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CD8+ T-cell immunity
orchestrated by iNKT cells
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Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care
Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
CD8+ T cells belonging to the adaptive immune system play key roles in

defending against viral infections and cancers. The current CD8+ T cell-based

immunotherapy has emerged as a superior therapeutic avenue for the eradication

of tumor cells and long-term prevention of their recurrence in hematologic

malignancies. It is believed that an effective adaptive immune response critically

relies on the help of the innate compartment. Invariant natural killer T (iNKT) cells

are innate-like T lymphocytes that have been considered some of the first cells to

respond to infections and can secrete a large amount of diverse cytokines and

chemokines to widely modulate the innate and adaptive immune responders. Like

CD8+ T cells, iNKT cells also play an important role in defense against intracellular

pathogenic infections and cancers. In this review, we will discuss the CD8+ T-cell

immunity contributed by iNKT cells, including iNKT cell-mediated cross-priming

and memory formation, and discuss recent advances in our understanding of the

mechanisms underlying memory CD8+ T-cell differentiation, as well as aging-

induced impairment of T-cell immunity.
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Introduction

CD8+ T lymphocytes function as a key component of the adaptive immune system and

are critical for combating intracellular pathogens and cancer cells (1, 2). Following acute

infection, CD8+ T cells can be typically divided into three phases (3). During the first phase

(priming phase), CD8+ T cells differentiated into heterogenic effector cells with proliferation,

cytokine production, and cytotoxic functions (4, 5). Regarding the potential of memory cell

differentiation, the effector compartments are roughly divided into memory precursor

effector cells (MPECs) and short-lived effector cells (SLECs), which can be distinguished

by the surface markers KLRG1 and CD127 (6, 7). With the pathogens cleared, the second

phase (contraction phase) ensues, and most effector cells during robust contraction undergo

activation-induced cell death. Only 5%–10% of CD8+ T cells survive and enter the memory

phase, with long-term maintenance and self-renewal abilities (8, 9).

Natural killer T (NKT) cells are an innate-like T-cell subset that shares both physical and

functional characteristics with NK cells and T cells (10). Unlike conventional abT
lymphocytes that recognize protein peptides presented by MHC class I or class II, NKT

cells utilize their T-cell receptors (TCRs) to recognize self or foreign lipid antigens presented
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by a non-classical MHC class I-like molecule, CD1d (11, 12).

According to their TCR repertoire, NKT cells are classified into

type I and type II NKT cells. Type I NKT cells, also termed

invariant NKT (iNKT) cells, express invariant TCR a chain (Va14-
Ja18 chain in mice; Va24-Ja18 chain in humans) pairing with a

limited spectrum of b chains (Vb8.2, Vb2, and Vb7 in mice; Vb11 in
humans) (10, 13). iNKT cells are the most broadly studied subset of

NKT cells that can be activated by a-galactosyl ceramide (a-Galcer), a
marine sponge Agelas mauritiana-derived lipid (14), whereas type II

NKT cells are a-Galcer non-reactive cells displaying more

heterogeneous ab chains of TCR. So far, the knowledge of type II

NKT cells is less identified because they lack specific markers. The

well-known role of Type II NKT cells is their suppressive immune

response, especially in tumor immunity (15). In this review, we will

focus on iNKT cells.

The population of iNKT cells is much smaller than that of

conventional T cells. In mice, iNKT cells are 0.5% of lymphocytes

in peripheral blood, 1%–2% in the spleen, and 20%–30% in the liver

(16, 17). However, the number of iNKT cells in humans is

significantly less and is discrepant among individuals. In humans,

NKT cells are only 0.05%–1% of lymphocytes in the liver and 0.01%–

0.1% of lymphocytes in peripheral blood generally, while it is up to 3%

of peripheral blood mononuclear cells in some individuals (18–22).

