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Background: Sepsis remains a life-threatening disease with a high mortality

rate that causes millions of deaths worldwide every year. Many studies have

suggested that pyroptosis plays an important role in the development and

progression of sepsis. However, the potential prognostic and diagnostic value

of pyroptosis-related genes in sepsis remains unknown.

Methods: The GSE65682 and GSE95233 datasets were obtained from Gene

Expression Omnibus (GEO) database and pyroptosis-related genes were

obtained from previous literature and Molecular Signature Database.

Univariate cox analysis and least absolute shrinkage and selection operator

(LASSO) cox regression analysis were used to select prognostic differentially

expressed pyroptosis-related genes and constructed a prognostic risk score.

Functional analysis and immune infiltration analysis were used to investigate

the biological characteristics and immune cell enrichment in sepsis patients

who were classified as low- or high-risk based on their risk score. Then the

correlation between pyroptosis-related genes and immune cells was analyzed

and the diagnostic value of the selected genes was assessed using the receiver

operating characteristic curve.

Results: A total of 16 pyroptosis-related differentially expressed genes were

identified between sepsis patients and healthy individuals. A six-gene-based

(GZMB, CHMP7, NLRP1, MYD88, ELANE, and AIM2) prognostic risk score was

developed. Based on the risk score, sepsis patients were divided into low- and

high-risk groups, and patients in the low-risk group had a better prognosis.

Functional enrichment analysis found that NOD-like receptor signaling

pathway, hematopoietic cell lineage, and other immune-related pathways

were enriched. Immune infiltration analysis showed that some innate and

adaptive immune cells were significantly different between low- and high-
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risk groups, and correlation analysis revealed that all six genes were significantly

correlated with neutrophils. Four out of six genes (GZMB, CHMP7, NLRP1, and

AIM2) also have potential diagnostic value in sepsis diagnosis.

Conclusion: We developed and validated a novel prognostic predictive risk

score for sepsis based on six pyroptosis-related genes. Four out of the six genes

also have potential diagnostic value in sepsis diagnosis.
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Introduction

Sepsis is a dysregulation of the host’s response to infection,

which is frequently accompanied by life-threatening organ

dysfunction (1, 2). Despite advances in our understanding of

sepsis, supportive therapies including early fluid resuscitation,

the use of antibiotics, and the provision of supportive care for

organ function have remained the standard of care, and the

mortality rate of sepsis is still high, reaching about 26% (3, 4).

Early diagnosis and intervention those sepsis patients who are

associated with increased mortality risk are critical for a better

prognosis (5). Therefore, it is important to explore diagnostic

and prognostic signatures in sepsis patients.

Pyroptosis is a novel form of proinflammatory and

programmed cell death, which also participates in the response

of the innate immune system (6). With the clarification of the

mechanism of pyroptosis, it is now considered that pyroptosis is

mediated by the activation of the gasdermin-D (GSDMD)

protein via the active caspase-1 (canonical pathway) or the

active caspase-4/5/11 (non-canonical pathway), which causes

cell swelling, rupture, and the release of inflammatory cytokines

such as Interleukin 18 (IL-18) and Interleukin 1 b (IL-1b) (7–9).
Previous studies demonstrated that pyroptosis may play an

important role in the development of sepsis and sepsis-related

organ dysfunction including acute kidney injury (10), acute lung

injury (11), cardiac dysfunction (12), and disseminated

intravascular coagulation (13). Therefore, pyroptosis-related

genes were recognized as promising therapeutic targets of

sepsis (14), and treatment by using non-specific or specific

caspase inhibitors has shown therapeutic effects in

experimental studies (15, 16). However, few studies focused on

the value of the pyroptosis-related gene in predicting the

prognosis and diagnosis of sepsis, and the prognostic and

diagnostic value of pyroptosis-related genes have not been

fully investigated.
02
In this study, we identified molecular subtypes of sepsis

based on pyroptosis-related genes, developed and validated a

novel pyroptosis-related prognostic risk score for sepsis patients,

and investigated the correlation between pyroptosis-related

genes and the immune cells. Based on the prognostic risk

score and clinical characteristics of sepsis patients, a

nomogram was created, and the diagnostic value of

pyroptosis-related genes was also assessed. Our findings may

provide new insight into the role of pyroptosis in the prognosis

and diagnosis of sepsis.
Materials and methods

Microarray data and data process

Two peripheral-blood gene expression datasets (GSE65682

and GSE95233) and their corresponding clinical data were

obtained from Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/gds/). The GSE65682 dataset

