AUTHOR=Xie Di , Miao Wanying , Xu Fei , Yuan Chunling , Li Sicheng , Wang Chujun , Junagade Aditi , Hu Xiaoming TITLE=IL-33/ST2 Axis Protects Against Traumatic Brain Injury Through Enhancing the Function of Regulatory T Cells JOURNAL=Frontiers in Immunology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.860772 DOI=10.3389/fimmu.2022.860772 ISSN=1664-3224 ABSTRACT=
Traumatic brain injury (TBI) is a devastating condition due to its long-term sequelae on neurological functions. Inflammatory responses after TBI are critical for injury expansion and repair. Recent research in central nervous system (CNS) disorders reveals the importance of IL-33 and its receptor (ST2) as an alarmin system to initiate immune responses. This study explored the role of IL-33/ST2 signaling in TBI. TBI was induced in adult male C57BL/6J mice using a controlled cortical impact (CCI) model. We found that the expression of IL-33 increased in the injured brain and blood, and ST2 was elevated in the circulating and infiltrating regulatory T cells (Tregs) early after TBI. ST2 deficient mice exhibited reduced Treg numbers in the blood and brain 5 days after TBI. The brain lesion size was enlarged in ST2 knockout mice, which was accompanied by deteriorated sensorimotor function 5 days after TBI. In contrast, post-TBI treatment with IL-33 (2 μg/30 g body weight, intranasal) for 3 days significantly reduced brain lesion size and improved neurological functions 5 days after TBI. Meanwhile, IL-33 treatment increased ST2 expression in circulating and brain infiltrating Tregs. To further explore the involvement of Tregs in IL-33/ST2-mediated neuroprotection, Tregs were depleted by CD25 antibody injection. The absence of Tregs significantly reduced the protective effect of IL-33 after TBI.