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Somatic hypermutation (SHM) is an important diversification mechanism that plays a part
in the creation of immune memory. Immunoglobulin (Ig) variable region gene lineage trees
were used over the last four decades to model SHM and the selection mechanisms
operating on B cell clones. We hereby present IgTreeZ (Immunoglobulin Tree analyZer), a
python-based tool that analyses many aspects of Ig gene lineage trees and their
repertoires. Using simulations, we show that IgTreeZ can be reliably used for mutation
and selection analyses. We used IgTreeZ on empirical data, found evidence for different
mutation patterns in different B cell subpopulations, and gained insights into antigen-
driven selection in corona virus disease 19 (COVID-19) patients. Most importantly, we
show that including the CDR3 regions in selection analyses – which is only possible if
these analyses are lineage tree-based – is crucial for obtaining correct results. Overall, we
present a comprehensive lineage tree analysis tool that can reveal new biological insights
into B cell repertoire dynamics.

Keywords: antibody, B cell receptor (BCR), B cell repertoire, immunoglobulin, lineage tree, somatic hypermutation (SHM)
INTRODUCTION

SHM can take place in germinal centers (GC) as well as in extrafollicular (EF) sites (1) and
introduces base-pair changes into rearranged Ig variable region genes. B cells that gain mutations
that improve their receptors’ affinity to the antigen are selected to expand, and eventually generate
plasma cells and memory B cells with an improved receptor affinity (2). The resulting high-affinity
memory B cells and long-lived plasma cells allow faster and more efficient secondary immune
responses. Therefore, SHM is an important mechanism in the generation of broad and effective
immune responses.

The above-described affinity maturation can be modeled using Ig gene lineage trees. A lineage
tree (sometimes also called pedigree or dendrogram) is a rooted tree, similar to a phylogenetic tree,
in which nodes correspond to B cell receptor chain variable region gene sequences. The shapes of
org October 2022 | Volume 13 | Article 8228341
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lineage trees hold information on the dynamics of the GC
response that generated the trees (3). Properties such as the
degree of branching can point to the strength of selection and
initial affinity to the antigen. Insights on transitions between
populations, such as class switch recombination (CSR), cell
differentiation and migration, can be deduced from the
relationships between tree nodes. Finally and most
importantly, tree-based mutation analysis is more accurate
than analysis based on comparing each sequence to the
putative germline sequence (Figure 1) (4, 5).

Over the last three decades, lineage trees were used to
elucidate many features of the B cell repertoire dynamics.
Meng et al. created an atlas of the B cell distribution and
found that the repertoire is divided into two major networks of
large clones, one in the blood, bone marrow, spleen and lung,
and another in the gastrointestinal track (6). Tipton et al. found
in 2015 that activated naïve B cells are the precursors for
antibody-secreting cells in Systemic Lupus Erythematosus (7).
Tabibian-Keissar and colleagues found evidence for B-cell
trafficking between gut-lymph node in ulcerative colitis (8) and
Hoehn et al. used phylogenetic model to characterize the effects
of aging on B cell repertoire development and B cell responses to
influenza vaccination (5). Overall, the analysis of lineage tree
properties sheds light on affinity maturation and the
diversification of Ig genes in health and in various pathological
conditions. However, these analyses were done using different,
separate tools, each of which reveals different aspects of
lineage trees.

Diffuse large B-cell lymphoma (DLBCL) is the most common
form of lymphoma and accounts for 25–35% of all non-Hodgkin
lymphomas. About 30–50% of patients treated with the
standard-of-care therapy are either refractory to treatment or
have relapsed disease after the complete response (9). Detecting
an early stage of a relapsed disease may have a positive impact on
the therapy outcome. There is a wide interest in applying
machine learning on biological fields and more precisely on
Adaptive Immune Receptor Repertoire (AIRR) data sequencing,
from an adaptation of the natural language processing (NLP)
technique for B cell receptor (BCR) sequencing data (10) to
disease classification based on BCR repertoires (11). Here, we
demonstrate that we can apply machine learning classification
models to the IgTreeZ (mutation analysis) output, and use it to
Frontiers in Immunology | www.frontiersin.org 2
distinguish between lineage trees from DLBCL patients and
those from healthy controls.

