×1) Live virus ↓13.1-fold/↓13.7-fold ~ 26 days ~ 20 days Infected with ancestral

strain in
New York (N=10)

(76)

① mRNA-1273
(×1)
② BNT162b2
(×1)

Pseudotyped virus ↓4-fold/↓122-fold ~ 13 days ~ 49 days Vaccinated only
(➀: N=6; ➁: N=24)

(83)

BNT162b2 (×1) Pseudotyped virus ↓8.1-fold/↓33.8-fold < 3 months < 3 months Vaccinated only (N=10) (79)
BNT162b2 (×1) Live virus ↓8.3-fold/↓14.9-fold ~ 165.6 days ~ 25 days Vaccinated only (N=20) (81)
BNT162b2 (×1) Pseudotyped virus 100%/30% ~ 1 month ~ 1 month Vaccinated only (N=30) (88)

mRNA-1273 (×2) mRNA-1273
(×1)

Live virus ↓16.7-fold/↓42.6-fold ~ 26 days ~ 19 days Vaccinated only (N=10) (76)

① mRNA-1273
(×1)
② BNT162b2
(×1)

Pseudotyped virus ↓6-fold/↓43-fold ~ 18 days ~ 21 days Vaccinated only
(➀: N=32; ➁: N=1)

(83)

mRNA-1273
(×1)

Pseudotyped virus ↓6.5-fold/↓35.1-fold ~ 14 days ~ 14 days Infected (N =2)
Vaccinated only (N=5)

(89)

BBIBP-CorV (×2) BBIBP-CorV
(×1)

Pseudotyped virus ↓5.9-fold/↓11.2-fold ~ 14 days ~ 14 days Vaccinated only (N=10) (90)

ZF2001 (×1) Pseudotyped virus ↓14.98-fold/↓11.2-fold ~ 14 days ~ 14 days Vaccinated only (N=10) (90)
BBIBP-CorV
(×1)

Pseudotyped virus 78.08%/25.68% ~ 28 days ~ 28 days Vaccinated only (N=292) (91)

CoronaVac (×2) CoronaVac (×1) Live virus 63.3%/0% 3-5 weeks 3-5 weeks Vaccinated only (N=30) (77)
BNT162b2 (×1) Live virus 100%/0% 3-5 weeks 3-5 weeks Vaccinated only (N=30) (77)

mRNA-1273 (×2)
BNT162b2 (×2)

① mRNA-1273
(×1)
② BNT162b2
(×1)

Pseudotyped virus ↓5.1-fold/↓21.3-fold 31-121 days 2-112 days Patients with cancer
(➀: N=9; ➁: N=18)

(88)
April 202
2 | Volume 13 | Article 87
↓, reduction; ~, around; ×2, 2 doses; ×1, 1 dose.
aFold change in neutralization activity against the Omicron variant compared with the wild-type SARS-CoV-2.
bProportion of detectable neutralization titers against the Omicron variant.
c,dAll samples were collected after 2nd dose except for the 1st Ad26.COV2-S.
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