Even though iNKT cells are such a small sub-population compared

with conventional peptide reactive T cells, several unique properties

are positioned as a crucial regulatory population to influence diverse

immune responses. First, their TCR repertoire is very limited, which

contributes to the number of iNKT cell precursors being reactive to a

certain lipid antigen being much higher than that of certain peptide-

reactive T-cell precursors. Second, iNKT cells are autoreactive by

responding to self-lipids (23). iNKT cells develop and differentiate

into distinct subsets that are analogous to T helper 1 (Th1), Th2, and

Th17 subsets in the thymus and move to peripheral lymphoid and

non-lymphoid organs where they are further activated (24). These

unique properties stimulate iNKT cells to respond to infection and

inflammation through TCR engagement and/or cytokine signals

within hours, with the production of a large amount of diverse

cytokines to regulate innate and adaptive immune responders, such

as neutrophils, NK cells, dendritic cells, macrophages, B cells, and T

cells (25–30).

A large body of work has attempted to elucidate the regulatory

roles of iNKT cells in affecting the response of CD8+ T cells including

their effector functions and fate decisions. Among them, CD4+ T cell-

mediated help is largely studied (31, 32). Like CD4+ T cells, iNKT cells

also play an important role in the impact of CD8+ T-cell immunity. In

this review, we will summarize current knowledge about the roles of

iNKT cells in regulating CD8+ T-cell response, including cross-

priming, effector function, and memory differentiation.
iNKT cell activation and subsets
of iNKT cells

There are different ways to activate iNKT cells. Like conventional T

cells, iNKT cells can be activated via the engagement of TCR with a

glycolipid–CD1d complex. The first lipid antigen, a-Galcer, was
discovered by Kawano and colleagues 25 years ago, which can
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potently activate both mouse and human iNKT cells (14). Thereafter,

most knowledge on the function of iNKT cells came from it or its

synthetic analog KRN7000. Upon activation, iNKT cells can rapidly

produce a large amount of cytokines, such as IFN-g, TNF-a, interleukin
(IL)-2, IL-4, IL-5, IL-3, IL-13, IL-10, IL-9, IL-17, IL-21, and IL-22 (33,

34). Stimulated iNKT cells can also secrete diverse chemokines,

including monocyte chemoattractant protein (MCP)-1, RANTES

(regulated on activation, normal T cell expressed and secreted),

macrophage inflammatory protein (MIP)-1a and MIP-1b, and

eotaxins (35–38). Additionally, microbial lipid antigens also have

been extensively identified, such as a-glucosyl diacylglycerols (aGlc-
DAGs) from Streptococcus pneumoniae and group B Streptococcus,

a-glucuronosylceramides and a-galacturonosylceramides from

Sphingomonas spp., a-galactosyldiacylglycerols (a-GalDAGs) from

Borrelia burgdorferi, and phosphatidylinositol mannosides (PIMs)

from Mycobacterium tuberculosis (39–43). These microbe-derived

glycolipids sustained iNKT cell activation through engagement of

their invariant TCRs (Figure 1). The high-affinity lipids such as a-
glucuronosylceramides elicit iNKT cell production of IFN-g and IL-4

similar to a-Galcer (39). In the absence of pathogen-associated lipid

antigens, or lipid antigens with low affinity, cytokine-driven activation

of iNKT cells is dominant (44, 45). iNKT cells can be activated by

antigen-presenting cells (APCs) that have been stimulated by Toll-like

receptor agonists in the absence of infection, and this activation

requires a lipid–CD1d complex, which suggests that self-lipids can

contribute to iNKT cell activation (44, 46, 47). This activation requires

iNKT cells to receive the signals from the complex of TCR–self-lipid–

CD1d and pro-inflammatory cytokines, such as IL-12, IL-18, IL-23, and

IL-25, released from APCs. Even in the absence of TCR engagement,

iNKT cells can also be activated by responding to pro-inflammatory

cytokines due to their high expression of the cytokine receptors in the

steady state (44). IL-12 is the best-described cytokine mediator of iNKT
FIGURE 1

