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Human giardiasis, caused by the protozoan parasite Giardia duodenalis (syn. Giardia
lamblia, Giardia intestinalis, Lamblia intestinalis), is one of the most commonly-identified
parasitic diseases worldwide. Chronic G. duodenalis infections cause a malabsorption
syndrome that may lead to failure to thrive and/or stunted growth, especially in children in
developing countries. Understanding the parasite/epithelial cell crosstalk at the mucosal
surfaces of the small intestine during human giardiasis may provide novel insights into the
mechanisms underlying the parasite-induced immunopathology and epithelial tissue
damage, leading to malnutrition. Efforts to identify new targets for intervening in the
development of intestinal immunopathology and the progression to malnutrition are
critical. Translating these findings into a clinical setting will require analysis of these
pathways in cells and tissues from humans and clinical trials could be devised to
determine whether interfering with unwanted mucosal immune responses developed
during human giardiasis provide better therapeutic benefits and clinical outcomes for G.
duodenalis infections in humans.

Keywords: giardiasis, Giardia duodenalis, mucosal immunity, intestinal barrier, epithelium, antimicrobial peptides,
disaccharidase deficiency
INTRODUCTION

Human giardiasis, caused by the protozoan parasite Giardia duodenalis (syn. Giardia lamblia,
Giardia intestinalis, Lamblia intestinalis), is one of the most prevalent enteric parasitic protozoan
infections globally, with prevalence rates ranging from 2-5% in the developed world and 20-30% in
the developing countries (1–3). Infections with G. duodenalis account for more than 280 million of
new cases of human giardiasis annually worldwide (4, 5). Epidemiological and molecular studies
have classified G. duodenalis parasites into eight distinct and genetically-different parasites or
“assemblages” (A-H) of which only assemblages A and B are typically identified in both humans and
in other mammalian hosts, whereas assemblage E, for example, is predominantly identified in the
livestock (6, 7). In recent years, however, assemblage E has also been identified to infect humans in
Brazil (8, 9), Egypt (10), Australia (11), Vietnam (12) and New Zealand (13). This further indicates
the potential for more widespread anthropozoonotic importance of G. duodenalis parasites and the
roles played by numerous mammalian species in the maintenance of the parasite’s life cycle. The
parasite’s life cycle follows a direct oral-fecal transmission route, and human infections are initiated
by the ingestion of quadrinucleate cysts along with contaminated food or water (1). The ingestion
of as few as 10-25 cysts would be enough to successfully colonize the small intestine (14).
org February 2022 | Volume 13 | Article 8174681

https://www.frontiersin.org/articles/10.3389/fimmu.2022.817468/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.817468/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shahram.solaymani@und.edu
https://orcid.org/0000-0001-9749-3830
https://doi.org/10.3389/fimmu.2022.817468
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.817468
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.817468&domain=pdf&date_stamp=2022-02-17


Solaymani-Mohammadi Giardia-Intestinal Epithelial Cell Interaction
The vegetative forms of the parasite or trophozoites are binuclear
pear-shaped flagellated structures with a bilateral symmetry that
colonize the proximal portions of the small intestine, especially
the duodenum and less commonly jejunum and the ileum (15).

Most cases of human giardiasis in immunocompetent
individuals are self-limiting and and are spontaneously
resolved within weeks following exposure (14). Individuals
residing in hyperendemic areas for human giardiasis develop
partial immunity against subsequent infections as opposed to
newly arrived visitors (16, 17). These findings indicate the
development of an effective anti-Giardia immunity sufficient
for the clearance of G. duodenalis infections in humans. The
majority of human giardiasis cases are asymptomatic with no
signs of overt clinical profiles (18, 19). Human cases with
asymptomatic giardiasis predominantly excrete infective cysts
in the feces and play important roles in the maintenance of the
parasite’s life cycle (1). Nonetheless, human subjects with
symptomatic giardiasis mostly shed trophozoites in feces and
are commonly presented with gastrointestinal manifestations
that may include abdominal cramps, flatulence, diarrhea,
nausea, with a malabsorption syndrome occurring in clinical
and subclinical cases and may result in failure to thrive (FTT)
and/or stunted growth, especially in children (20–23). The
malabsorption syndrome observed during chronic human
giardiasis is characterized by a steatorrhea type diarrhea with
signs of fat- (i.e., vitamins A, K) and water-soluble (i.e., vitamin
B12) vitamins deficiency (24–29). In persistent cases of
giardiasis, especially in children under the age of 5, significant
weight loss accompanied by a wasting protein-losing
enteropathy are also present (30–33).
GIARDIA DISRUPTS TIGHT JUNCTION
PROTEINS AND MODULATES INTESTINAL
BARRIER INTEGRITY

