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Background: Programmed death-ligand 1 (PD-L1) assessment of lung cancer in
immunohistochemical assays was only approved diagnostic biomarker for immunotherapy.
But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling
and intertumoral heterogeneity. There was a strong demand for the development of an
artificial intelligence (AI) system to measure PD-L1 expression signature (ES) non-invasively.

Methods: We developed an AI system using deep learning (DL), radiomics and
combination models based on computed tomography (CT) images of 1,135 non-small
cell lung cancer (NSCLC) patients with PD-L1 status. The deep learning feature was
obtained through a 3D ResNet as the feature map extractor and the specialized classifier
was constructed for the prediction and evaluation tasks. Then, a Cox proportional-
hazards model combined with clinical factors and PD-L1 ES was utilized to evaluate
prognosis in survival cohort.

Results: The combination model achieved a robust high-performance with area under the
receiver operating characteristic curves (AUCs) of 0.950 (95% CI, 0.938–0.960), 0.934
(95% CI, 0.906–0.964), and 0.946 (95% CI, 0.933–0.958), for predicting PD-L1ES <1%, 1–
49%, and ≥50% in validation cohort, respectively. Additionally, when combination model
was trained on multi-source features the performance of overall survival evaluation (C-index:
0.89) could be superior compared to these of the clinical model alone (C-index: 0.86).

Conclusion: A non-invasive measurement using deep learning was proposed to access
PD-L1 expression and survival outcomes of NSCLC. This study also indicated that deep
learning model combined with clinical characteristics improved prediction capabilities,
which would assist physicians in making rapid decision on clinical treatment options.
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INTRODUCTION

Lung cancer, one of the most common types of cancer, occupies
the leading cause of malignant mortality (1). In China, only
17.3% of lung cancer patients were stage I at primary diagnosis
and 5-year survival was under 20% (2). On the basis of its
histological types, non-small cell lung cancer (NSCLC) accounts
for about 85% of all cases (3). It is a critical trend to develop
individualized therapeutic schemes based on comprehensive
usage of multiple-modality data for NSCLC patients.

Programmed cell death-ligand 1 (PD-L1), a ligand of
programmed cell death 1 (PD-1), frequently overexpressed on the
surface of cancer cells to invade the anti-tumor immunity through
PD-1/PD-L1 pathway (4). Thus, numerous clinical trials were
conducted to evaluate the efficacy of immunotherapy targeted
PD-1/PD-L1 pathway (5–7). However, the IMpower150 trial
indicated high expression (≥50%) of PD-L1 showed a better
outcome for NSCLC received atezolizumab than lower expression
of PD-L1 (6). Furthermore, KEYNOTE-042 presented the similar
results (7). Thus, National Comprehensive Cancer Network
(NCCN) Guidelines proposed that immunohistochemistry should
be applied to assess the expression of PD-L1 and further guide
immunotherapy (8). Nevertheless, immunohistochemistry requires
invasive procedure to obtain the samples of NSCLC, and sample
quality influences the results of PD-L1 expression to a great extent
(9). Thus, other alternative methods to measure the PD-L1 status
would greatly assist clinical decision support, especially for
insufficient available samples or immunohistochemistry failure.

Recently, state-of-the-art artificial intelligence (AI) methods
such as deep learning have been applied to screen lung cancer,
assist the drug efficacy and prognosis prediction (10–13). Previous
study used deep learning on whole-slide images to assist
pathologists in the precise assessment of immunotherapy-related
biomarkers (14). However, it still remains a challenging issue of
invasive, intertumoral heterogeneity and dynamic changes. As a
convenience and one that is routinely available in clinical practice,
CT images reflect the whole information of an entire tumor non-
invasively. A recent study has constructed deep learning model to
predict PD-L1 expression (≥50%) with high performance (area
under the receiver operating characteristic curve, AUC ≥0.71),
which could help to predict the efficacy of immunotherapy in
patients with NSCLC and indicate a direction for molecular
prediction utilizing deep learning (15). However, previous
studies mainly classified binary patterns on basis of relatively
small samples, and the prediction of detailed classification were
warranted for further investigation.