This study presents a comprehensive python-based tool for
the analysis of many aspects of Ig gene lineage trees. The
program was developed on LINUX and most of its features are
compatible with Windows as well (including the population and
topology analyses, filtering and drawing). The next versions will
be fully compatible with all operating systems. IgTreeZ allows the
analysis of population transitions, tree topology, and mutations
at the repertoire level. The program also includes utility scripts
for filtering trees by population and size, and for graphical and
statistical comparisons of the results of analyzing more than one
repertoire. Finally, we used simulated and empirical data to
demonstrate the usefulness of this tool and the potential of
lineage tree-based Ig gene repertoire analysis, and applied a
successful classification model on IgTreeZ’s mutation counts of
DLBCL patients and healthy controls.
METHODS

Mutation Analyses
An Ig gene lineage tree represents the diversification of a B-cell
clone. Hence, a mutation count based on tree topology is more
accurate than counting the mutations on each sequence separately
(4, 5). Currently in IgTreeZ, prior to mutation count, the nodes
are linked to the corresponding sequences. Sequences can be
given as a Fasta file or as AIRR/Change-O database, or as an AIRR
JSON rearrangement scheme, which includes the trees and
sequences. Once given, each of the sequences is linked to the
corresponding node by name. Hypothetical nodes, created by the
tree inference program, sometimes lack representation in the
input files. In the case of an internal node with no
corresponding sequence, if the edge between the node and its
parent indicates a zero distance – the node is linked to its parent’s
sequence; if not, a consensus sequence is generated, with a priority
to gaps and Ns (that is, if the number of Ns is equal to the number
As in a certain position, the program prefers the N, or a gap, over
the A), to avoid mutation over-count.

Once all nodes on the tree are linked to their sequences, the
program traverses all tree nodes, counts all the observed
FIGURE 1 | Mutations are best described, and more precisely counted, using lineage trees. In the example one-codon “clone”, a mutation count that is based on a
representative sequence results in one or two mutations. Using a consensus sequence, which is AAT for this clone, results in 1 mutation. Only a tree-based
mutations count results in the exact number of mutations, which in this case is 4.
October 2022 | Volume 13 | Article 822834
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mutations, and characterizes each mutation by its location
(CDR/FWR), based on IMGT region definitions (12). Since
each tree is handled separately, mutations in the CDR3 can
also be identified as CDR mutations; the program compares
CDR3 nucleotides to the clone’s consensus CDR3, and thus
counts only mutations generated by SHM and not the diversity
generated by N/P nucleotide. The program also characterizes
each mutation by its nucleotide source, mutation type
(transition/transversion) and amino-acid change (replacement/
silent). If it is a replacement mutation, the program characterizes
also the amino-acid type – charge, hydropathy, volume,
chemical, hydrogen donor or acceptor atoms and polarity,
based on the IMGT physicochemical amino acid classes (13,
14). The resulting data are saved as a CSV file with mutation
counts for each tree, and graphs can be included in the output
using the ‘plot’ argument.

Selection Analyses
Selection analysis is based on IgTreeZ’ mutation analysis, which
calculates the number of silent and replacement mutations in the
CDRs and FWRs for all sequences each tree. The resulting counts
are sent, together with the corresponding germline sequence and
the length of the CDR3 of each tree, to ShazaM (15, 16). Using
ShazaM, we calculate the expected mutation frequency, estimate
the selection strength for each tree, and compare the selection
scores of multiple repertoires. We include the CDR3 by
modifying the region definition parameter according to each
tree’s CDR3 length and calculating the expected mutation
frequency for each germline separately. All these steps were
performed by our R script ‘shazam_selection_on_igtreez_
output.r’, which is included in IgTreeZ.

Tree Topology Analysis (MTree)
This analysis quantifies the shape properties of Ig gene lineage
trees. This was first suggested by Shannon and Mehr (17), who
postulated that lineage tree shapes can be used to reveal the
dynamics of hypermutation and antigen-driven selection in GCs.
Later, seven variables were found to have a significant correlation
with several B cell response parameters (3). Recently, we wrote a
python version of MTree©, which calculates these seven variables
for each tree in parallel and saves them in CSV files. The MTree
results of different repertoires are compared using a second tool,
which creates a box plot for each variable, and a scatter plot of
each pair of variables. IgTreeZ now includes this analysis as part
of its functions.

Tree Drawing
The tree drawing function of IgTreeZ aims to visually illustrate
lineage tree shapes. We base our drawing on the graph
description language DOT, as implemented in the Graphviz
Frontiers in Immunology | www.frontiersin.org 3
program (18). The input Newick-format trees are first
translated to the DOT language. The translated DOT files can
then be saved as image files (in several formats) or colored for
quick impression. The coloring is based on the cell population
names associated with tree nodes, with multi-population nodes
colored with multiple colors. The font size and line width can
also be adjusted using program parameters. Examples are given
in the Results section.