and GSE95233 dataset were based on GPL13667 and GPL570

platforms, respectively. The GSE65682 dataset comprised 479

sepsis patients with complete data for survival status within 28

days and 42 healthy controls. Sepsis patients in GSE65682 were

separated into the discovery cohort (n = 263) and validation

cohort (n = 216) for its original investigation and we used these

two cohorts for survival analysis in our study. The GSE95233

dataset comprised 51 sepsis patients and 22 healthy controls.

Only the gene expression data of the blood sample collected at

admission to the intensive care unit was used for analysis in the

present study.

The gene probe was transformed into gene symbol by using

the corresponding annotation profile in each dataset. We used

‘limma’ package in R software to quartile normalized for all gene

expression values and generate normally distributed expression
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values. For multiple same probes, the finial gene expression value

was determined by calculating the average expression value.
Screening pyroptosis-related
differentially expressed genes and
consensus clustering analysis

A total of 60 pyroptosis-related genes were identified from

gene set enrichment analysis (GSEA) website (http://www.gsea-

msigdb.org/gsea/index.jsp) and previous literature (17–21)

(Supplementary Table 1). Differentially expressed genes

(DEGs) between sepsis and healthy samples in GSE65682 were

screened using the ‘limma’ package, with log2|fold change| > 0.5

and adjust P value< 0.05 set as cut-off criteria to screen DEGs

(22, 23). Pyroptosis-related DEGs were identified by intersecting

the DEGs with the pyroptosis-related genes. A protein-protein

interaction (PPI) network analysis was conducted by using the

STRING website (https://cn.string-db.org/) to further explore

the interaction between these pyroptosis-related genes. Based on

the expression value of pyroptosis-related DEGs, we used

“ConsensusClusterPlus” package to identify the molecular

subtype of sepsis. The pam algorithm with euclidean distance

was used, and the samples were iterated 1000 times. The k value

was increased from 2 to 6 to identify the optimal clusters.
Identification of survival-related
pyroptosis-related genes and
construction of a prediction model for
prognosis

Univariate Cox regression analysis was performed in the

discovery cohort to evaluate the prognostic value of each

pyroptosis-related DEGs. To avoid omissions, we set a P-value

lower than 0.2 as a significant cut-off value (24). Pyroptosis-

related DEGs with a significant correlation to survival status

were selected as candidate genes for further investigation. Then,

we used LASSO-Cox regression via ‘glmnet’ packages to screen

the candidate genes and construct the prediction model. The

penalty coefficient l was determined by using the minimal

criteria and candidate genes with a regression coefficient

unequal to zero were included in the final model. The risk

score of each case was calculated according to the following

formula: Risk score  =ok
iCoefficient i �  Gene Expression value of i .

After that, sepsis patients were divided into low- and high-risk

groups based on the median risk score, and the survival time

between the two risk groups was compared using Kaplan-Meier

analysis. Time-dependent receiver operating characteristic

(ROC) curve analysis was also performed by using ‘survival’,
Frontiers in Immunology 03
‘surviminer’, ‘timeROC’ packages to assess the discrimination

ability of the risk score. The risk score was further validated in

the validation cohort and the whole sepsis patients in GSE65682

(test cohort). Furthermore, we compared the 28-day mortality

rate of sepsis patients from the GSE95233 dataset who were

classified as low- or high-risk based on risk score (GSE95233

cohort). We were unable to perform the Kaplan-Meier analysis

because the GSE95233 dataset lacked “time to event” data. A

ROC curve was depicted via ‘pROC’ package.
Independent prognostic evaluation
of the risk score and construction
of nomogram

Clinical information (age and sex) was extracted from

patients in the GSE65682 dataset. These variables and risk

score were analyzed together in univariate and multivariate

Cox regression analyses. The ‘rms’ package was used to create

a nomogram based on independent variables for visualization

and potential clinical use in predicting the prognosis of sepsis

patients. The ROC curve and calibration curve were used to

assess the nomogram’s performance.
Functional enrichment analysis and
immune infiltration analysis