Thus, we proposed a non-invasive deep learning model based
on radiomic signature from pretreatment CT images to predict
the PD-L1 status and overall survival (OS) in lung cancer,
guiding the clinical practice.
METHODS

Patients’ Cohort and Data Collection
This retrospective study was approved by the institutional research
board of theWest China Hospital of Sichuan University. A total of
Frontiers in Immunology | www.frontiersin.org 2
1,274 non-small lung cancer patients diagnosed between January,
2016, and April, 2019 were enrolled in this study. Written
informed consent was waived because the data used for system
development were anonymized by removing personal
information. All patients met the following inclusion criteria: 1)
pathological analysis of tumor tissues confirmed non-small cell
lung cancer; 2) chest CT examinations were available; and 3) PD-
L1 expression signature (PD-L1ES) was detected (<1%, 1–49%,
≥50%) in immunohistochemical (IHC) assays performed on the
Ventana Benchmark platform (SP142 antibody). Patients were
excluded if: 1) basic clinical information (such as age, sex, and PD-
L1ES) were missing; 2) preoperative treatment or the time between
CT examination and subsequent surgery exceeded 1 month; 3) CT
images were of low quality; and 4) molecular testing results were
difficult to determine. After screening with the exclusion criteria,
the PD-L1ES prediction cohort (n = 1,135) for classifying PD-L1
expression signature was built (Supplementary Figure 1).
Moreover, the survival cohort was created to examine the
association between various factors and prognosis prediction.
The inclusion criteria for building the survival cohort were:
1) clear clinical information was provided including smoking
history, family history, histopathology such as lung
adenocarcinoma (LUAD), squamous cell carcinoma (LUSC),
etc.; 2) treatment status (surgery, chemotherapy, radiation
therapy, targeted therapy, immunotherapy etc.) and survival
outcome were all gathered from medical records or telephone
follow-up. Finally, the survival cohort included 811 patients who
were admitted to the West China Hospital of Sichuan University
and followed up to June 2021.

Data Pre-Processing
This study consisted of two datasets: the PD-L1ES prediction
dataset (n = 1,135) and the survival dataset (n = 811). The PD-
L1ES dataset was divided into three categories based on different
levels of PD-L1ES, namely, low PD-L1ES <1%, medium PD-
L1ES 1–49%, and high PD-L1ES ≥50%, aiming to predict
molecular events based on PD-L1 expression status. The
survival cohort was utilized to create an accessing model to
investigate the association between survival risk factors and
overall survival (OS). In this study, the training and testing
cohorts from both datasets were randomly partitioned with a
ratio of 4:1, and five-fold cross validations were used for model
development and validation.

To address the imbalance of three PD-L1ES groups, we
adopted a joint re-weight strategy and re-sampling approach,
such as up-sampling the short-tail instances and down-sampling
the long-tail ones. Moreover, in order to enhance the learning
capacities of the developed models, we employed a combination
of tactics (radiomics model: low-level feature; deep learning
model: high-level feature, clinical model: semantic feature).
Our combination model extracted CT-based deep learning
features, CT-based radiomic features, and clinical record-based
clinical data for each patient. Two groups of experienced
radiologist specialists delineated the particular contour of the
entire tumor and the region of interest (ROI) for that tumor was
determined accordingly. All ROIs were resized to the same
resolution of 36 ∗ 36 ∗ 36 cubes for deep feature extraction
April 2022 | Volume 13 | Article 828560
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using third-order spline interpolation and normalized to 0–255
using pre-computed windowing information of lung. To make
the full use of the enrolled data for clinical information
extraction, the k-nearest neighbor (KNN) technique was first
utilized to impute missing clinical values.

Establishment of the Low-Level
Feature Model
For each tumor cube and its paired segmentation mask, a dedicated
open-source Python library called PyRadiomics (http://www.
radiomics.io; v3.0.1) was applied to perform radiomic phenotypic
feature extraction from the three-dimensional ROI. Our study used
it to automatically extract 1,672 radiomic characteristics for each
cube-mask pair, namely, first-order, size, shape, and texture features.
The least absolute shrinkage and selection operator (LASSO)
method was applied for feature dimensionality reduction to select
radiomic features with high stability and repeatability of radiological
properties. L1 penalty was used to shrink some regression
coefficients to exactly zero. Following that, we calculated the
partial probability deviation on each radiomic characteristics of
that tumor, and removed radiomic characteristics with low variance
(less than 0.6), yielding a total of 107 features for each cube-mask
pair, comprising offirst-order (18 features), shape (14 features), and
texture (75 features).