TCR and/or cytokine-driven iNKT cell activation. There are two
pathways involved in the physiological activation of iNKT cells: 1) for
pathogens expressing affinity lipid antigens, iNKT cell activation is
dominantly driven by TCR signals provided by the complex of high-
affinity microbial lipid antigen presented by CD1d of an APC. It is less
dependent on additional cytokine signals, which are provided by APCs
after stimulation of pattern recognition receptors (PRRs). 2) For
pathogens lacking lipid antigens or with low-affinity lipid antigens,
iNKT cell activation is dominantly driven by cytokine signals. The
engagement of microbial products with PRRs leads to APC production
of pro-inflammatory cytokines such as IL-12. In this case, TCR signals
are commonly still required, which is provided by self-lipid or low-
affinity lipid antigens. TCR, T-cell receptor; iNKT, invariant natural killer
T; APC, antigen-presenting cell.
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cell activation. In some bacterial and viral infections, the stimulated

APCs produce a large amount of IL-12, which is sufficient to activate

iNKT cells, whereas without IL-12 production, APCs cannot activate

iNKT cells, even in the presence of identified microorganism-derived

lipid antigens, which indicates that cytokine signaling plays a crucial

role in iNKT cell activation (48–50). In addition, cytokine-induced

activation results in iNKT cell production of IFN-g but not IL-4 (44,

51), which suggests that IL-12 may induce the activation of a subset of

iNKT cells, or it only provides a weak stimulatory signal due to failure

of proliferation. Furthermore, it is also found that IL-18 signaling is

essential for splenic iNKT cells rather than liver iNKT cells during

cytomegalovirus (CMV) infection (50), which implies that cytokine

signaling may affect not only iNKT cell response but also localization.

To date, mouse iNKT cells have been classified into five effector

subsets on the basis of their specific markers referring to cytokine

production and transcriptional factor signatures. Analogous to Th

cell subsets, they include NKT1, NKT2, NKT17, iNKT10, and

follicular help NKT (iNKTFH). NKT1 cells are enriched in the

spleen and liver and express Th1 cell-associated transcription

factor T-bet. However, unlike Th1 cells, they express both type 1

and type 2 cytokines (52, 53). NKT2 cells are primarily located in the

medullary area of the thymus and T-cell zone of the spleen and

mesenteric lymph nodes as well as the lungs. NKT2 cells can

produce IL-4 and IL-13 and therefore resemble Th2 cells (53).

Similar to Th17 cells, IL-17A-producing iNKT cells are termed

NKT17, which are primarily located in the lymph nodes, skin, and

lungs (53). NKTFH cells are similar to TFH cells that are primarily

located in the spleen and act in germinal centers to promote affinity

maturation of antibodies. iNKT10 cells are IL-10-producing cells

with a regulatory phenotype but without foxp3 expression (54).

Therefore, the regulation role of iNKT cells in the modulation of

other immune cells may be partly associated with diverse cytokine

production by functionally distinct subsets of these cells, and the

different tissue-homing preferences of these iNKT cell subsets may

also ultimately influence local immune responses. Mitchell

Kronenberg and colleagues have recently provided an excellent in-

depth review of these subsets of iNKT cells (24).
Cross-priming of CD8+ T cells
mediated by iNKT cells

Priming of naïve T cells requires three key signals: TCR

engagements, costimulatory signals provided by CD28 and TNF

receptor family, and cytokine signals. Dendritic cells (DCs) are

APCs responsible for providing the three signals of cross-priming

of CD8+ T cells. Cross-priming is a process that permits specialized

DCs to cross-presentation of extracellular antigens to CD8+ T cells

conferring their effector functions to defend against tumors and

intracellular pathogenic infections. This immunogenic cross-

presentation requires the presence of pathogen-derived molecule

patterns and/or CD4+ T help cells, a process termed as “licensing”

of DCs, which prevents unwanted immune responses for the

innocuous antigens or autoantigens (31, 55). Classically, the

licensing is mediated through CD40–CD40L interactions of CD4+

T help cells with DCs, which is the primary mechanism that supports

CD8+ T-cell response by CD4+ T cells (56, 57). However, a growing
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number of studies have suggested that iNKT cells are another subset

for DC licensing (30, 58). Consistent with CD4+ T-cell licensing,

iNKT cell-mediated DC licensing also allows DC functional

maturation in a CD40L-dependent manner (59). After iNKT cells

recognize their cognate self or foreign lipid antigens displayed by

CD1d of APCs, immediate activation of iNKT cells induces transient

upregulation of CD40L on iNKT cells and subsequently activates DCs

via interaction of CD40L with CD40. The cross-talk between iNKT

cells and DCs via CD40–CD40L interaction triggers DC functional

maturation resulting in the upregulation of costimulatory proteins

and IL-12 production, which further activate iNKT cells (60, 61).