We used ‘limma’ package again and based on the same

criteria (log2|fold change| > 0.5 and adjust P value< 0.05) to

screen DEGs between low- and high-risk groups in the sepsis

patients from GSE65682. To explore the DEGs-related signal

pathways and biological function, “clusterprofiler” package (25)

was applied to perform the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment

analysis. To quantify the relative proportion of immune cell

infiltration, we used the CIBERSORT algorithm (26) with 1000

permutations to calculate 22 types of immune cell composition

for each sample. The composition of these immune cells between

low- and high-risk groups was compared via wilcoxson test. In

addition, we performed a correlation analysis between the

differentially immune cells and the pyroptosis-related genes.
Evaluation of the diagnostic value of the
selected genes

We further investigated whether the selected prognostic

pyroptosis-related genes also have potential value in the

diagnosis of sepsis. The performance of these genes was
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evaluated using the ROC curves in the GSE65682 dataset and

GSE95233 dataset.
Statistical analysis

All statistical analyses were performed using R software (version

4.1.0) and R studio (Version 1.2.5042). The wilcoxon test was used

to compare the gene expression level between sepsis patients and

healthy individuals, and the composition of immune cells between

low- and high-risk groups. Pearson chi-square test was applied to

compare categorical variables. LASSO-Cox regression was used for

candidate genes selection. The Kaplan-Meier method and log-rank

test were used to compare the survival rate between the low- and

high-risk groups. Univariate and multivariate cox regression

analyses were used to assess the independent prognostic variables.

A two-tailed P value<0.05 was considered statistically significant

except for a certain P value was set.
Frontiers in Immunology 04
Results

Identification of pyroptosis-related DEGs
between sepsis patients and healthy
individuals

A total of 3469 DEGs were identified from the GSE65682

dataset between sepsis and healthy samples, including 1571

upregulated genes and 1898 downregulated genes (Figure 1A;

Supplementary Table 2). After intersecting with the pyroptosis-

related genes, 16 pyroptosis-related DEGs were obtained

(Figure 1B). Among them, the expression level of 7 genes

(MYD88, NLRP3, TLR2, CASP5, NLRC4, ELANE, AIM2) were

upregulated, while the expression level of 9 genes (GZMB,

CHMP7, NLRP1, IRF1, PLCG1, SCAF11, AKT1, GSDMB,

IRF2) were downregulated (Figure 1C). The result of the PPI

analysis was presented in Figure 1D. There were 40 interaction

relationships between these pyroptosis-related DEGs.
D

A B

C

FIGURE 1

Identification of differentially expressed pyroptosis-related genes and interaction. (A) Volcano plot of DEGs in the GSE65682 dataset between
sepsis patients and healthy individuals. (B) Venn plot of the DEGs and pyroptosis genes. (C) Heatmap of pyroptosis-related DEGs. (D) Protein-
protein interaction (PPI) network analysis of proteins encoded by the pyroptosis-related DEGs.
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Consensus clustering analysis based on
the pyroptosis-related DEGs

According to the empirical CDF value, k = 2 was found to be

the most acceptable point for the consensus cluster with the

most distinct differences between clusters (Figure 2A;

Supplementary Figure 1). Some of the expression levels of the

pyroptosis-related DEGs were different between the two clusters

(Figures 2B, D), and sepsis patients in cluster 1 had a worse

prognosis than patients in cluster 2 (P = 0.0099) (Figure 2C).
Frontiers in Immunology 05
Development of a prognostic risk score
based on pyroptosis-related DEGs

Based on the univariate cox regression analysis, 10 out of 16

genes (GZMB, CHMP7, NLRP1, IRF1, SCAF11, IRF2, MYD88,

CASP5, ELANE, AIM2) met P< 0.2 and were selected as

prognostic candidate genes (Figure 3A). Of the 10 prognostic

candidate genes, 1 gene (ELANE) was associated with increased

risk with (HR > 1), while the remaining 9 genes (GZMB,

CHMP7, NLRP1, IRF1, SCAF11, IRF2, MYD88, CASP5) were
D

A B

C

FIGURE 2

Consensus clustering analysis based on pyroptosis-related DEGs. (A) Consensus matrix when k=2. (B) Heatmap of pyroptosis-related DEGs
expression and clinical characteristics in the two clusters. (C) Kaplan-Meier curves analysis for the survival of patients between the two clusters.
(D) Box plots of pyroptosis-related DEGs expression level in the two clusters. ns, not significant; *P< 0.05,***P< 0.001, ****P< 0.0001.
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associated with lower risk (HR< 1). By performing LASSO-Cox