We established a gradient boosting regressor on the extracted
radiomic features for survival analysis. Gradient boosting was a
traditional machine-learning approach used in high-dimensional
data analysis for classification and regression applications. It was
an ensemble model that comprised of numerous weak learners
and output the sum of their results. Based on correcting the error
of the predecessor learner, each weak prediction model
approximated a feature screening function. The gradient
descent approach gave guidance for the direction of the
ensemble model’s development, allowing the model to attain
higher and more resilient performance. We utilized the
coefficient of determination (R2) score as an assessment metric
to determine the parameters of the model on our dataset. A
higher R2 score (from 0 to 1) indicated greater consistency
between the predictive value with the ground truth. Through a
series of tests, hyper-parameter optimization was carried out in
line with the assessment outcomes of both training and test set
data. As a result, the generalization capability of the regressor
could be ensured, and we finally acquired the radiomic features.

To comprehensively investigate the performance of several
classifiers in the PD-L1ES prediction challenge, we also combined
the aforementioned radiomic featurewith other imaging features to
predict the PD-L1ES. While the random survival forest machine-
learning technique was used to generate the radiomics model and a
radiomics score (Rad-score) for survival analysis and risk
stratification. A higher Rad-score indicated a higher risk of
progression or a shorter overall survival, representing the average
projected number of events across all trees in the constructed forest.

Establishment of the High-Level
Feature Model
In our study, the high-level feature model also had two
components: a 3D ResNet model as the feature extractor to
Frontiers in Immunology | www.frontiersin.org 3
obtain deep learning features and the specialized classifier/
regressor for the prediction task.

The deep learning feature extraction module received the ROI
cubes of the CT image as input. Compared to general 2D image
processing, 3D ResNet could take 3D context into consideration
and capture more complementary information from various
slices of the same tumor, and thus make better decision given
the 3D features. Pertaining to the small-sized 3D tumor volume,
we modified the traditional 3D ResNet by neglecting the sub-
sample operation in the conv stem layers so as to retain as much
detailed texture information as possible. Finally, ResNet totally
sub-sample to 1/8 of the original input compared to 1/32 in the
vanilla ResNet. Transfer learning was also applied in our deep
feature extraction model, where model parameters learned from
large scale data from another domain were used to aid our target
learning tasks (prediction and evaluation tasks) in a new
environment. Such an approach would minimize the number
of training epochs, expedite model convergence, and, to some
extent, prevent over-fitting. The deep learning features obtained
from the PD-L1ES prediction task were also employed for the
evaluation task afterwards.

We built a 3D ResNet to predict different levels of PD-L1
expression signature (low PD-L1ES, medium PD-L1ES, and high
PD-L1ES). The 3D ResNet was composed of a feature extraction
backbone and a classification head. The classification head used a
binary cross-entropy loss function to back-propagate the loss
error. All the layers in the 3D ResNet backbone were initialized
with pre-trained weights, while other parameters were randomly
initialized. We trained all models for 40 epochs. The learning rate
was set to 0.02 and decayed by a factor of 10 after the 20th and
35th epochs respectively.

In addition, we used the trained 3D ResNet to extract deep
learning features to retrieve the survival risk and integrated it
with other mined features to create the combination model for
the prognosis task. From these stable features, the deep learning
features that contributed the most to OS were chosen to provide
a deep learning score (DL-score), and an ideal score was cut-off
using the X-tile software to distinguish between high and low
progression risk.

Establishment of the Multi-Source
Features Fusion Model
In this study, two tasks were performed: PD-L1ES prediction and
the prognosis evaluation (Figure 1). Besides the extracted imaging
features, the clinical features were employed to offer extra semantic
information for both tasks. To identify potential important
variables in the clinical feature, a Kaplan–Meier curve with log-
rank test and a univariate Cox proportional-hazards model were
used (clinical factors and PD-L1ES). Factors with a P-value <0.05
were included to format the clinical features. Factors were
transferred to one-hot encoding into a high-dimensional vector
space for the prediction task, and they were employed in the
multivariate Cox proportional-hazards regression to build the
clinical model for the survival analysis task.