Additionally, TNF-a and IFN-g released by DCs and iNKT cells,

respectively, assist in CD40–CD40L-mediated DC licensing. As a

consequence, CD8+ T-cell response is promoted by the licensed DCs

through interaction with the costimulatory proteins and

inflammatory signals (61, 62). CD27 is a member of TNFR family,

with stimulation of CD27 signals via interaction with CD70. Distinct

from CD28, CD27 costimulation signal not only promotes CD8+ T-

cell effector differentiation but also enhances their survival (63, 64).

This survival relies completely on IL-2R signaling and autocrine IL-2

production (63). Additionally, CD4+ T cell-mediated help via CD27

costimulation is also involved in memory CD8+ T-cell development

(65, 66), as well as in preventing CD8+ T cells from tolerance by

reducing PD-1 expression (67). Consistent with CD4+ T cell-

mediated help, the interaction of CD70 and CD27 is also crucial for

iNKT cell-mediated promotion of CD8+ T-cell response including

CD8+ T cell-mediated antitumor immunity (62).

When iNKT cells are primed, they will accumulate in the

marginal zone of the spleen, where they co-interact with CD8a+

conventional DCs (CD8a+cDCs) with a unique expression of

chemokine receptor XCR1, a major type of APCs responsible for

cross-priming (68, 69). After initial activation, CD8+ T cells will

recruit other types of cells to the site of initial antigen recognition to

create their own optimal priming microenvironment. Plasmacytoid

DCs (pDCs) are another subset of DCs playing a critical role in anti-

viral infections via the production of type I interferon (IFN) (70).

Shin-ichiro Fujii and colleagues suggested that iNKT cell-mediated

DC (XCR1+DC) licensing for cross-priming of CD8+ T cells is

through induction of the cross-talk between pDCs and XCR1+ DCs

(71). This cross-talk is important for the cross-presentation of XCR1+

DCs, which is further supported by later studies (72–74). Cell-

mediated licensing requires the same DC to physically interact with

the help cells and CD8+ T cells. Such interactions are usually governed

by chemokines and their receptors. For CD4+ T cell-mediated help,

the DCs licensed by CD4+ T cells express a high level of CCR5 ligands

and recruit CCR5-expressing CD8+ T cells (naïve and effector) and

process cross-priming. Unlike CD4+ T cell-mediated help, iNKT cell-

licensed DCs produce CCL17 to attract CCR4 (CCL17 receptor)

expressing naïve CD8+ T cells (75, 76). Nine years later, they further

extend this notion that iNKT cell-mediated induction of CXCR3 and

CCR4 expression on CD8+ T cells could affect the fate of CD8+ T cells

(77). Consistently, a recent study shows that iNKT cells can promote

the generation of functional CXCR3+CCR4+CD8+ T cells, which

mediate rapid rejection of allogeneic hepatocytes engrafted in the

liver (78). Moreover, on DCs, CD1d molecules are expressed in all

hematopoietic cells, including monocytes, B cells, and T cells (11, 79).

Our study showed that there is a direct interaction between TCRs
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(iNKT cells) and CD1d molecules (CD8+ T cells), which promotes

CD8+ T-cell activation in a DC-independent manner (80).
The formation of memory CD8+ T cell
assisted by iNKT cells

Immunological memory is established after successful priming,

which is a fundamental feature of the acquired immune response.