Tight junction (TJ) proteins represent major components of the
intercellular adhesion molecules and regulate the permeability of
epithelial (i.e., intestine) and endothelial barrier functions [for a
review see ref (34)]. These molecules are multi-protein complexes
required for defining the structurally- and functionally-distinct
basolateral and apical plasma membrane domains and are critical
for the maintenance of the cell polarity and paracellular passage
(34). The TJ proteins are not entirely impermeable yet the passive
trans-epithelial passage of ions and small molecules occurs
depending on molecule’s size and polarity (35–37). It has been
clearly established that TJ proteins play critical and non-redundant
roles in multiple organs. The ZO-1 or ZO-2 deficiency was
embryonically lethal in mice (38, 39), whereas mice deficient for
claudin 1 died shortly after the birth owing to excessive dehydration
of the skin (40). While mice deficient for occludin (Ocln-/-)
manifested extensive histological abnormalities as well as chronic
inflammatory responses in intestinal and extra-intestinal organs
(41), the genetic deletion of ZO-3 inmice did not cause any signs of
developmental abnormalities (39, 42).
Frontiers in Immunology | www.frontiersin.org 2
The integrity of the intestinal TJ proteins is essential for the
epithelial impermeability against invading intestinal mucosal
pathogens, confining pathogens in the lumen and preventing
them to gain access to deeper mucosal layers (43, 44). The
impaired TJ protein expression at the mucosal surfaces of the
intestine leads to the facilitated entry and spread of enteric
pathogens (45). Many enteric microbial pathogens, including
enteropathogenic and enterohemorrhagic Escherichia coli (EPEC
and EHEC, respectively) as well as Helicobacter pylori, secrete
virulence factors that target TJ proteins in order to induce
pathogenesis (43–45). The Entamoeba histolytica cysteine
protease A5 (EhCP-A5) elicited a pro-inflammatory profile, as
characterized by increased expression of IFN-g, TNF-a, and IL-
13 that correlated with impaired expression of TJ proteins
claudin-2, occludin, and ZO-1 (46). The disrupted or the re-
localization of TJ proteins, for example, result in an imbalanced
water absorption, an increase in the intra-luminal water content
in the intestine and may contribute to the diarrhea observed
following the human infections with the attaching and effacing
(A/E) EPEC and EHEC (45, 47).

Several lines of evidence have indicated that Giardia infection
compromises intestinal epithelial barrier integrity in humans as
well as in animal models of human giardiasis (48–52). The
dysfunctional intestinal epithelial barrier during Giardia
infection is characterized by altered expression of TJ proteins
(i.e., ZO-1, claudins, occludin), increased intestinal permeability,
and reduced transepithelial electrical resistance (TEER) in both
murine models of giardiasis as well as in humans (51, 53). The
disruption of intestinal epithelial TJ proteins is considered a
milestone in the pathological changes associated with Giardia
infection in vitro and in vivo (51, 53). The Giardia infection
disruption of intestinal epithelial TJ proteins (i.e., ZO-1) was
strain-dependent and could be reversed by using caspase-3
inhibitors or the pre-treatment with the epidermal growth
factor (EGF) (50). Further clinical investigations indicated that
the expression of the TJ protein, claudin 1, decreased by 71% in
human subjects with giardiasis as compared with those
individuals in the control group (51). It has been postulated
that the disruption of the intestinal epithelial TJ proteins during
Giardia infection leads to an increased leakage of food antigens
through compromised intestinal mucosa into extra-intestinal
sites and this may render infected individuals susceptible to
allergic reactions commonly observed during human giardiasis
(54). Notably, the translocation of commensal bacteria into
extra-intestinal sites as a result of Giardia-induced barrier
dysfunction correlated with the degradation of TJ proteins
occludin and claudin-4 (55). However, it is still unclear how
the bacterial translocations into extra-intestinal organs,
including mesenteric lymph nodes (MLNs), would contribute
to the pathogenesis of human giardiasis. It is yet to be discovered
whether different strains of G. duodenalis would cause the
differential translocations of bacteria from the intestinal lumen
into extra-intestinal organs and whether this potential
differential bacterial translocation could account for varied
clinical symptoms associated with genetically-diverse G.
duodenalis strains.
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Several mechanisms have been proposed as to how G.
duodenalis infection leads to loss of intestinal epithelial barrier
integrity during human giardiasis as well as in murine models of
human Giardia infection (50, 52). The attachment of G.
duodenalis trophozoites to IECs leads to a contact-dependent
alterations in the TJ protein occludin as well as the cellular
redistribution of claudin-1 in fully differentiated Caco-2/TC7 cell
monolayers (56). It has been suggested that alterations in the TJ
proteins in the brush border (BB) occurred in a contact-
dependent manner and required the lipid raft membrane of
the trophozoite (56). The pre-treatment of the non-transformed
human small intestinal epithelial cell line (SCBN) monolayers
with EGF (57) or the myosin light chain kinase (MLCK)
inhibitor (58), however, significantly prevented the attachment
of the live trophozoites to the epithelial monolayers and
abolished the parasite-induced disruption of the tight
junctional protein ZO-1 (57). The Alerted distribution of TJ
proteins, rather than changes in the expression of these proteins,
has been proposed as a mechanism underlying the IEC
abnormalities observed following Giardia infection (59).