We totally established two combination model (multi-source
features model), one for the PD-L1ES identification task and the
other for the survival analysis task. For the PD-L1ES prediction
April 2022 | Volume 13 | Article 828560
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task based on the deep learning features, radiomic features and
the one-hot clinical features were fused by a self-adapted fully-
connected layer to generate the fusion embedding. For the
prognosis prediction task, the deep learning features and the
radiomic features were treated as Rad-score and DL-score to
build the univariate for risk stratification. Then, to build the
combination model, a multivariate Cox proportional-hazards
model with the lowest Akaike information criteria was used to
combine the Rad-score, DL-score, and high-relevance clinical
risk variables.

Statistical Analysis
The following measures were used to assess the performance of
classifiers: AUC, accuracy, sensitivity, and specificity. The
DeLong technique was used to calculate the 95% confidence
intervals (CIs) for the AUC. All statistical tests were two-tailed,
with statistical significance set at P <0.05 was considered as
significant. OS, measured from the diagnosis to death or the last
follow-up, was generated using the Kaplan–Meier method, and
differences in OS were examined using the log-rank test. Hazard
ratios (HRs) were presented with their 95% CIs. The risk
stratification capability was assessed by using the Kaplan–
Meier survival curve and log-rank test. The optimal Rad-score
Frontiers in Immunology | www.frontiersin.org 4
and DL-score cut-off values were determined by X-tile software
(version 3.6.1, Yale University).
RESULTS

Clinical Characteristics
After screening 1,274 patients with lung cancer who had
molecular test, a total of 1,135 eligible patients who met the
criteria were identified in prediction cohort, namely, 722 (63.6%)
patients with PD-L1ES <1%, 50 (4.4%) patients with PD-L1ES 1–
49%, and 363 (32.0%) patients with PD-L1ES ≥50%
(Supplementary Figure 1). The mean age was 58.77 ± 10.66
years (Table 1). Women were predominant (582/1135, 51.3%),
and more than 60% were never smokers. In terms of treatment,
784 patients (69.1%) received surgery, while 222 patients (19.6%)
received radiation. Furthermore, 295 patients received
chemotherapy and 386 patients receiving targeted treatment
accounted for 26% and 34%, respectively. In terms of TNM
stage, the majority of patients were in stage I (n = 498, 43.9%)
and stage IV (n = 321, 28.3%), respectively. According to the data
split strategy, 908 patients were utilized for training and internal
validation, and 227 patients were used for external validation.
FIGURE 1 | Overall workflow of study design. The upper part showed the overall method of the study, while the lower part represented the analysis of the
model. Original CT imaging data with manually labeled tumor images, comprehensive patient clinical information, overall survival, and PD-L1 expression
signature were included in the data processing step. The deep learning, radiomics and clinical features were retrieved using the tumor ROI or clinical records
during the feature extraction step. All features were utilized to predict PD-L1 expression signature and evaluate patient survival. PD-L1ES, PD-L1 expression
signature; ROI, region of interest.
April 2022 | Volume 13 | Article 828560
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Meanwhile, PD-L1ES survival cohort included 811 patients with
complete follow-up information (Supplementary Figure 1
and Table 1).
Detection of PD-L1 Expression Status
The combination model achieved excellent performance to
predict PD-L1 expression status than radiomics and deep
learning methods (Figure 2). The ROC curve, confusion
matrix and the model score distribution of PD-L1ES
classification illustrated the performance of radiomics model
with AUCs of low PD-L1ES 0.890 (95% CI, 0.871–0.916),
medium PD-L1ES 0.851 (95% CI, 0.772–0.922), and high PD-
L1ES 0.880 (95% CI, 0.858–0.908), respectively. Meanwhile, the
deep learning model yielded AUCs of 0.902 (95% CI, 0.885–
0.923), 0.863 (95% CI, 0.771–0.972), and 0.901 (95% CI, 0.881–
0.927) for PD-L1ES <1%, 1–49%, and ≥50% in validation cohort,
respectively. The AUC of the combination model also have the
appreciable effect of low PD-L1ES 0.950 (95% CI, 0.938–0.960),
medium PD-L1ES 0.934 (95% CI, 0.906–0.964), and high PD-
L1ES 0.946 (95% CI, 0.933–0.958). The violin diagram of model
score indicated that the predictive performance of deep learning
was better than the performance of the radiomics model, and the
combination model achieved the best predictive performance in
terms of the PD-L1 ES identification.