Clearly, the generation of long-lived memory CD8+ T cells is one of

the primary goals in the development of therapeutic vaccines. The

role of iNKT cells in the promotion of CD8+ T-cell response as well as

memory formation in immunization, pathogenic infection, and

tumor immunity in mice or humans has largely been addressed (81,

82). Considering that a-Galcer provokes strong iNKT cell activity in

both mice and humans, it has long been used as a prototypical

immune adjuvant co-administrated with antigens of interest in the

arrangement of experimental and clinical settings. Some of the most

extensive studies are using inactivated influenza virus as the source of

antigen with co-administration of a-Galcer for iNKT cell activation,

which significantly enhances both cellular and humoral responses

(83). Injection of soluble a-Galcer limited the immediate CD8+ T-cell

response but promoted the survival of long-lived memory

populations, which are capable of protection from the influenza A

virus challenge (84). In another study, it was suggested that a-Galcer
conjugated with the peptides of influenza A virus-associated protein

induces not only robust effector CD8+ T-cell response but also

memory CD8+ T-cell generation (85). The difference in CD8+

T-cell priming/effector function may be attributed to the a-Galcer
and antigen peptides accessing the same APCs to enable licensing

events to occur. A similar protective effect was also shown in a mouse

cytomegalovirus (MCMV) infection model. Injection of soluble
Frontiers in Immunology 04
a-Galcer increased central memory CD8+ T-cell differentiation

(86). In tumor models, studies have shown that a-Galcer-loaded
tumor cells induce a strong antitumor immunity along with memory

cytotoxic T-lymphocyte (CTL) generation in a DC-dependent

manner (87) as well as a recent popular therapeutic avenue, CAR-

iNKT cells, which present superior antitumor effects along with the

generation of antitumor central memory CD8+ T cells (81).

Additionally, some studies also show that activation of autologous

iNKT cells induces strong antitumor effects of CD8+ T cells including

prevention of CD8+ T-cell exhaustion (88–91). Resident memory T

cells are crucial for local immunity and recall response, which is

considered more potential subsets in vaccine designation (92). A

recent study shows that induction of iNKT cell activation can

promote the generation of liver-resident memory CD8+ T cells,

which prevents malaria (93). In naïve mice raised in specific

pathogen-free and germ-free conditions, a small CD8+ T-cell

population displaying memorial phenotypes is named “virtual

memory” CD8+ T cells (CD8+ TVM). Some studies have shown that

IL-4-producing iNKT cells increase the abundance of CD8+ TVM (94–

96). The increased CD8+ TVM cells could provide broad protection

(94). In conclusion, activation of iNKT cells not only can promote

CD8+ T-cell response but also has a high potential in helping memory

T-cell generation.

The knowledge of mechanisms of iNKT cells in help for memory

CD8+ T-cell differentiation is critical for the development of new

vaccination strategies. Unlike a large body of investigations in CD4+ T

cell help for memory CD8+ T-cell formation, the studies about iNKT

cell-mediated help are still limited. There are several studies that have

tried to explore the potential mechanisms of iNKT cells in affecting

memory CD8+ T-cell memory differentiation, which is concluded in

Figure 2. pDCs are well known as an additional subset of DCs

supporting conventional DC cross-priming of CD8+ T cells in a
FIGURE 2

iNKT cell-mediated CD8+ T-cell immunity. I) iNKT cell-mediated cross-priming of CD8+ T cells after responding to a-Galcer: 1) iNKT cells are activated
by a-Galcer without any costimulatory signals. 2) Immature DCs capture antigens and interact with activated iNKT cells to undergo iNKT cell-induced
maturation via CD40–CD40L and inflammatory cytokine IFN-g and TNF-a. Activated iNKT cells can also activate plasmacytoid DC (pDC) via OX40L–
OX40 signaling; thereafter, pDC assists DC maturation and cross-priming of CD8+ T cells in a type I IFN-dependent manner. iNKT cell-mediated DC
licensing promotes DC cross-presentation of antigens to CD8+ T cells via upregulation of costimulatory signals such as CD80/86–CD28, CD70–CD27,
and cytokines IL-12, IFN-g, and TNF-a. II) Without exogenous lipid antigen: iNKT cells can be activated by CD8+ T cells through CD1d–self lipid–TCR
engagement. Activated iNKT cells enhance CD8+ T-cell effector function in an IFN-g dependent manner. III) iNKT cell-mediated CD8+ T-cell fate
decision: 1) iNKT cell-mediated cross-talk of pDC–cDC–CD8+ T cells promotes memory CD8+ T-cell development. 2) iNKT-mediated cDC licensing
SLEC development via CCL17/CCR4 or MPEC development via CXCR3/CXCL9 and IFN-g. iNKT, invariant natural killer T; DCs, dendritic cells; TCR, T-cell
receptor; SLEC, short-lived effector cell; MPEC, memory precursor effector cell.
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type I IFN-dependent manner (72, 74). An early study shows that the