Contact-independent mechanisms also have shown to
contribute to the degradation of the TJ proteins and
compromised intestinal integrity following Giardia infections;
Giardia trophozoites contain a plethora of secreted molecules,
including cysteine proteases (CPs), capable of degrading multiple
components of the host immune system (60–62). The CPs
secreted by Giardia trophozoites are considered emerging
virulence factors that are able to degrade TJ proteins (i.e.,
claudin-1 and -4, occludin, E-cadherin) in IECs and are also
capable of degrading chemokines expressed by parasitized IECs
(63, 64). Recent evidence has suggested that giardipain-1, a
cathepsin B-like enzyme, is expressed on the cell surface and
flagella of G. duodenalis trophozoites and it can induce apoptosis
in IEC-6 epithelial cell monolayers, as evidenced by membrane
blebbing and the expression of phosphatidylserine on the surface
of parasitized epithelial cell monolayers (52, 60, 62). Giardipain-
1 was localized at the epithelial cell-cell junction interface and
induced the reorganization and the degradation of occludin and
claudin-1 as well as caused decreased TEER in Madin Darby
Canine Kidney (MDCK) cell monolayers (52). Consistent with
the proteolytic activity of giardipain-1 in degrading the TJ
proteins, the pre-treatment with a selective CP inhibitor, E-64,
or the siRNA targeting of giardipain-1 gene in G. duodenalis
trophozoites led to an attenuated proteolytic activity of
giardipain-1, as demonstrated by lessened epithelial insult in
IEC-6 monolayers. Three major CPs localized in cytoplasm and
the endoplasmic reticulum of G. duodenalis trophozoites were
identified in a Giardia/epithelial cell co-culture setting and
further evidence demonstrated that these CPs were capable of
proteolyzing or reorganizing multiple TJ proteins, including
claudins and occludin (64). Notably, G. duodenalis
trophozoites expressing a variant surface protein, VSP9B10A,
were able to induce the loss of cell-cell contact and cell
detachment at the sites of the trophozoites attachment (65).
The incubation of IEC-6 cell monolayers with conditioned
medium obtained from G. duodenalis trophozoites expressing
Frontiers in Immunology | www.frontiersin.org 3
VSP9B10A/IEC-6 cell monolayers co-culture also induced
cytotoxicity, whereas the monoclonal antibody blockade
targeting the VSP9B10A protein expressed by trophozoites
reversed those cytotoxic effects at the trophozoite/epithelial cell
interface (62, 65).

Altogether, these findings demonstrate that secreted soluble
proteins, including proteases, can immensely contribute to the
pathogenesis of G. duodenalis infection in vivo. However, it still
remains unclear how these parasite-derived CPs contribute to
the immunopathology observed during giardiasis and whether
vaccine candidates targeting these proteins could protect from
parasite-induced immunotherapy. To further understand how TJ
protein abnormalities could lead to a malabsorption syndrome
(i.e. , impaired absorption of electrolytes, water and
disaccharidase deficiency) as well as increased intestinal
permeability observed during human giardiasis, especially in
younger children, further investigations are warranted (66, 67).
GIARDIA INDUCES APOPTOSIS IN
PARASITIZED IECS

Apoptotic IECs comprised up to 1.5% of the total IECs in
parasitized human duodenal biopsies following G. duodenalis
infections, whereas 1% of the total IECs from duodenal biopsies
from healthy controls were apoptotic as determined by a positive
terminal transferase uridyl nick end labeling (TUNEL) staining
assay (51). Apoptotic IECs, following human G. duodenalis
infections, were characterized by chromatin condensation
clustering around the nuclear periphery as well as segmentation
of the nucleus (51). The Giardia-induced apoptosis in IECs was
more evident after infectionwith non-host specific strains as well as
following mixed infections with distinct G. duodenalis
assemblages (68).