regression analysis with the above candidate genes, a subset of

six genes (GZMB, CHMP7, NLPR1, MYD88, ELANE, AIM2)

were determined to develop a prognostic risk score based on the

minimal criteria of l (Figures 3B, C). The calculation of the risk

score for each sample was according to the formula as follows:

Risk score = [(-0.01470407 x GZMB expression value) +

(-0.63970285 x CHMP7 expression value) + (-0.12447921 x

NLRP1 expression value) + (-0.18172740 x MYD88 expression

value) + (0.07255413 x ELANE expression value) + (-0.16451424

x AIM2 expression value)]. After calculating the median risk

score, 263 patients were stratified into two risk groups (131 in
Frontiers in Immunology 06
the low-risk group and 132 in the high-risk group) (Figure 3D).

Patients in the high-risk group had more death (Figure 3E) and

the Kaplan-Meier curve showed that patients in the low-risk

group had a higher survival rate than those in the high-risk

group (P = 0.0011, Figure 3F). Time-dependent ROC analysis of

the risk score revealed that the area under the curve (AUC) was

0.70 (95% CI: 0.60 to 0.80), 0.68 (95% CI: 0.59 to 0.76), and 0.65

(95% CI: 0.57 to 0.73) for 7-, 14-, and 28-day survival,

respectively (Figure 3G). Both univariate and multivariate cox

regression analysis indicated that the risk score was an

independent predictor for prognosis in sepsis patients

(Univariate: HR = 3.78, 95% CI: 2.33 to 6.4, P< 0.001;
D
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FIGURE 3

Construction of pyroptosis-related prognostic risk score and prediction of the prognosis in the discovery cohort. (A) Univariate cox regression
analysis of survival for 16 pyroptosis-related DEGs, and 10 genes with a P< 0.2. (B) LASSO-Cox regression of the 10 candidate genes. (C) Cross-
validation for tuning predictor selection. (D) Distribution of patients based on the risk score. (E) Survival time and status of patients. (F) Kaplan-
Meier curves analysis for the survival of patients in low- and high-risk groups. (G) Time-dependent receiver operating characteristic curve for 7-,
14-, and 28-day survival of sepsis patients. (H) Univariate and multivariate cox regression.
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Multivariate: HR = 3.72, 95% CI: 2.16 to 6.39, P<

0.001; Figure 3H).
Validation of the prognostic risk score

Patients in the validation cohort and the test cohort were

divided into two groups based on the median risk score,

respectively (Figures 4A, E). Patients in the high-risk groups

also occurred more death events (Figures 4B, F) and Kaplan-

Meier curve showed that patients in the low-risk group had

significantly higher survival rates than those in the high-risk

group (In the validation cohort: P = 0.013, Figure 4C; In the test

cohort: P< 0.0001, Figure 4G). AUC of the time-dependent ROC

curve was 0.66 (95% CI: 0.53 to 0.79), 0.63 (95% CI: 0.52 to 0.73),

and 0.64 (95% CI: 0.55 to 0.72) for 7-, 14-, and 28-day survival in

the validation cohort (Figure 4D) and 0.69 (95% CI: 0.61 to

0.77), 0.65 (95% CI: 0.59 to 0.72), and 0.64 (95% CI: 0.59 to 0.70)

for 7-, 14-, and 28-day survival in the test cohort (Figure 4H).