cross-talk between pDC and cDC, which is mediated by activated

iNKT cells, is important for memory CD8+ T-cell formation (71). A

recent study provides evidence that there is a cross-talk among iNKT

cell, DC, and CD8+ T cells, which is involved in CD8+ T-cell memory

programming (77). In line with our findings, the live imaging showed

the presence of direct interaction of iNKT cells and CD8+ T cells at

the early stage (80). A consistent cross-talk among iNKT cell, CD8+ T

cell, and DC is formed at a later stage, and the fate of CD8+ T-cell

memory differentiation is regulated by CXCR3/IFN-g and IL-4/

CCL17/CCR4 axes, which drive CD8+ T-cell differentiation into

MPECs and SLECs, respectively. However, in contrast to this

notion, the CXCR3 has been believed to drive CTL toward effector

fate rather than memory fate (97, 98), whereas CCR4 is associated

with memory T help cell development and phenotypes of memory

CD8+ T cells (99–101). In addition to the above studies, an early study

suggests that activation of iNKT cells enhances memory CD8+ T-cell

homeostatic proliferation depending on IL-4-STAT6 signaling (95);

similar to this study, IL-4-producing Kruppel-like factor (KLF) 13-

positive iNKT cells is critical for thymic memory like CD8+ T-cell

formation (96).

In conclusion, since iNKT cells rapidly produce diverse cytokines

and chemokines and also can interact with APCs and T cells directly,

the roles of iNKT cells in CD8+ T-cell fate regulation are intricate,

which still remains largely unknown, as well as the mechanism.
Age-associated decline of
T-cell immunity

A significant characteristic of the aging process is age-associated

immune dysfunction, which results in an increase in susceptibility to

infection, cancer, and autoimmune diseases. Reduction of the TCR

repertoire, imbalance of naïve and memory compartments, T-cell

senescence, and reduced proliferation and cytokine production are

considered to be the hallmarks of T-cell aging (102, 103). The most

notable changes are in CD8 rather than in CD4 T cells since the latter

maintain their populations through homeostatic proliferation (104).

Clearly, aging-induced alteration in either numbers or functions of

iNKT cells could affect the quality of T-cell response. Several studies

have reported that the number/frequency of NKT cells is increased in

older mice and human beings (105–107). This increase exhibits an

unusual effect of aging, as other types of immune cells decrease or are

constant in number. Additionally, it is also found that the increased

NKT cells originate from newly made cells. In contrast, it has been

reported that Va14 and Va24 NKT cells are decreased in aged mice

and humans, particularly in the liver (108, 109). A recent study also

shows that aging changes the subset composition of iNKT cells, as

well as decreases their proliferative capacity (110). Collectively, the

mechanisms responsible for the increase or decrease of NKT cells in

aged mice remain to be elucidated. In addition to changes in the

number of NKT cells, the cytokine production of NKT cells is also

changed in aged mice. Several data support the notion that NKT cells

tend to differentiate to an immunosuppressive phenotype by an

increase in IL-4 and IL-10 production in older mice and humans

(105, 107, 111). The effects of NKT cells to modulate several aspects of
Frontiers in Immunology 05
T-cell function are different in aged mice. The suppressive functions

of NKT cells on the effector phase of T-cell immunity including

proliferation and cytokine expression were observed in aged mice

(105, 112). As previously described, virtual memory T cells (TVM) are

antigen naïve T cells, which are generated by homeostatic

proliferation. Studies have reported that IL-4 is involved in the

generation of TVM, and the thymic NKT pool is critical for

enlarging frequencies of IL-4-producing cells (94, 95, 113, 114).