A wide array of mechanisms have been proposed to
contribute to apoptosis induced by different genotypes of
Giardia parasites in IECs (69). Earlier studies reported a
strain-dependent induction of apoptosis in IECs following
infection with a single Giardia assemblage or after mixed
Giardia infections (50, 68). It was shown that the NF and S2
strains of G. duodenalis, but not WB or PB, were able to induce
apoptosis in IECs, and these effects were abolished by pre-
treating human duodenal epithelial monolayers with a caspase-
3 inhibitor, Z-DEVD-FMK (50). Further studies have indicated
the importance of caspases, including caspase 3 (50, 52, 70, 71)
and caspase 9 (72) in mediating Giardia-induced apoptosis in
IECs. Giardia infections facilitate apoptosis in IECs by the
downregulation of anti-apoptotic proteins, including Bcl-2, and
the up-regulation of the pro-apoptotic proteins, including Bax,
suggesting a potential contribution of caspase-dependent
apoptosis signaling pathways in the induction of pathogenesis
during giardiasis (51, 70, 73).

The production of nitric oxide (NO), and its two major
ultimate metabolites (i.e., nitrite and nitrate) by IECs
represents another defensive mechanism employed against a
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wide range of lumen-dwelling enteric pathogens at the intestinal
epithelium surface (74, 75). Giardia parasites interfere with the
NO production by IECs through competing over local arginine
availability and depriving IECs of arginine is considered a
mechanism employed by G. duodenalis to evade NO-mediated
killing of the parasite (74). Additionally, this has been suggested
as a mechanism by which G. duodenalis induces apoptosis in
parasitized IECs, since arginine deprivation is known to lead to
apoptosis (74, 75).

Consistent with the observations that G. duodenalis strains
differ in their ability to induce pathological changes at the upper
intestinal epithelial surface (50, 66, 68, 76), calves infected with
assemblage E neither showed increased rates of apoptotic cells
nor did they exhibit any signs of villus shortening as compared
with uninfected controls (77). Although the exact mechanisms
underlying this discrepancy is still unclear, it is likely that the
genetic loci, including triosephosphate isomerase (tpi), glutamate
dehydrogenase (gdh) and b-giardin (bg), commonly used to
assign Giardia parasites to specific genotypes/assemblages are
not associated with virulence (2).
GIARDIA INFECTION INDUCES
CYTOSKELETAL REMODELING IN IECS

It has been shown that parasitized IECs undergo drastic
cytoskeletal remodeling following Giardia infection in vitro
and in vivo (76). The expression and the cellular distribution
of actin filaments (i.e., F-actin and alpha-actinin) as well as actin-
binding proteins (i.e., villin and ezrin) are altered following
Giardia infection, leading to compromised intestinal epithelial
integrity (49, 76, 78). The co-incubation of human intestinal
epithelial monolayers (i.e., SCBN and Caco2 cell lines) with live
Giardia parasites led to local condensation of F-actin and loss of
alpha-actinin in IECs as did the co-culture of monolayers with
Giardia lysates or Giardia conditioned medium (49). However,
Verapamil, a phenylalkylamine calcium channel blocker, did not
alter F-actin reorganization suggesting an extracellular calcium
independent-mechanism in the induction of cytoskeletal
abnormalities following Giardia infection (49). Further studies
demonstrated the significant contribution of host immune
responses in the induction of cytoskeletal alterations following
Giardia infection in vivo (76). The expression and the cellular
distribution of villin and ezrin, the two crucial elements of
the actin cytoskeleton of the BB of IECs, underwent major
post-transcriptional changes during the clearance phase of
G. duodenalis infection in vivo (76). Notably, ezrin and villin
were found to be differentially regulated by immune-mediated
mechanisms following Giardia infection; while ezrin proteolysis
required CD4+ T cells alone, the cleavage of villin required
both CD4+ and CD8+ T cell responses (76). The decreased
levels of ezrin phosphorylation as well as increased levels of
phosphorylated villin correlated with reduced BB disaccharidase
enzymes (i.e., sucrase, maltase) activity observed during Giardia
infection (66, 76). Altogether these observations demonstrated
Frontiers in Immunology | www.frontiersin.org 4
that both host and pathogen factors contributed to the
cytoskeletal remodeling observed during giardiasis.
GIARDIA INFECTION PROMOTES THE
EXPRESSION OF ANTIMICROBIAL
PEPTIDES BY PARASITIZED IECS