Through the CAM visualization of the prediction model, the
center of tumor region was identified as an important area for PD-
L1 status classification with darker response color (Figure 3). It
may provide clinicians with a biopsy position to as much as
possible avoid misdiagnosis caused by intra-tumor heterogeneity.
Exploring Characteristics Associated
With OS
According to the Kaplan–Meier survival analysis (Supplementary
Figure 2), smoking history (P <0.001), surgery (P <0.001),
chemotherapy (P <0.001), TMN stage (P <0.001), and cancer
stage (P <0.001) were all significantly associated with OS. Patients
with a smoking history had a considerably lower OS than those
with no smoking history, and patients who had surgery had a
significantly superior OS than those who did not. Then, taking
into account the influence of clinical factors on OS, we built the
clinical model using forest plots (Figure 4A) and selected
the hazard ratio correlation with patient survival, followed by
the multivariate analysis cox proportional-hazards regression
(C-index of clinical model: 0.86). The clinical model was then
verified using subgroup stratified analysis to see whether it could
predict prognosis in individuals with various PD-L1ES. The
patients in each group were classified by regression score as
high or low risk of disease progression.
Validation of the PD-L1ES in
Survival Analysis
Rad-score, DL-score, and clinical relevant features were used to
create the combination model. We employed the multivariate Cox
TABLE 1 | Clinical characteristics of patients used to measure PD-L1ES and
survival analysis.

Whole Cohort
(n = 1,135)

Survival Cohort
(n = 811)

Age (years) 58.77 ± 10.66 57.80 ± 11.03
Sex, N (%)
Male 553 (48.7%) 371 (45.7%)
Female 582 (51.3%) 440 (54.3%)
Smoking status
Current or former 403 (35.5%) 265 (32.7%)
Never 692 (61.0%) 517 (63.7%)
Unknown 40 (3.5%) 29 (3.6%)
Family history of cancer
Yes 92 (8.1%) 94 (11.6%)
No 1,026 (90.4%) 715 (88.2%)
Unknown 17 (1.5%) 2 (0.2%)
Surgery
Yes 784 (69.1%) 558 (68.8%)
No 351 (30.9%) 253 (31.2%)
Radiotherapy
Yes 222 (19.6%) 161 (19.8%)
No 913 (80.4%) 650 (80.2%)
Chemotherapy
Yes 295 (26.0%) 318 (39.2%)
No 508 (44.8%) 482 (59.4%)
Unknown 332 (29.2%) 11 (1.4%)
Targeted therapy
Yes 386 (34.0%) 296 (36.5%)
No 749 (66.0%) 515 (63.5%)
Immunotherapy
Yes 30 (2.6%) 27 (3.3%)
No 1,105 (97.4%) 784 (96.7%)
Histopathology
LUAD 1,038 (91.4%) 755 (93.1%)
LUSC 36 (3.2%) 31 (3.8%)
Other 61 (5.4%) 25 (3.1%)
Stage T
Tis 2 (0.2%) 3 (0.4%)
T1 440 (38.8%) 323 (39.8%)
T2 368 (32.4%) 258 (31.8%)
T3 100 (8.8%) 74 (9.1%)
T4 171 (15.1%) 118 (14.6%)
Tx 54 (4.7%) 35 (4.3%)
Stage N
N0 603 (53.1%) 444 (54.7%)
N1 83 (7.3%) 59 (7.3%)
N2 240 (21.1%) 164 (20.2%)
N3 121 (10.7%) 84 (10.4%)
Nx 88 (7.8%) 60(7.4%)
Stage M
M0 781 (68.8%) 559 (68.9%)
M1 300 (26.4%) 219 (27.0%)
Mx 54 (4.8%) 33 (4.1%)
Stage
I 498 (43.9%) 363 (44.8%)
II 95 (8.3%) 63 (7.8%)
III 204 (18.0%) 142 (17.5%)
IV 321 (28.3%) 234 (28.8%)
Unknown 17 (1.5%) 9 (1.1%)
PD-L1 ES (%)
<1% 722 (63.6%) 481 (59.3%)
1–49% 50 (4.4%) 49 (6.0%)
≥50% 363 (32.0%) 281 (34.7%)
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ES, expression
signature.
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regression model to assess the importance of these characteristics
in predicting OS. Furthermore, the forest plots of the combination
model showed that cancer stage (HR = 26.18, P = 0.017), surgery
(HR = 0.30, P = 0.007) and DL-score (HR = 0.23, P = 0.006) were
independent predictors for OS. The performance of the
combination model with a C-index of 0.89 was superior than
the clinical model with a C-index of 0.86 (Figures 4A, B).
Prognostic performance in different subgroups was compared by
different models of low PD-L1ES <1%, medium PD-L1ES 1–49%
and high PD-L1ES ≥50% to stratify the subgroup into low-risk and
high-risk groups (Figure 5). The deep learning model score and
combination model score achieved excellent discriminative ability
regardless of three groups (all P <0.05).
DISCUSSION