Tree Filtering
Some comparative analyses require choosing only trees with
certain characteristics, such as trees belonging to specific cell
populations or tissues. To address this need, we developed a
script to filter trees based on tree size (number of nodes or
leaves), population composition or other features. Filtering by
features such as population composition is done using one of
three logical gates: AND, which selects trees composed of nodes
associated with all the given populations; OR, which select trees
composed of nodes associated with at least one of the given
populations; and NOT, which selects trees that lack nodes
associated with any of the given populations. The selected tree
names are saved in a CSV file, and these trees can be
automatically copied to a new directory using a parameter.

Simulation
To test our mutation counts in a CDR/FWR region connotation,
we used Yermanos et al.’s AbSim simulation (19). We simulated
100 lineages under each condition, using the ‘data’ SHMmethod,
which focuses mutation events during SHM to the CDR regions
(defined based on IMGT), and has an increased probability for
transition mutations relative to transversions. We used different
probabilities for SHM nucleotide changes, different probabilities
for a given sequence to undergo SHM, and different baseline
probabilities for each nucleotide to be mutated. We annotated
the output sequences using IgBlast version 1.14.0 (20) on IMGT/
GENE-DB (21) reference sequences from March 26, 2020, and
built parsimony trees using AlakazaM version 1.0.1 (16). Overall,
more than 2800 trees were simulated and analyzed.

Empirical Data Processing
Healthy Ileum Data
We used Ig sequencing data from sorted B cell subsets from
histologically normal human ileum tissue samples of two adult
individuals (Table 1), which were barcoded with unique
molecular identifiers, amplified, sequenced and analyzed using
our lab’s pipeline (Tejedor Vaquero S et al. manuscript in
preparation). Briefly, the sequences were preprocessed using
pRESTO version 0.5.8 (22), annotated online using IMGT/
HighV-QUEST version 3.4.15 (23) with the IMGT/GENE-DB
October 2022 | Volume 13 | Article 822834
TABLE 1 | Cerutti Lab dataset – patient information.

Patient number Gender Age B cell subsets

3 Female 35 Naïve, Memory, GC, Plasma cells
4 Female 63 Naïve, Memory, GC, Plasma cells
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(21) reference sequences from January 17, 2019, and processed
and assigned for clones using Change-O version 0.4.1 (16).
Lineage tree construction was performed using IgTree© (24).

COVID-19 Data
We used data obtained from Montague et al. (25), who
sequenced and analyzed B cells from blood samples of COVID
patients in various severity levels at several time points from the
appearance of clinical symptoms. We downloaded sequences of
20 samples (including replicates) from three patients with
different disease severity from different time points, and from
three healthy controls (Table 2). All sequences were downloaded
from iReceptor (26). We annotated the sequences using IgBlast
version 1.14.0 (20) on IMGT/GENE-DB (21) reference
sequences from March 26, 2020. We filtered the functional
sequences and assigned them into clones, based on trimming
thresholds, using Change-O (16); and built parsimony trees
using AlakazaM version 1.0.1 (16). Trees were not constructed
for clones with more than 3000 sequences, for the sake of
rapid analysis.

Data for Machine Learning Models
We used data from three datasets. Data of one healthy donor
were obtained from (27) and downloaded from iReceptor (26),
and another healthy donor’s data were obtained from (28)
directly. Six peripheral blood and bone marrow samples of four
DLBCL patients were sequenced by Kedmi et al. (Table 3). All
the DLBCL samples were taken from relapsed patients before
treatment. Data were analyzed and lineage trees generated as
described in section 2.7.2.

Machine Learning Classification Model
Application to IgTreeZ Mutation Count
Tree-Based Mutation Analysis and
Dataset Preprocessing
Mutations on the DLBCL and healthy control lineage trees were
analyzed using IgTreeZ. We defined the resulting mutation
counts as the features for the machine-learning models,
together with one additional feature that represents the
number of mutations per sequence (Supplementary Table 1).
A binary column named ‘status’ with the value of 1 for patients
Frontiers in Immunology | www.frontiersin.org 4
and 0 for controls was added. The control and patient data
frames were concatenated. All “Nan” values were replaced with 0
(since Nan values mean no mutations were found).

Data Resampling
We chose to resample the training set because our data were
imbalanced (Table 3), and over-sampling of the DLBCL data
caused overfitting. We tried a combination of over-and under-
sampling (over-sampling the patient data, and under-sampling
the healthy control data) using methods such as SMOTETomek,
which combines SMOTE and Tomek links. However, this also
caused overfitting, together with low prediction scores. Using a
specific pipeline to choose the required sample size also caused
overfitting together with low predictions scores. We concluded
that any over-sampling causes overfitting. Therefore, we chose to
under-sample the control data using OneSidedSelection (since a
random under-sampling also returned low prediction scores),
and only under-sampled the training set and not the test set, to
make the test as reliable as possible.