As the first line of defense against mucosal pathogens, IECs are
equipped with a plethora of defensive mechanisms, including the
ability to secret a wide array of antimicrobial peptides (AMPs) (i.e.,
defensins, trefoil factors) [for a review see ref (79)]. TheAMPs are a
diverse group of naturally occurring positively charged small
molecules and are considered integral components of the innate
immune system in a wide range of animals and plants (80). These
proteins are crucial against invading mucosa-dwelling microbes,
including bacterial, parasitic, and fungal pathogens (81, 82).
Multiple AMPs, including indolicidin, a 13-residue peptide
originally isolated from bovine neutrophils, as well as human
defensins possessed antigiardial activity against G. duodenalis
trophozoites in vitro (83).

The cytokine IL-22 is shown to promote antimicrobial responses
at the mucosal surfaces of the intestine via the regulation of these
peptide secretions through interaction with its receptor, IL-22R,
which is solely expressed on non-hematopoietic cells, including
epithelial cells in the intestine [for a review see ref (84)]. As depicted
in Figure 1, we showed that G. duodenalis infection induces IL-22
secretion in a CD4+ T cell-dependent manner in a mouse model of
the human Giardia infection (66). Giardia infection upregulates the
expression of multiple AMPs both in vitro and in vivo (85–87).
Caco-2 monolayers incubated with G. duodenalis trophozoites
promoted the expression of human b-defensin 2 (HBD-2) and
trefoil factor 3 (TFF3) (87). The upregulation of HBD-2 and TFF3
by Caco-2 monolayers was abolished by pretreatment of G.
duodenalis with a global CP inhibitor, E-64d, or a cathepsin B CP
inhibitor, Ca-074Me (87). Furthermore, Giardia parasite-derived
proteases can cleave human defensins (i.e., a-HD6 and b-HD1) in
vitro (64), indicating that Giardia parasites likely employ this
strategy to evade immune-mediated killing by AMPs in vivo.
These observations demonstrate the pivotal roles played by
Giardia-derived proteases as contributing factors in the
pathogenesis of human giardiasis and exemplify a potential
strategy employed by the parasite to survive in vivo and suggests
that these AMPs could be devised to boost host’s non-immune
defense mechanisms against this pathogen.
GIARDIA PARASITES ARE CLOSELY
ASSOCIATED WITH THE INTESTINAL
EPITHELIUM

Early studies have shown that G. duodenalis differentially binds to
the apical surface and the basolateralmembrane ofmurine cell lines
in vitro (88) and trophozoite optimal growth and survival require
February 2022 | Volume 13 | Article 817468
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intimate interaction with mammalian cells (89). Giardia
trophozoites bind to small intestinal IECs with a higher affinity as
compared with colonic enterocytes, consistent with the anatomical
adaptation/niche in the upper portions of the small intestine (88).
Giardia trophozoites adhere to microvilli close to the bases of the
villi in the upper portions of the mouse small intestinal epithelium
in vivo (15, 90).Theyalsohave the ability to colonizePeyer’s patches
throughout the upper portions of the small intestine, but they are
not found attaching tomicrofold cells (also known asM cells) (90).
Upon infection, Giardia trophozoites are contained in the lumen
and do not invade deeper layers of the intestine. Under certain
circumstances (i.e., in immunocompromised individuals),
however, Giardia trophozoites become invasive and are spread
into intestinal mucosa extending into submucosa layer as well as
extra-intestinal sites (91–93). These findings indicate the
requirement of an intact immune response in order to contain
the parasite within the intestinal lumen.
INTESTINAL EPITHELIUM AS FIRST
DEFENSE LAYER AGAINST GIARDIA:
ROLE OF INTESTINAL MUCUS LAYER