According to the NCCN guidelines, PD-L1 expression levels of
patients with lung cancer have a marked effect on clinical
Frontiers in Immunology | www.frontiersin.org 6
decision whether to use single-agent immunotherapy or
interpretation chemotherapy (8). In this study, we constructed
an alternative non-invasive measurement of accessing PD-L1
status and a prognostic model of predicting OS with high
accuracy. It would be of paramount importance on clinical
decision support, especially when tissues were not available.

The paradigm treatment of lung cancer patients varied
according to different status of PD-L1 (16). The level of PD-L1
expression was presented as TPS given as <1%, 1–49%, and ≥50%.
Atezolizumab single treatment was the preferred recommendation
for patients with a PD-L1 expression status of ≥50% (17). While
nivolumab combined with ipilimumab was first-line treatment for
patients with PD-L1 expression status of ≥1% (18, 19). At the same
time, PD-L1 expression status were useful for deciding whether to
use single-agent immunotherapy or immunotherapy
combinations as well (20, 21). Therefore, the study defined 1%
and 50% as cut-off values. The predictive model could accurately
evaluate the expression of three classifications, which was more in
line with the clinical standard treatment needs.
A B C

D E F

G H I

FIGURE 2 | The model performance in the prediction of PD-L1ES. The figure contained three groups of result analysis, including ROC curve, confusion matrix, and
score distribution. The red line depicted low PD-L1 expression performance, the green line depicted medium PD-L1 expression performance, and the blue line
depicted high PD-L1 expression performance. (A–C) The performance of the radiomics model. (D–F) The performance of the deep learning model. (G–I) The
performance of the combination model. PD-L1ES, PD-L1 expression signature.
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Conventional assessment of PD-L1 TPS was a time-
consuming task due to intertumoral heterogeneity, inter-
observer variability, and different antibodies with various
possible staining properties (22, 23). As a non-invasive and
repeatable method, deep learning based on CT images
provided a novel solution. Previous studies have confirmed the
application of radiomics and deep learning on accessing PD-L1
Frontiers in Immunology | www.frontiersin.org 7
status (Table 2) (15, 24–31). The latest research proposed a
small-residual-convolutional-network (SResCNN) of PET/CT
images to discriminate between PD-L1 positive and negative
patients (1% cut-off, Dako22C3 antibody) with AUC of ≥0.82 in
the training, validation, and testing cohorts (24). The current
work was the single largest study population of patients with
NSCLC and achieved excellent performance of prediction.
FIGURE 3 | The illustration of deep learning feature heatmap to predict PD-L1 expression. The first and second rows visualize the attention regions of a network for
distinct mutant categories; the third row shows the origin tumor image in the 3D volume. PD-L1ES, PD-L1 expression signature.
A B

FIGURE 4 | Forest plots of clinical model (A), the combination model with radiomics score and deep learning score (B). PD-L1ES, PD-L1 expression signature;
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; Rad, radiomics; DL, deep learning.
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However, the challenges of AI faced on the path to clinical
adoption cannot be ignored. For instance, the interpretability
hindered the widespread of the models. In this study, we utilized
heatmap for visualization of deep learning, but the principle of
pathophysiology was still inexplicable. Several studies indicated
high-response areas of deep learning model based on PET/CT
images to predict PD-L1 ES could recognize the necrotic region
of lung cancer (24, 32). One possible explanation was that
hypoxia leaded cell necrosis while upregulating PD-L1 through
hypoxia-inducible factor 1a (33). Therefore, continuous
optimization and exploration were warranted for AI-based
software to improve patient care ultimately.

