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In Drosophila, the endoplasmic reticulum-associated protein degradation

(ERAD) is engaged in regulating pleiotropic biological processes, with regard

to retinal degeneration, intestinal homeostasis, and organismal development.

The extent to which it functions in controlling the fly innate immune defense,

however, remains largely unknown. Here, we show that blockade of the ERAD

in fat bodies antagonizes the Toll but not the IMD innate immune defense in

Drosophila. Genetic approaches further suggest a functional role of Me31B in

the ERAD-mediated fly innate immunity. Moreover, we provide evidence that

silence of Xbp1 other than PERK or Atf6 partially rescues the immune defects by

the dysregulated ERAD in fat bodies. Collectively, our study uncovers an

essential function of the ERAD in mediating the Toll innate immune reaction

in Drosophila.
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Introduction

Innate immunity is the first line of the defense for the host against invasion with

foreign pathogenic microorganisms (1, 2). Upon activation of the pattern recognition

receptors (PRRs) through sensing distinct pathogen-associated molecular patterns

(PAMPs), a series of innate immune signaling pathways entail complex downstream
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cascades to evoke the synthesis of multiple pro-inflammatory

cytokines contributing to defeating the invading pathogens (1–

4). Up to date, a large body of pioneering studies have

highlighted the importance of the precise control of these

signals, as defective or over-excessive innate immune response

routinely trigger the occurrences of autoimmune disease, allergic

reaction, and even cancer (5–9). Unraveling the molecular

mechanisms of how innate immune signaling pathways are

dynamically modulated has always been one of the hotspots in

the basic immunology research.

Over the last decades, Drosophila melanogaster has served as

one of the fundamental animal models for studying the

regulatory mechanisms of the host innate immune reaction. In

Drosophila, the innate immune defense is mainly dominated by

two classical nuclear factor-kappa B (NF-kB)-related signaling

pathways, namely the Toll and the immune deficiency (IMD)

pathways, which rely on their productions of various

antimicrobial peptides (AMPs) to function as anti-infective

agents (10, 11). The Drosophila Toll pathway receptors are

normally activated following infection of fungi or some types

of Gram-positive bacteria. This activation further induces signal

transductions involving factors including Myd88, pelle, as well

as tube, and ultimately the phosphorylation of cactus, releasing

the transcription factor Dif/dorsal into the nucleus to direct the

production of a series of AMPs, such as Drosomycin (Drs) and

Metchnikowin (Mtk) (12, 13). The IMD signaling pathway is

typically activated post challenging of most Gram-negative

bacteria or some species of Gram-positive bacteria, controlling

the expression of an alternative set of AMPs such as Attacin

(Att) and Diptericin (Dpt) (12, 14). In particular, both signaling

pathways have been demonstrated to be precisely controlled by a

large body of modulators. For instance, ubiquitination

modification plays a pivotal role in Imd signaling transduction

and leveling off (15–25), thus contributing to its homeostasis.

While ubiquitin-involved cascade in the Toll pathway mediation

was previously thought to be relatively rare, recent findings have

been shedding light on this issue (26, 27).

In an effort to uncover novel regulators of the fly Toll

pathway, we adopted the widely-used drosomycin promoter-

luciferase (Drs-Luc) reporter system and performed an unbiased

screening of various genes in Drosophila S2 cells. Of interest, we

found that silence of Septin-interacting protein 3 (Sip3, also

known as Hrd1) resulted in marked reduction in the Toll

signaling activities (Figure S1A), implying that Sip3 is

potentially a positive contributor of the Toll pathway. Previous

literature has revealed that Sip3 is a multiplexed transmembrane

protein in the endoplasmic reticulum (ER) behaving as an E3

ubiquitin ligase (28). The predominant function of Sip3 is to

catalyze the degradation of misfolded/unfolded proteins in the

ER via specifically accepting ubiquitin from the ER-associated

E2 enzyme and transferring it to the substrate to facilitate its

degradation (known as ER-associated degradation, ERAD) (28,

29). We therefore hypothesized that the Sip3-involved ERAD is
Frontiers in Immunology 02
probably essential for the Toll-mediated innate immune defense

in Drosophila.