The mucosal surface of the intestinal tract represents a main
entry point for various microbial pathogens. These microbial
pathogens encounter natural innate barriers in the gut, including
the mucus layer, in order to prevent potential pathogens or their
immunomodulatory components/antigens to reach the
underlying epithelium, a process known as non-immune
exclusion (94, 95). Mucins of the human gastrointestinal tract
Frontiers in Immunology | www.frontiersin.org 5
are highly glycosylated proteins and consist of an apomucin
protein backbone (100-500 kDa) joined to oligosaccharides (96).
These glycoproteins are secreted by specialized epithelial cell
types (i.e., goblet cells) and line the luminal surfaces of the
gastrointestinal tract from the oral cavity/oropharynx to rectum
(97), and act as the first line of host defense against multiple
enteric microbial pathogens, including G. duodenalis (61). The
mucin binding sites compete with those of underlying intestinal
epithelium and limit attachment and the subsequent
colonization of the intestinal wall by microbial pathogens (98,
99). Furthermore, the mucus layer of the intestinal tract provides
a slimy and viscous physical barrier against ingested pathogens
and can substantially limit their access to the underlying
intestinal epithelium (100). The gut-dwelling protozoan
parasites, including G. duodenalis, encounter natural barriers
during intestinal colonization and have developed strategies to
streamline this process through evading the recognition by host’s
non-immune and immune mechanisms (2). The expression of
mucins is upregulated following Giardia infection in vitro and in
vivo (101–106) and can inhibit the attachment of G. duodenalis
trophozoites in vitro most likely through electrostatic repulsion
between the trophozoites and the underlying substratum (107).
However, not all the components of the mucus possess inhibitory
effects on the parasite attachment, since a non-mucin low
density, protein-rich fraction of the mucus from the
duodenum and ileum of humans or rabbits promoted the
attachment and the survival of G. duodenalis trophozoites in a
dose-dependent manner in vitro as well as protected trophozoites
from being destroyed by the human milk (108–110). While
lumen-dwelling protozoan parasites were drastically different
in their ability to break down mucins, G. duodenalis produced
beta-N-acetylglucosaminidase as well as detectable levels of beta-
N-acetylgalactosaminidase activity, suggesting the ability of G.
duodenalis trophozoites to efficiently break down mucins (111).
These findings were further confirmed by the observations that
animals infected with G. duodenalis exhibited a thinner mucus
layer and had larger goblet cells (GCs) in greater numbers,
accompanied by depleted GCs mucin stores as compared with
their uninfected controls (104, 112). Consistent with the
protective roles played by mucins during giardiasis, mice
deficient for mucin 2 gene (Muc2-/-) showed significantly
higher trophozoite burdens in the small intestine and had
impaired weight gain as compared with control animals (104).
The mucus secretion is regulated by a wide range of immune (i.e.,
pro-inflammatory cytokines) and non-immune (i.e., diet) factors
(113, 114). Diets low in fiber facilitate the overgrowth of those
bacteria capable of degrading the mucus layer and promotes the
subsequent Citrobacter rodentium-induced colitis (115).
Consistently, Mongolian gerbils (Meriones unguiculatus)
receiving a high-fiber (20%) diet were more resistant to
infection with G. duodenalis as compared with those gerbils
maintained on a diet with low fiber (5%) contents (101). The
higher mucus secretion in those animals maintained on a high-
fiber diet was suggested as a factor contributing to the resistance
of these animals to G. duodenalis infection (101). These findings
reveal an intricate crosstalk between G. duodenalis and the
FIGURE 1 | Giardia infection induces the secretion of AMPs (e.g., defensins,
trefoil factors) in parasitized IECs likely via an IL-22/IL-22R-mediated mechanism.
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intestinal mucus layer at the mucosal surfaces of the small
intestine. Strategies should be employed to boost non-immune
innate mechanisms against intestinal microbial pathogens via
restoring eroded mucus layer by promoting the secretion of
mucus using fiber-rich diets.
IMMUNE ACTIVATION BY GIARDIA
PARASITES AT THE INTESTINAL
EPITHELIUM

