Nowadays, immunotherapy targeting immune checkpoint receptors is one of the cornerstones of systemic treatment in melanoma. Homologous recombination repair (HRR) is one of the DNA damage response (DDR) pathways, which has been proved to correlate with the efficacy of platinum-based chemotherapy, PARP inhibitor therapy, and immunotherapy in a variety of cancers. However, their predictive value of HRR remained unknown in patients with advanced melanoma.
Data of advanced melanoma patients from an independent cohort (Samstein2018) were used to analyze the correlation with immunogenic markers and the prognostic effect of HRR on immunotherapy, and another four cohorts (pooled cohort: Miao2018, Allen 2015, Hugo2016, and Synder2014) were used for validation. Immune infiltration cell scores analyzed by TCGA-SKCM cohort were used to explore potential mechanisms related to the immune microenvironment.
Compared to patients with an HRR wild type (HRRwt), those with HRR mutations (HRRmut) in anti-CTLA-4-treated patients of the Samstein2018 cohort had higher tumor mutation burden (TMB; P = 0.0041) and longer median overall survival (mOS; P = 0.0094). In terms of results validation, it was also confirmed that the mOS (P = 0.0014) of HRRmut patients receiving anti-CTLA-4 therapy was significantly better than that of HRRwt patients in the pooled cohort, and objective response rates (ORR; P = 0.0053) were also found to be significant. However, there was no significant difference in mOS between HRRmut patients who received anti-PD-1/L1 therapy and HRRwt patients in either the discovery (Samstein2018 cohort, P = 0.94) or validation (pooled cohort, P = 0.96) set. Exploratory analysis found that although HRRmut patients showed no significant difference in mOS between anti-CTLA-4 and anti-PD-1/L1 therapy (P = 0.79), the mOS value of the anti-CTLA-4 therapy group (31.7 months) in HRRmut patients was numerically superior to the anti-PD-1/L1 therapy group (27.5 months). In contrast, the mOS of the anti-CTLA-4 therapy group was significantly lower than that of the anti-PD-1/L1 therapy group (12.4 vs. 32.0 months) in HRRwt patients. In addition, transcriptome profiling analysis revealed that the 29 (65.9%)-gene mutation of the HRR pathway associated with reshaping of the immunological microenvironment in melanoma.
HRR mutations were associated with a higher TMB level, and better anti-CTLA-4 therapy outcomes. HRR may serve as an independent predictor of anti-CTLA-4 therapy efficacy in patients with advanced melanoma and their clinical value warrants further investigation.