According to the result of univariate and multivariate cox

regression, the risk score also could be an independent

prognostic factor in sepsis patients in these two cohorts

(Supplementary Figure 2). In addition, patients in the low-risk

group also had a higher survival rate than those in the high-risk

group in the GSE95233 cohort (P = 0.047, Figure 4I). The AUC

under the ROC curve was 0.687 (95% CI: 0.531 to

0.842) (Figure 4J).
Construction of a nomogram based
on the risk score and independent
clinical data

In order to potentially clinically used the risk score and

predicted more precisely the prognosis of sepsis patients. We

created a nomogram using the patient’s age (P = 0.029,

Supplementary Figure 2B) and risk score. (Figure 5A). The

AUC of the nomogram for predicting 7-, 14-, and 28-day of

survival were 0.69 (95% CI: 0.61 to 0.77), 0.69 (95% CI: 0.62 to

0.75), and 0.67 (95% CI: 0.61 to 0.72) (Figure 5B). The

calibration curve indicated a good calibration between

predicting probability and actual probability (Figures 5C–E).
Functional enrichment analysis between
different risk groups

A total of 485 DEGs were identified between the low- and

high-risk groups. Among them, 164 genes were downregulated

and 321 genes were upregulated (Supplementary Table 3). On

the basis of these DEGs, KEGG and GO analyses were

performed. The results showed that the DEGs were mainly

correlated with NOD-like receptor signaling pathway,
Frontiers in Immunology 07
hematopoietic cell lineage, and response to the virus

(Figures 6A, B).
Comparison of immune infiltration
between different risk groups

Based on the results of the functional analysis. We further

compared immune infiltration between low- and high-risk

groups by using the CIBERSORT algorithm. In the low-risk

group, neutrophils, B cells memory, and mast cells activated

were significantly higher than that in the high-risk group, while

T cells CD4 naive, macrophages M0, mast cells resting,

eosinophils, macrophages M2, plasma cells, and T cells CD4

memory resting were significantly lower (Figure 7A). The

correlation analysis revealed that pyroptosis-related genes were

significantly associated with many immune cells. All six genes

were correlated with neutrophils, with AIM2 (r = 0.34), MYD88

(r = 0.4), and NLRP1 (r = 0.47) showing a positive correlation,

and CHMP7 (r = -0.2), ELANE (r = -0.22), and GZMB (r = -0.17)

showing a negative correlation (Figure 7B).
Performance of the selected pyroptosis-
related genes in the diagnosis of sepsis

According to the ROC curves, four out of six genes (GZMB,

CHMP7, NLRP1, and AIM2) had good diagnostic value in the

diagnosis of sepsis, with AUC > 0.9 in both the GSE65682 and

GSE95233 datasets (Figures 8A, B). In both datasets, the

expression level of AIM2 , ELANE, and MYD88 were

significantly higher in sepsis patients compared to healthy

individuals, while the expression level of CHMP7, GZMB, and

NLRP1 were significantly lower. (Figures 8C, D).
Discussion

Over the past two decades, many biomarkers have been

identified for sepsis including inflammatory factors, cell

proteins, and miRNA (27). However, early diagnosis and

prediction of the prognosis of sepsis are still difficult due to

the compl i ca t ed e t io logy , ambiguous pa thogen ic

microorganisms, and early non-specific clinical signs of sepsis

patients. Hence, it is still important to explore new biomarkers

and provide new insight. In this study, we first identified 16

pyroptosis-related DEGs between sepsis patients and healthy

individuals. Two pyroptosis-related sepsis clusters were

identified and patients in cluster 1 had a poor prognosis than

patients in cluster 2. To further explore the prognostic value of

these genes, we constructed a prognostic risk score based on six

genes’ signatures via univariate cox regression analysis and

LASSO-Cox regression analysis and validated its performance
frontiersin.org
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FIGURE 4

Validation of the pyroptosis-related prognostic risk score in the validation cohort, the test cohort, and the GSE95233 cohort. (A, E) Distribution
of patients based on the risk score in the validation cohort (A) and the test cohort (E). (B, F) Survival time and status of patients in the validation
cohort (B) and the test cohort (F). (C, G) Kaplan-Meier curves analysis for the survival of patients in low- and high-risk groups in the validation
cohort (C) and the test cohort (G). (D, H) Time-dependent receiver operating characteristic curve for 7-, 14-, and 28-day survival of patients in
the validation cohort (D) and the test cohort (H). (I) The survival of patients in low- and high-risk groups in the GSE95233 cohort. (J) Receiver
operating characteristic curve for 28 days survival of patients in the GSE95233 dataset.
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in external cohorts. After that, a nomogram was constructed

based on the risk score and clinical information for clinical use.