Giardia parasites are considered non-invasive to minimally
invasive gut pathogens that typically reside on the epithelial
surfaces of the upper portions of the small intestine (90). Yet,
the adhesion of Giardia parasites to the intestinal epithelium
triggers a strong immune response activation, as characterized
by an increased influx of immune cell subtypes in the
intraepithelial lymphocytes (IELs) as well as in the lamina
propria lymphocytes (LPLs) of the small intestine during an
early phase of the parasite’s colonization (66, 116–121).
Furthermore, several lines of research have indicated that
parasitized IECs secrete a wide array of chemokines and anti-
giardial factors upon coming into contact with Giardia
parasites in vitro and in vivo (19, 74, 75, 106, 122–125). The
treatment of human colonic cell lines (i.e., Caco-2, HT-29)
with the excretory-secretory products of Giardia or whole
trophozoites induced the production of pro-inflammatory
cytokines TNF-a, IL-1b, and IL-8 (also known as CXCL8) by
these cells in vitro (63, 125). The degradation of CXCL8 via G.
duodenalis cathepsin B cysteine proteases attenuates CXCL8-
induced chemotaxis of human neutrophils (63, 126), indicating
a potential immune evasion mechanism employed by the
parasite to prevent the recruitment of neutrophils via a
CXCL8/CXCR1/CXCR2 circuit.
Frontiers in Immunology | www.frontiersin.org 6
GIARDIA INFECTION PREDISPOSES
INFECTED INDIVIDUALS TO
DISACCHARIDASE DEFICIENCY

Disaccharidase enzymes, including sucrase and lactase, are
expressed by BB membrane and IECs in the small intestine. A
decrease in the surface area of the small intestine is associated
with diminished levels of disaccharidases required for the
breakdown of disaccharides into absorbable monosaccharides
(127). Sucrase, for example, breaks down sucrose into glucose-
fructose, whereas lactase and maltase convert lactose and maltose
into galactose-glucose and two glucose monomers, respectively.
Undigested intact disaccharides can increase the small intestine’s
osmotic pressure gradients, facilitating the secretion of large
quantities of water into the intestinal lumen and leads to
intestinal swelling and rapid gastrointestinal transit into the
colon (128). Disaccharidase deficiency is observed following
various infectious and non-infectious conditions (66, 129, 130).

As shown in Figure 2, numerous studies have linked
disaccharidases deficiency with Giardia infections in both
humans and in mouse models of the human disease (57, 117,
131). Early studies demonstrated that the eradication of the
parasite in human subjects infected with G. duodenalis led to
the disappearance of clinical symptoms and the malabsorption
syndrome as well as restored the villi microstructures (132).
Among disaccharidases, the lactase deficiency is a common
finding in Giardia-infected individuals (133–135), and its
deficiency strongly correlates with the severity of mucosal
damage in the jejunum and may persist as the lactose
intolerance even after the successful chemotherapy (136).

Several mechanisms have been proposed as to how Giardia
infection causes disaccharidase deficiency in the small intestine.
Gillon et al. found a direct correlation between the impaired
expression of disaccharidases and the maximal trophozoite
numbers in the jejunum 2 weeks post-infection and thus
FIGURE 2 | Schematic model of disaccharidase deficiency following infection with Giardia infection in vivo.
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proposed that the parasite’s direct effects on the jejunal BB rather
than IECs immaturity, accounted for impaired levels of
disaccharidase activities in a model of primary G. muris
infection (117). In consistent with these observations, it was also
proposed that the G. duodenalis induction of disaccharidase
deficiency was a direct result of the damage to the small
intestine epithelial surface rather than bacterial overgrowth, bile
aids deconjugation, or immune-mediated host responses (137,
138). However, the IECs immaturity and an increase in the
immature/mature IECs ratio have been proposed as a
mechanism underlying disaccharidase deficiency, since immature
IECs express substantially lower levels of disaccharidases as
compared with mature fully-transformed IECs (76). We have
demonstrated that G. duodenalis infection leads to a facilitated
proliferation of IECs, a shift in the immature/mature IECs ratio,
and an altered positional distribution/migration of IECs along the
crypt-villus axis (CVA) in a primary mouse model of human
infection (76). Reduced levels of ezrin phosphorylation as well
as enhanced phosphorylation levels of villin correlated with
diminished BB enzyme activity at the peak of G. duodenalis
infection (76).