Machine Learning Models
Six machine learning models were built (using the scikit-learn
package in python) to predict whether a tree-based mutation
count originated from a healthy person or a DLBCL patient. The
feature values (except the first two columns – sample name and
tree ID) were defined as the input, and the status as the output.
We chose to scale our data using Normalizer, after trying 8
different scaling methods and finding that Normalizer returns
the best results. This can be due to the Normalizer scaling
method using rows while other scalers use columns. Since each
row in our data represents a separate tree, using Normalizer
made the most sense. Data were split into training (75%) and
testing (25%) set. To optimize the hyperparameters of all the
models, we used GridSearchCV, a method for hyperparameter
tuning in which we define a grid of possible parameter values
(Supplementary Table 2), and GridSearch searches for the
optimal set of hyperparameter combinations, using the k-fold
cross-validation (CV) approach (cv = 5). In other words, this
method trains the model using different combinations of the
above-mentioned features and gives the best combinations based
on the optimal k-fold CV score obtained.
TABLE 2 | COVID-19 donor data.

Severity Subject ID Sex Age Collection time (days from symptom onset)

Healthy H1 F 28
Healthy H2 F 30
Healthy H3 M 45
Mild 2 F 37 2
Mild 15
Mild 34
Moderate 8 M 37 14
Moderate 32
Severe 34
Severe 18 F 62 8
Severe 30
October 2022 | Volume 13 | Article 822834
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RESULTS

Tree-Based Selection Analysis Reflects
Mutation Distributions and Shows
Inclusion of CDR3s Is Crucial
A lineage tree-based mutation analysis is obviously more
accurate than an analysis based on comparing each sequence
to the germline (4, 5). On trees, the ancestor sequence for each
mutation is better defined; moreover, successive mutations on
the same nucleotide, including reversion mutations, can be
identified (Figure 1). In addition to a more accurate mutation
identification and counts on the V and J segments, a tree-based
analysis makes it possible to account for mutation in the CDR3
region, which is better defined for a clone (where the putative
“germline” CDR3 sequence is clone’s consensus CDR3 sequence,
and the tree tracks mutations on the CDR3 as well as the V and J
segments) than for a single sequence (where the putative
“germline” CDR3 sequence is identical to that of the sequence,
and hence no mutations can be identified there). Since selection
analysis is based on mutation counts, this analysis can
also benefit from the more precise lineage tree-based
mutation counts.

To test these functions of IgTreeZ, we used Yermanos et al.’s
AbSim simulation, which is a time-resolved antibody repertoire
simulation that enables the modeling of several immunologically
relevant parameters (19). We tested both our tree-based
mutation count, especially in the CDR/FWR regions, and its
influence on the selection analysis. We modified three simulation
parameters and found that the SHM nucleotide change rate has
the most impact on mutation profiles. We simulated 100 lineages
for each of 13 different probabilities for SHM nucleotide change.
By analyzing the resulting 1300 trees we found that, as expected,
more mutations are counted, in both the CDRs and FWRs, with
higher SHM nucleotide change rate (Figure 2A). However, when
we used these counts to estimate the selection strengths using
ShazaM (15, 16), we found opposite trends – the selection for
replacement mutations is weaker as the SHM nucleotide change
rate is higher in the CDR. The FWR presents stable selection
against replacement mutations (Figure 2B). To understand the
reason for these opposite trends in the CDRs, we tested the
mutation distribution in each region and found that, indeed,
the mutation counts in the CDR3 region become relatively
greater than those of other regions as the SHM nucleotide
change rate is decreased (Figure 2C). These results emphasize
Frontiers in Immunology | www.frontiersin.org 5
the importance of the inclusion of the CDR3 in the selection
analysis, and thus the potential of lineage tree-based selection
analysis, which enables the inclusion of the CDR3 region.

Different Mutation and Selection Patterns
in B-Cell Sub-Populations in Human Gut
In order to test our program on empirical data, we analyzed
lineage trees from sorted B cells from two histologically normal
ileal tissue samples (Table 1) processed using our lab’s pipeline
(Tejedor Vaquero S et al. manuscript in preparation). We used
IgTreeZ to record the mutation distributions in these trees and
found several consistent patterns, as follows. The relative
fractions of CDR3 mutations were highest in GC cells (18 and
23% in Donor 3 and 4 respectively, Figures 3A, B and Tables 4, 5).
The relative fractions of FWR3 mutations were highest in naïve
cells, but not those of the FWR1 and FWR2 regions.
Correspondingly, the overall CDR region mutation relative
fractions were lowest in naïve cells. Plasma cells of both
donors exhibited the highest relative fractions of mutations in
FWR1 regions (13 and 12% in donor 3 and 4, respectively), and
the lowest relative fractions in FWR3 regions (36 and 39% in
donor 3 and 4, respectively).