Functional enrichment analysis revealed that the DEGs between

the low- and high-risk groups were related to immune-related

pathways, and immune infiltration analysis revealed a significant

difference in immune status between the two groups. Finally, we
Frontiers in Immunology 09
found that four out of the six genes also have diagnostic value

for sepsis.

Pyroptosis plays a dual role in anti-infection and pro-

inflammatory in sepsis. On the one hand, pyroptosis damaged

the intracellular pathogen’s living environment, reducing

pathogen reproduction, and allowing intracellular pathogens to
D
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FIGURE 5

Construction of nomogram based on the pyroptosis-related prognostic risk score and clinical characteristic. (A) Nomogram for predicting 7-,
14-, and 28-day survival for sepsis patients. (B) Time-dependent receiver operating characteristic curves for 7-, 14-, and 28-day survival of
patients. (C-E) Calibration curve of the nomogram for predicting 7-, 14-, and 28-day survival of patients.
A B

FIGURE 6

Functional enrichment analysis of the DEGs between low- and high-risk groups. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. (B) Gene Ontology (GO) enrichment analysis. BP, Biological process; CC, Cellular component; MF, Molecular function.
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FIGURE 8

The performance of the selected six pyroptosis-related genes in the diagnosis of sepsis. (A, B) Receiver operating characteristic curves in the
GSE65682 dataset (A) and GSE95233 dataset (B). AUC, Area under the curve. (C, D) Box plots of the expression levels of the six genes between
sepsis patients and healthy individuals in the GSE65682 dataset (C) and GSE95233 dataset (D). ***P< 0.001, ****P< 0.0001.
A B

FIGURE 7

Immune infiltration analysis between low- and high-risk groups in the GSE65682 dataset. (A) Box plots of 22 types of immune cell composition
between low- and high-risk groups. *P< 0.05; **P< 0.01; ***P< 0.001; ****P< 0.0001. (B) The correlation between the selected six pyroptosis-
related genes and the immune cells. NS, Not significant, *P< 0.05; **P< 0.01; ***P< 0.001.
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be removed and cleared by immune cells (14). On the other

hand, the inflammatory factors such as IL-18 and IL-1b released

by pyroptosis and the damaged tissue may contribute to cytokine

storm cascade. Moderate pyroptosis may play a protective role

against pathogens, while excessive pyroptosis may cause

uncontrolled cytokine storms (20). Therefore, pyroptosis may

be significantly associated with the prognosis of sepsis. As a

result of the present study, we found that pyroptosis-related

genes could be used to cluster patients with sepsis, and patients

in the different clusters had different prognoses, suggesting that

pyroptosis in patients with sepsis may be different, which may

lead to a different prognosis. Then, we developed a prognostic

risk score with six pyroptosis-related genes, including GZMB,

CHMP7, NLRP1, MYD88, ELANE, and AIM2, and found that it

could predict the prognosis of sepsis patients.

Granzymes B (GZMB) is a member of grazymes family that

was considered to exert cytotoxic effects against pathogen invasion

(28). Recent studies reported that GZMB is involved in the

coagulation cascade, regulating the function of platelets and

endothelial barrier permeability in sepsis (29). The expression

level of GZMB in sepsis may be associated with the underlying

pathogen. An upregulation of GZMB was found in patients with

gram-negative bacterial infection (30), while a downregulation of

GZMB was found in sepsis patients caused by burns and trauma

(31). Charged multivesicular body protein 7 (CHMP7) is a part of

the endosomal sorting complex required for transport III

(ESCRT-III), which take part in the process of nuclear envelope

formation, endosomal sorting, neurodevelopment, and attention

deficit hyperactivity disorder (ADHD) (32). Our results revealed

that the expression of CHMP7 was significantly lower in sepsis

patients and a higher expression of CHMP7 was associated with a

better prognosis. Due to the limited number of studies, the role of

CHMP7 in sepsis remained unclear and our study may provide

some insights for future study. The NLR family pyrin domain

containing 1(NLRP1) and absent in melanoma 2 (AIM2) are

pathogen pattern recognition (PRR) in the intracellular that

respond to the pathogen-associated molecular patterns

(PAMPs) or danger-associated molecular patterns (DAMPs),

and activation caspase-1 mediated canonical pyroptosis

pathway. Previous publications have found a significantly lower

expression of NLRP1 and a significantly higher expression of

AIM2 among sepsis patients (33, 34), besides, an even lower

expression of NLRP1 was found in the non-survivor (33). Our

results were consistent with these findings and we also showed

that a higher expression of AIM2 is associated with a better

prognosis. Further studies are still needed to clarify why the

expression patterns of those genes are different even though

they trigger the same canonical pathway of pyroptosis. Another

PRR that is located in the cellular membrane called Toll-like

receptor (TLR) is also involved in the recognition of PAMPs.