Although PD-L1 expression level was widely used, it was not
an ideal biomarker for treatment efficacy and prediction model. A
phase III randomized trial suggested that TMB might be a useful
immune biomarker for deciding whether to use immunotherapy
in patients with metastatic NSCLC (18). Moreover, a radiomic
signature for CD8 cells that included eight variable CD8 cell
Frontiers in Immunology | www.frontiersin.org 8
radiation signatures containing eight variables to infer clinical
outcomes for patients with cancer who had been treated with anti-
PD-1/PD-L1 (34). In this study, prognostic models based on usual
clinical characteristics or deep learning features were established.
Only the comprehensive model combined Rad-score, DL-score,
and clinically relevant features achieved superior prediction
performance. This indicated the complementarity of radiology
image features and clinical variables, and potential of deep
learning in precise prognostic assessment.

The current study has some limitations. First of all, this was a
single-center study with patients tested with SP42. The model
required more central data for verification. Second, this
retrospective research cannot avoid the biases of patient
selection and detection results. For example, the small number
of PD-L1 ES 1-49% group may limit the performance of model.
Unfortunately, due to the small number of immunotherapy
treatments, we did not predict the efficacy of immune
checkpoint inhibitors, which was the direction of our future
A B C

D E F

G H I

FIGURE 5 | Kaplan–Meier curves of overall survival prediction in different PD-L1 ES groups. K–M curves were stratified by (A–C) Rad-score, (D–F) DL-score, (G–I):
combination-score to identify high-risk and low-risk groups. PD-L1ES, PD-L1 expression signature; Rad, radiomics; DL, deep learning.
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efforts. Thirdly, this study focused on multi-class prediction for
PD-L1 expression, which was unable to cover all actionable
biomarkers. Large-scale prospective samples from multi-
centers are warranted for investigation in the future.
CONCLUSION

In conclusion, a non-invasive method to measure PD-L1
expression status and infer clinical outcomes was proposed.
This deep learning model combined with clinical variables has
showed excellent performance, which has potential to effectively
manage the personalized treatment of NSCLC patients.
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TABLE 2 | Recent studies of predicting PD-L1 status on CT images by radiomic or deep learning in lung cancer patients.

First
author,
Year

Model Imaging
modality

PD-L1
assays

Cut-off Population, Performance

Wei Mu (24) DL small- residual-
convolutional-network
(SResCNN)

PET/CT 22C3 1% 485 NSCLCs to measure PD-L1
status, 284/116/85 for training
validation/testing cohort

AUC of 0.89 (95% CI: 0.84 to 0.94), 0.84 (95% CI: 0.76
to 0.92);, and 0.82 in the training, validation, and testing
cohorts, respectively

Panwen
Tian (15)

DL KNN CT SP142 50% 939 NSCLCs, 750/93/96 for training
validation/testing cohort

AUC of 0.78, 0.71, and 0.76 in the training, validation,
and testing cohorts

Ying Zhu
(25)

DL CNN 3D
DenseNets

CT SP263 1%,
50%

127 advanced LUADs, five-fold
cross-validation

1%, AUC of 0.784; 50%, AUC of 0.765

Qiang Wen
(26)

Radiomics CT SP263 50% 120 advanced NSCLCs AUC of 0.730 based on radiomic signatures, AUC of
0.839 combined radiomic signatures with clinical and
morphological factors

Zekun
Jiang (27)

Radiomics CT NA 1% 125 NSCLC AUC of 0.96, 0.85 in training, validation cohort

Stefano
Bracci (28)

Radiomics CT SP263 50% 72 advanced NSCLCs AUC of 0.811 and 0.789 in the training and validation
cohort

Zongqiong
Sun (29)

Radiomics CT 22C3 50% 390 NSCLC, 260/130 for training/
validation cohort

AUC of 0.829 and 0.848 in the training and validation
cohort

Jiyoung
Yoon (30)

Radiomics CT SP263 50% 153 advanced LUADs AUC of 0.661 (95% CI 0.580–0.735)

Mengmeng
Jiang (31)

Radiomics CT,
PET/CT

SP142 1%,
50%

399 stage I–IV NSCLCs 1%, AUC of 0.97, 0.61, and 0.97 in the CT, the PET, and
the PET/CT images respectively; 50% AUC of 0.80, 0.65,
and 0.77

28-8 1%, AUC of 0.86, 0.62, and 0.85; 50%, AUCs of 0.91,
0.75, and 0.88
DL, deep learning; AUC, area under the curve; LUAD, lung adenocarcinoma; NSCLC, Non-small cell lung cancer; CNN, convolutional neural network; KNN, k-nearest neighbor; NA, not applicable.
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