Using the ShazaM R package (15, 16) to perform selection
analysis on the IgTreeZ mutation counts revealed consistent
results in both donors, in which GC cell lineage trees exhibited
the strongest selection for replacement mutations in the CDRs,
and plasma cell lineage trees show the strongest selection against
replacement mutations in the FWRs (Figures 3C–F). This may
suggest that gut plasma cells are selected for their receptors’
stability, rather than affinity. Memory B cell lineage trees
exhibited a slightly weaker selection for replacement mutations
than GC cell lineage trees in the CDRs, and naïve cell lineage
trees seem to undergo the weakest selection in CDRs and strong
selection for replacement mutations in FWRs. These findings
illustrate the different mutation and selection courses of each B
cell sub-population in human gut, and, again, the potential of
lineage tree-based mutation and selection analyses.

Lineage Tree-Based Transition, Mutation
and Selection Analyses of Data From
COVID-19 Patients Elucidates the
Immune Response to SARS-COV-2
To further demonstrate the potential of IgTreeZ, we analyzed B
cell sequences from three COVID-19 patients that differed in
TABLE 3 | Healthy control and DLBCL patient datasets.

Group Sample name Patient Tissue Study # Trees

Healthy Controls H1 H1 PB (27) 18,068
H2 H2 PB (28) 9,190
Overall healthy control trees 27,258

DLBCL D1 P1 PB Kedmi et al. 1,651
D2 P2 PB 1,309
D3 P3 PB 35
D4 P4 BM 738
D5 P1 BM 2,419
D6 P2 BM 4,834
Overall DLCBL trees 10,915
Octo
ber 2022 | Volume 13 | Article
 822834
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disease severity, obtained by Montague et al. at two or three time
points from clinical symptom onset for each patient (Figure 4A),
and of three healthy donors (Table 2) (25). We annotated the
sequences, labeled the sequences by time point, and constructed
lineage trees using AlakazaM (16). Next, we used IgTreeZ to filter
trees based on their time point composition, to analyze the
transitions between time points, and to perform tree-based
mutation and selection analyses.

Counting the number of mutations involved in transitions
between time points (defined as transition distance) reveals that
transitions between day ~15 to day ~30 and between day ~8 to
day ~30 included the highest mutation counts (Figures 4B–D).
This indicates an extensive GC response that took place at these
times. Of note, impossible transitions (such as from day 30 to day
8) were also found, as tree construction algorithm are geared
towards choosing the minimal tree out of the infinite number of
possible trees, and the minimal tree is not always the best
Frontiers in Immunology | www.frontiersin.org 6
representation of the actual response; the same mutation could,
in reality, occur simultaneously in parallel branches of the clone.
However, the transition distances associated with impossible
transitions were low (median of 2 mutations in the patients
with severe and moderate disease, and 3-7 mutations in the
patient with mild disease). This implies that the impossible
transitions were probably the results of incorrect inference of
the relationships of very similar sequences, as a result of the
requirements of tree generating algorithms. It is not
recommended to constrain such algorithms, because this will
result in trees that are more grossly incorrect.

IgTreeZ’ mutation analysis function includes mutation
profiling, in which mutations are characterized by their source
and destination nucleotides, their location (FWR or CDR), and
their type (transition or transversion, silent or replacement
mutation). In addit ion, replacement mutations are
characterized by source and destination amino acid charge,
A

C

B

FIGURE 2 | Mutation and selection analyses of simulated trees. (A) Mutation counts per whole sequence based on simulated trees under different probabilities for
SHM nucleotide change. The plot was created using the compare-reps script based on IgTreeZ-mutations result. (B) The means and confidence intervals of the
selection scores for tree-based mutation count as calculated and plotted using ShazaM (15, 16). (C) The distribution of mutations in the different regions, as counted by
IgTreeZ’ program poptree-mutations. All trees and sequences were simulated using AbSim (19). CDR, complementarity determining region. FWR, framework region.
October 2022 | Volume 13 | Article 822834
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A B

C D

E F

FIGURE 3 | Mutation and selection analyses of IgV gene sequences from different ileal B cell and plasma cell subsets. (A, B) The mutation distributions as counted
by the IgTreeZ program function “mutations” for Donor 3 and Donor 4, respectively. (C, E) The probability density function of the selection scores for the lineage
tree-based mutation counts of the different cell subsets for Donor 3 and Donor 4, respectively. (D, F) Means and confidence intervals of the selection scores for the
same mutation counts for Donor 3 and Donor 4, respectively. Panels (A–D) were calculated and plotted using ShazaM (15, 16). MEM, memory; PC, plasma cell;
NAV, naïve; CDR, complementarity determining region; FWR, framework region.
TABLE 4 | Donor 3 mutation distribution.