The primary G. duodenalis infection in gerbils was associated
with ephemeral impairments in disaccharidase activity in the
small intestine, whereas the secondary infections in these animals
caused even more severe reductions in the disaccharidase levels
following infection (139). Notably, the inoculum dose on the re-
challenge did not correlate with reduced levels of disaccharidases
activity and the presence of viable trophozoites was not required
for the induction of severe enzyme deficiency during a secondary
G. duodenalis infection (139, 140). The disaccharidase deficiency
was dependent on the mouse strain and was more evident in
those mice susceptible (i.e., C3H/HeN) to G. muris infections as
compared with the resistant C57BL/6 strain (141). In an attempt
to reveal the contribution of host and parasite factors, including
host gender, in the induction of enzyme deficiency during G.
muris infection, it was observed that male and female mice both
had decreased enzyme activities following infection, with males
exhibiting persistent reductions in enzyme activity as compared
with females and a given strain of Giardia was associated with
impaired enzyme activity, whereas as other strains were not (67,
142, 143). The significantly higher trophozoite numbers in males
during a primary infection setting accounted for the gender-
based differences in enzyme activity in these animals (142). The
gender-biased differences in the microbiome compositions
between males and females could potentially explain
discrepancies observed in the levels of enzyme activity
following Giardia infection, as the microbiome is shown to
regulate disaccharidase levels through the activation of T cell
subsets (121). Altogether, these findings highlighted the
contribution of host factors, including host’s genetic
background and gender, in the reduction of BB enzymes
during giardiasis. These observations also emphasized the
potential roles played by immune system during giardiasis,
especially during secondary infections.

Further investigations have clearly found a more direct link
between host’s immune status and disaccharidase deficiency in the
Frontiers in Immunology | www.frontiersin.org 7
small intestine following Giardia infection (66, 144, 145). The BB
damage and the subsequent disaccharidase deficiency did not
develop in the absence of T cells in nude mice following G.
muris infection or in those mice with severe combined
immunodeficiency (SCID), lacking both arms of the adaptive
immunity (66, 145). The adoptive transfer of CD8+ T cells, but
not CD4+ T cells, from infected mice into naïve mice led to
reduced disaccharidase enzymatic activity in recipients, suggesting
that CD8+ T cells are crucial for the induction of BB abnormalities
typically observed during Giardia infection. As such, those mice
deficient in CD8+ T cells (b2M-/-) cleared G. duodenalis infection
similar to their wild-type controls, whereas they did not exhibit
defects in disaccharidase activity (66). Based on these findings, it is
hypothetically feasible to generate protective immunity against
Giardia infections without inducing the BB damage, including
disaccharidase deficiency.
CONCLUSION

The mucosal surface of the intestinal tract represents a major
interface for host-microbe interaction and the main entry route
for many microbial pathogens, including Giardia parasites.
Intestinal epithelial cells are integral components of an
intricate network of immune and non-immune players
responsible for the maintenance of the intestinal homeostasis.
As a major mucosal surface interfacing between the “self” and the
“non-self”, the intestinal epithelium participates in host defense
against a wide range of lumen-dwelling intestinal pathogens by
secreting multiple immune mediators with direct anti-microbial
properties. The Giardia attachment to the intestinal epithelium is
considered an essential step towards the parasite colonization
and the subsequent induction of pathological changes observed
during human giardiasis. However, the mechanisms by which
Giardia parasites intimately associate with the intestinal
epithelium are not fully understood. To this end, a
comprehensive understanding of the crosstalk between the
intestinal epithelial layer and Giardia parasites will provide
insights into the roles contributed by host and parasite factors
in the development of immunopathology during human
infections and will further provide mechanisms to harness
dysregulated immune responses in patients with giardiasis and
may offer novel therapeutic targets for the treatment of
these patients.
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56. HumenMA, Pérez PF, Liévin-Le Moal V. Lipid Raft-Dependent Adhesion of
Giardia Intestinalis Trophozoites to a Cultured Human Enterocyte-Like
Caco-2/TC7 Cell Monolayer Leads to Cytoskeleton-Dependent Functional
Injuries. Cell Microbiol (2011) 13:1683–702. doi: 10.1111/j.1462-
5822.2011.01647.x

57. Buret AG, Mitchell K, Muench DG, Scott KG. Giardia Lamblia Disrupts
Tight Junctional ZO-1 and Increases Permeability in Non-Transformed
Human Small Intestinal Epithelial Monolayers: Effects of Epidermal
Growth Factor. Parasitology (2002) 125:11–9. doi: 10.1017/S0031182
002001853

58. Scott KG, Meddings JB, Kirk DR, Lees-Miller SP, Buret AG. Intestinal
InfectionWith Giardia Spp. Reduces Epithelial Barrier Function in a Myosin
Light Chain Kinase-Dependent Fashion. Gastroenterology (2002) 123:1179–
90. doi: 10.1053/gast.2002.36002

59. Maia-Brigagão C, Morgado-Dıáz JA, De Souza W. Giardia Disrupts the
Arrangement of Tight, Adherens and Desmosomal Junction Proteins of
Intestinal Cells. Parasitol Int (2012) 61:280–7. doi: 10.1016/j.parint.
2011.11.002
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