Except for TLRP3, most TLR started its inflammatory response

via a common signaling pathway by recruitment signaling adaptor

protein including myeloid differentiation primary response
Frontiers in Immunology 11
protein (MYD88) (35). An overexpression of MYD88 was

associated with a poor prognosis of neonatal sepsis (36);

However, our study found that a higher expression of MYD88

was associated with a better prognosis. This discrepancy may be

attributed to the difference in the immune system between adults

and neonatal. ELANE encodes neutrophil elastase that is secreted

by neutrophil. Neutrophil elastase could cleave GSDMD and

cause neutrophil death, and the level of ELANE was reported to

be associated with the severity of sepsis (37, 38). The expression

level of ELANE was significantly higher in sepsis patients and

associated with poor prognosis in our study.

Sepsis-induced both innate and adaptive immune

dysfunction. The immune status of sepsis patients may be a

crucial factor affecting the prognosis of sepsis (39, 40). The

functional enrichment and immune infiltration analyses

revealed differences in immune-related pathways and immune

cell composition between the patients in the low-and high-risk

groups, which may explain why the two risk groups have

different prognoses. Besides, these findings also suggested that

pyroptosis plays a role in immune dysfunction. The immune cell

could also occur pyroptosis, which has been considered to play

an essential role in the progression of sepsis. The regulation of

immune cell pyroptosis has been shown to improve the

prognosis of sepsis, with many studies focused on the

regulation of macrophage pyroptosis (41). For example, Luo

et al. found that inhibiting macrophage pyroptosis by Platelet

endothelial cell adhesion molecule-1 (PECAM-1) could improve

the prognosis in a septic murine model (42) and Song et al.

reported Sphingosine-1-phosphate receptor 2 (S1PR2) knockout

could reduce macrophage pyroptosis and improve sepsis

outcome in mice (43). Notably, the correlation analysis

showed that all six pyroptosis-related genes were correlated

with neutrophils, implying that pyroptosis and neutrophils are

closely related. Neutrophils constitute the majority of immune

cells in human peripheral blood and play an important role in

pathogen recognition and clearance. The role of neutrophil

pyroptosis in sepsis remains unclear, and regulation of

neutrophil pyroptosis has recently been assumed to have

potential therapeutic value in sepsis (44, 45). Therefore, we

believe that neutrophil pyroptosis in sepsis could be

considered for further investigation in future studies.

There are several limitations that should be acknowledged in

our study. First, although the prognostic risk score showed good

performance, it still needs to be validated in large prospective

cohort studies. Second, the prognostic factors from the GEO

database were insufficient since other prognostic factors such as

comorbidity diseases and infectious organisms were not

included. Third, the molecular mechanism of the pyroptosis-

related genes interacting with the immune cells needs to be

further explored in the experimental study.

In summary, we developed and validated a novel prognostic

predictive risk score for sepsis based on six pyroptosis-related

genes. The risk score was an independent prognostic factor of
frontiersin.org
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sepsis prognosis. Four out of the six genes also have potential

diagnostic value in sepsis diagnosis. Our findings may provide

new insight into the role of pyroptosis in sepsis and serve as a

foundation for future research.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

SL and WZ designed the study. SL, MX, XC, JP and ZS

collected, analyzed, and interpreted the data. SL wrote the

manuscript, WZ reviewed and revised the manuscript. All

authors contributed to this study and approved the submitted

version of the manuscript.
Funding

This work was supported by grants from the National

Natural Science Foundation of China (82171236 and 81974172

to WZ) and the Key Research and Development Program of

Hunan Province (2021SK2018 to WZ).
Frontiers in Immunology 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1110602/full#supplementary-material

SUPPLEMENTARY FIGURE 1
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