Region Naïve (%) GC (%) Memory (%) Plasma (%

FWR1 11.6 10.2 9.3 13.4
FWR2 11.4 10 10.9 12
FWR3 46.7 37.9 40.5 36.2
CDR1 5.6 10.4 11.5 13.1
CDR2 7.7 12.6 15.4 14.1
CDR3 17 18.9 12.4 11.1
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hydropathy, volume, chemical, hydrogen donor or acceptor
atoms and polarity. We analyzed the data from COVID-19
patients and healthy donors using this function, and compared
the results by subject and time point. The relative fractions of
mutations involving a positive amino acid out of all the source
mutations was the lowest in COVID-19 patients at time points 8-
15 days. Moreover, the relative fractions of mutations involving a
positive amino acid out of all the destination mutations in
COVID-19 at these time points was among the highest
(Figure 4E). This suggests a tendency of the affinity
maturation in COVID-19 patients to avoid mutating positively
charged amino acids, and to favor mutation that create such
amino acids.

Next, we used ShazaM to evaluate selection strengths in the same
lineage tree repertoires. The three patients’ lineage trees showed the
strongest selection against replacement mutations in FWRs around
30 days from clinical symptom onset (Figures 4F–H). This
indicates dominance of affinity-matured, structurally stable
antibodies. On the other hand, the selection for replacement
mutations in CDRs showed dynamic changes in the mild and
moderate disease patients, but not in the severe disease patient. This
may reflect the absence of an effective antibody selection process in
the latter patient. On day 2, the mild disease patient showed the
weakest selection for both the CDRs and the FWRs. This may
indicate the generation of a large number of low affinity, pre-GC
BCRs. Finally, to focus our analysis on clones that may have been
involved in the immune response to SARS-COV-2, we filtered
clones that were sampled at all three time points. Such clones had
higher selection for replacement mutations in the CDRs
(Figures 4I, J). Moreover, the patient with the severe COVID-19
disease showed the lowest selection for replacement mutations
among the three patients.

Machine Learning Models Using IgTreeZ
Output Can Distinguish Lymphoma From
Normal Lineage Trees
IgTreeZ mutations analysis returns an extensive data table. This
data can be used for machine learning. To demonstrate the
potential of this application, we built six machine learning
models to predict whether a tree-based mutation count
originated from a healthy person or a DLBCL patient.
Preceding model construction, we performed an exploratory
data analysis (Supplementary Figures S1, S2) and a
dimensionality reduction. We used PCA with two and three
dimensions, and T-SNE, and found that all of them separated the
data very well (Supplementary Figure S3). Therefore, we used
Frontiers in Immunology | www.frontiersin.org 8
the full dataset for the different models. Among the six models
tested, the Support-Vector Machine (SVM) returned the
best results.

SVM Model
We built an SVM model and tested a parameter space to obtain
the optimal parameter values. We chose to define the following
parameter options: kernel (the kernel type to be used in the
algorithm) - [‘poly’, ‘rbf’, ‘sigmoid’] and C (the regularization
parameter) - [50, 10, 1.0, 0.1, 0.01]). We defined gamma, the
kernel coefficient, to be ‘scale’. We found the optimal parameter
values to be kernel=rbf and C=10. Using these parameter values,
the training and test sets show similar and high results – the
macro avg scores are 0.97085 for the training and 0.95784 for
the test sets, respectively (Tables 6, 7, respectively). The
confusion matrices are also consistent, and the true prediction
rate of the control trees was 0.99 for the training set and 0.98 for
the test set, while the true prediction rate of the DLBCL trees was
0.95 and 0.92 for the training and test sets, respectively
(Figures 5A, B, respectively). The ROC was 1 and 0.99 for the
training and test sets, respectively, and overall exhibits a very
high learning rate (Figure 5C).

KNN, Decision Trees, Random Forest, AdaBoost and
LDA Models
We chose to define parameter options for KNN, decision trees,
Random Forest, AdaBoost and LDA models as shown in
Supplementary Table 2. LDA results exhibit a small increase
from the training set to the test set. However, since we analyzed a
relatively small dataset, this increase is negligible. Since Random
Forest and AdaBoost returns information on feature importance,
we re-trained a simple, non-cross validation model, with the
optimized parameters we found earlier. We found that the two
most important features for Random Forest are ‘sequences’ and
‘nodes ’ and for AdaBoost these are ‘sequences ’ and
‘mutations_per_sequence’ (Supplementary Tables 3, 4 for
Random Forest and AdaBoost, respectively), and tested their
distributions (Supplementary Figure S4). From the
‘mutations_per_sequence’ distribution, it is apparent that
DLBCL trees tend to have fewer mutations per sequence, with a
narrower distribution than the control trees. On the other hand,
we can see that the DLBCL trees have more diverse sequence and
node numbers, and tend to have more sequences than the control
trees. The two features seem to be two sides of the same coin – the
DLBCL clones are larger, but this is mostly due to branching, as
they contain fewer unique mutations in each sequence.
TABLE 5 | Donor 4 mutation distribution.