Over the course of aging, TVM is accumulated (115). This age-

related accumulation of TVM decreases the primary response of

CD8+ T cells due to the development of senescence in TVM (116).

Therefore, regardless that NKT cells affect TVM generation, the

senescence of TVM in the context of aging should also be

elucidated. Although relatively meager, the current set of studies

supports the notion that aging affects the number and function of

NKT cells, which will provoke a cascade of decreased innate and

adaptive immune responses including CD8+ T-cell response, with the

subsequent appearance of age-related diseases.
The natural characteristics of iNKT
cell help

A notion that should be considered is that the knowledge of iNKT

cell-mediated help for CD8+ T-cell response or memory formation is

largely concluded by a-Galcer, a potent synthetic glycosphingolipid

antigen. It may not represent all functions of iNKT cells. Examples

presented in models of dextran sulfate sodium (DSS)-induced colitis

show that iNKT cells suppress pathogenic NK1.1+CD8+ T cells via

expansion Treg cells using CD1d or Ja18 knockout mice (117).

Foreign lipid antigens are not always present. Indeed, most

microorganisms lack cognate lipid antigens, as well as cancer

and autoimmune diseases (118). The critical roles of iNKT cells in

these contexts have been largely addressed without using the

exogenous a-Galcer treatment. As discussed above, iNKT cells are

activated by self-lipids and/or pro-inflammatory cytokines. A small

number of self-lipid antigens have been explored, which are generally

divided into glycosphingolipids and phospholipids, including

isoglobotrihexosylceramide (iGb3) (119), b-glucosylceramide (b-
GlcCer) (120), a-glycosylceramides (121), lysophosphatidylcholine

(lysoPC) (122), plasmalogen lysophosphatidylethanolamine

(pLysoPE), and lysophosphatidic acid (eLPA) (123). Although these

self-lipids have been identified, their potential functions including

whether they regulate CD8+ T-cell response are still largely unknown.

Recent studies showed that self-lipids presented endoplasmic

reticulum (ER)-stressed APCs can potently activate iNKT cells as

a-Galcer dose (124), while some studies suggested that self-lipid and/

or cytokine-driven stimulation-induced iNKT cell production of IFN-

g but not IL-4 (44, 51, 80). For regulation of CD8+ T-cell response,

Albert Bendelac and colleagues suggested that the response of iGb3

enhances the cross-priming of CD8+ T cell-like a-Galcer dose (75).

Se-Ho Park and colleagues also supported the notion that self-lipid-

activated iNKT cells strengthen the primary response and secondary

response of CTLs, while the potential self-lipid is not explored (80,

125). The optimal roles of iNKT cells in strengthening the antitumor

response of CTLs were also determined (80). Further study to explore
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the physiological role of iNKT cells in regulating CD8+ T-cell

immunity in the context of viral infection and cancers is necessary

for the improvement of immunotherapy in chronic viral infectious

diseases and cancers.
Concluding remarks

iNKT cells are a manipulated subset of T lymphocytes, with

diverse regulatory functions that affect the effector function and fate

of CD8+ T cells, which are attributed to their ability to release a rapid

burst of cytokines and chemokines without the need for clonal

expansion and differentiation, as well as providing indispensable

costimulatory signals for licensing of DCs. Compared with CD4+

Th cells, iNKT cells play non-redundant roles in supporting CD8+ T-

cell optimal priming and secondary response or regulating CD8+ T-

cell fate decision (death or memory development) at their interaction

timing, site, and subsets of iNKT cells. Additionally, significant

changes in numbers and functions are determined in iNKT cells

with age, and limited research has found that iNKT cells impair T-cell

immunity. Further studies involving iNKT cell-mediated CD8+ T-cell

immunity, especially in the modulation of antigen-experienced

memory T-cell development, and antigen naïve TVM formation in

both young and aged conditions need to be widely explored.

Meanwhile, the physiological role of iNKT cells responding to

natural lipid and/or inflammatory cytokines in critical diseases,

such as chronic viral infectious disease and cancers, in which both

CD8+ T and iNKT cells are laying critical roles, still needs to

be elucidated.
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