Region Naïve (%) GC (%) Memory (%) Plasma (%)

FWR1 11.3 9 9.8 12
FWR2 12 8.5 10.7 10.2
FWR3 47 42.6 41.6 39.1
CDR1 5.8 7.7 11.1 11
CDR2 8.4 9 12.6 12.6
CDR3 15.5 23.2 15.2 15.2
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FIGURE 4 | Transition, mutation and selection analyses of human B cells of COVID-19 patients and healthy donors. (A) An example lineage tree from the patient
with mild disease. Filled nodes represent sampled sequences, nodes with more than one color represent multiple sequences from different time points, and the
numbers on edges correspond to numbers of mutations between nodes. The graph was created using the function IgTreeZ-draw. (B–D) The numbers of mutations
involved in transitions for the mild, moderate, and severe disease patients. The plots were created using IgTreeZ-poptree. (E) The partial fractions of the mutations
that involved positive amino acids out of all mutations. Source/Destination – the mutation source/destination that involved a positive amino acid. (F–H) The mean and
confidence interval of the selection scores for the tree-based mutation counts of the mild, moderate, and severe disease patients. (I) The probability density function
of the selection scores for clones that were shared between time points of the mild, moderate, and severe disease patients and of healthy donors. (J) The mean and
confidence interval of the selection scores for the tree-based mutation counts of the same data as I. Panels (D–F, I, J) were calculated and plotted using ShazaM
(15, 16).
Frontiers in Immunology | www.frontiersin.org October 2022 | Volume 13 | Article 8228349

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Neuman et al. IgTreeZ - Ig Lineage Tree Analyzer
DISCUSSION

In this work, we present IgTreeZ, a comprehensive tool for lineage
tree analysis, and demonstrate the value of this tool. Several studies
emphasized the importance of lineage tree-based mutation and
selection analysis. Zuckerman et al. predicted an alteration in the
SHM mechanism in myasthenia gravis thymic ectopic GCs that
was later verified by gene expression analysis (4). Yaari and
colleagues used lineage trees to show that the FWR and CDR
are designed under different selection patterns and that long-term
selection is dependent on the heavy chain variable gene family
(29). Lineage tree-based mutation counts can reveal multiple
mutation patterns that are under-counted using clone consensus
sequences and over-counted using a direct sequence-based
approach (Figure 1). Moreover, CDR3s include the junction
between the V gene segment and the J gene segment, and part
of the D segment in heavy chains. These segments include the
nucleotide deletion and insertions, that can increase the CDR3
sequence diversity beyond the pre-encoded V-D-J germline
sequences. All of this makes the CDR3 the most variable region
in Ig genes, and it is most often critical for antigen binding.
However, its variable nature makes it hard to analyze and thus it is
often excluded from the selection analysis (16). Here we propose a
method that also accounts for the mutations in the CDR3, and
show that CDR3mutations have a significant impact on the results
of selection analysis (Figure 2).

We used IgTreeZ to show that tree-based mutation analysis
reveals different mutation profiles of gut B cell sub-populations.
We found that naïve trees are not subject to positive nor negative
selection in the CDRs, and that naïve trees’ FWRs seem to be
subject to selection for replacement mutation. The latter finding is
surprising, as naïve B cells are defined as cells that have not yet
been exposed to an antigen, and did not undergo affinity
maturation, hence their IgV genes are not expected to contain
any mutations. Indeed, 60-70% of the naïve cell sequences
contained no mutations, and those that did had only very few
mutations per sequence (Tejedor Vaquero S et al. manuscript in
preparation). There are several possible explanations for the
Frontiers in Immunology | www.frontiersin.org 10
observation of SHM in cells that were identified as naïve B cells.
First, cannot completely exclude PCR errors, however these should
have been eliminated by the use of unique molecular identifiers; the
relatively high percentage of naïve B cell sequences with mutations
also argues against this possibility. The latter consideration, and the
low SHM frequency in these sequences, also argue against many of
these cells having been contaminating IGM memory cells. Recent
studies show that “naïve B cells” (typically IgDhighIgM+CD10-

CD27-CD38low) are more heterogeneous than expected and may
include a fraction recently activated by antigen. So our naïve cells
with IgV gene mutations may represent, at least in part, recently
activated naïve cells which have just been instructed to become GC
B cells and begun to express activation-induced cytidine deaminase
(AID). An exciting possibility is that these are similar to the
“activated naïve” B cells observed in systemic lupus
erythematosus (7, 30) and COVID-19 (31). Whatever the
explanation, the selection for replacement mutations in the
FWRs is inconsistent with selection for receptor stability.
Perhaps the Ig undergoes many mutations in the FWRs during
early activation, with selection not yet operative, so that these
results only reflect mutations and not selection. The differentiation
pathways of this fraction of naïve B cells are still being elucidated;
they may or may not enter the GC at a later time point, and may
even participate in a wholly extrafollicular activation pathway.

We also analyzed COVID-19 patient repertoires and found
indications for extensive SHM between the second and fourth
week after onset of clinical symptoms and evidence for the
generation of affinity maturated, structurally stable antibodies
by day ~32 post-infection in the patients with mild and moderate
responses. A tree-based mutation analysis of the lineage trees of
all COVID-19 patients revealed a tendency of SHM to avoid
mutating away from positive amino acids, but a high tendency to
create them. Recently, Khan and colleagues found that an acidic
tandem repeat in the Nsp3 subdomain of the HCoV-HKU1
polyprotein was the predominant target of antibody responses in
adult donors (32). This may explain the positive tendency we
recognized. In a review from 2021 (33), the authors note that
high neutralizing antibody titers are associated with potentially
October 2022 | Volume 13 | Article 822834
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TABLE 6 | Classification report of the training set.

Precision Recall f1-score support

0 0.95235 0.99111 0.97134 8407
1 0.99079 0.95074 0.97036 8263
accuracy 0.97086 16470
Macro avg 0.97157 0.97092 0.97085 16470
Weighted avg 0.97164 0.97086 0.97085 16470
TABLE 7 | Classification report of the test set.

Precision Recall f1-score suppor

0 0.96985 0.98304 0.97640 6838
1 0.95589 0.92325 0.93929 2723
accuracy 0.96601 9561
Macro avg 0.96287 0.95314 0.95784 9561
Weighted avg 0.96587 0.96601 0.96583 9561
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extrafollicular B cell responses, and suggest that the development
of neutralizing antibodies against SARS-CoV-2 can be
accomplished by many B cells with little or no affinity
maturation required. This is consistent with our finding that
the mild disease patient shows the lowest selection pressure on
the second day from the appearance of clinical symptoms.

COVID-19 patient clones that were sampled at all three time
points had higher selection for replacement mutations in the
CDRs (Figures 4I, J). Although clones shared between all three
time points tend to be larger and include more mutations, the
overall mutation counts had less impact on the selection than
mutation location [Figure 4B, and as shown by (15)]. For this
reason, this higher selection for replacement mutations may be
part of the effort exerted by the immune system to generate
efficient antibodies against the virus, an effort which may have
been less effective in the patient who suffered from a
severe disease.

Finally, we have shown that the output from IgTreeZ can be
used in machine learning models, for example to distinguish
between lymphoma and normal lineage trees. Mutation-based
Frontiers in Immunology | www.frontiersin.org 11
machine learning was recently shown to predict a sequence’s cell
type (34). An accurate tree-based mutation profiling can be
useful for machine learning based classification as well.

IgTreeZ is designed for repertoires. The program can process
a large number of trees using parallel processing, and by default
uses the maximal number of processors available, but this can be
adjusted using a parameter. Using 4 CPU cores, the mutation
analysis, the most complex of IgTreeZ functions, takes less than
30 minutes for 90,000 trees containing 2,000,000 sequences.
Utilizing 64 CPU cores decreases the running time of the same
tree set to 12 minutes. To overcome the operating system’s
maximum argument number limit, IgTreeZ can receive its
input trees as a directory name, and process the whole
directory’s content. A tree with more than 5000 nodes is
analyzed in less than two minutes, even on an 8G RAM. These
features theoretically allow IgTreeZ to process any number of
trees, even large ones.

In summary, B cell lineage tree analysis may shed light on
many of aspects of B cell affinity maturation in GCs in particular,
and on B cell response population dynamics in general. Our new
A B

C

FIGURE 5 | An SVM model can distinguish lymphoma from healthy control lineage trees using IgTreeZ output. (A, B) Confusion matrices for the training and test
set, respectively. (C) Roc curves for both sets. Confusion matrices and ROC curves were created using Python’s scikit-learn package.
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tool, IgTreeZ, performs various types of lineage tree-based
analysis in a simple command line mode, making all these
analyses easily accessible to non-bioinformaticians. An
important conclusion from our analysis is that CDR3 regions,
which are often excluded from selection analyses, must be
included for the results to be correct; while CDR3 inclusion is
only possible if these analyses are lineage tree-based.
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