In this study, we demonstrate a critical role of the ERAD in

regulating fly innate immunity. We show that blockade of the

ERAD cascade in Drosophila fat bodies results in reduced

inductions of the Toll downstream AMPs upon Gram-positive

bacterial challenging. We further provide a series of evidence that

the ERAD is required for the host resistance against various

pathogenic microbes. Additionally, our proteomic and genetic

results imply that the dysregulated ERAD leads to abnormal

accumulation of Me31B, which may further negatively contribute

to the Toll innate immune defense primarily in an Xbp1-dependent

manner. Overall, our studies shed lights on an essential role of the

ERAD in modulating the Toll innate immunity in Drosophila.
Results

Sip3 is engaged in regulating the Toll
innate immune response in Drosophila

In order to investigate whether the E3 ligase Sip3 is involved

in controlling Drosophila Toll innate immune response in vivo,

we infected Sip3 loss-of-function (LOF) mutant flies (Sip31,

isogenized with w1118) and the controls (w1118 as the wild-type

control and MyD88KG03447 homozygote as the positive control)

with Enterococcus faecalis (E. faecalis), a type of Gram-positive

bacteria that has been widely utilized to activate the Toll

signaling pathway in flies. The reverse transcription plus

quantitative polymerase chain reaction (RT-qPCR) assays were

performed to monitor the transcript levels of the Toll

downstream AMPs, including Drs and Mtk. As illustrated in

Figures 1A, B, loss of Sip3 resulted in marked decreases in the

mRNA levels of both Drs (by ~42%) and Mtk (by ~51%) upon

bacterial challenging, which is consistent with what we found in

S2 cells (Figure S1A). Of note, similar results were obtained

(Figures 1C, D) when flies were challenged with another type of

Gram-positive bacteria Staphylococcus aureus (S. aureus).

To test whether Sip3 modulates Toll signaling through its

potential role in the fat body, which is the dominant immune

organ/tissue of flies during systemic infection, we adopted two

different Sip3 RNAi strains (see Materials and Methods) and

crossed them with c564-gal4 to produce progenies with fat body-

specific down-regulation of Sip3. The tub-gal80ts was utilized in

our experimental system to carry out RNAi of Sip3 at adult stage.

The RNAi efficiency in those Sip3 RNAi progenies (referred as

c564ts>Sip3 RNAi #1 and c564ts>Sip3 RNAi #2) was tested by

Western blot using anti-Sip3 antibody (Figures 1E, F). Further,

these flies were infected with E. faecalis and subjected to RT-

qPCR as described above. As illustrated in Figures 1G, H,

silencing Sip3 reduced the transcript levels of both Drs (by

~23% to 35%) and Mtk (by ~25% to 28%) relative to those in

the controls (c564ts>+). Moreover, ectopic expression of Sip3 in
frontiersin.org
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the fat body reversed the reductions in Drs and Mtk transcript

levels by loss of Sip3 upon infection (Figures 1I, J), implying that

the E3 ligase Sip3 controls the activation of Toll signaling post

bacterial stimuli primarily through its essential role in the fat

body. Notably, we failed to observe any apparent alterations in

the context of pathogen-driven inductions of the Toll

downstream AMPs in the c564>Sip3 flies, compared to those

in the controls (Figures 1I, J).

A detailed understanding of the physiological function of

Sip3 in regulating the host innate immune defense was achieved

by analyzing the fly survival post infection of E. faecalis or S.

aureus, as Sip3 LOF mutants were more susceptible to both
Frontiers in Immunology 03
pathogens than the wild-type flies (Figures 2A–C). Further, we

quantified the amounts of bacteria present in the flies at various

time points post infection (0, 6, and 12h, respectively). Much

higher levels of colony-forming units (CFU) were observed in

the samples of Sip3 LOF mutants (increased on average by more

than 1-fold), relative to those in the control samples (Figures 2D,

E), implying that Sip3 defective flies are less capable of

scavenging pathogenic microorganisms. Similar results were

obtained when we performed infection experiments with E.

faecalis utilizing Sip3 RNAi and the control flies (Figures S2A, B).

In summary, our results indicate that E3 ligase Sip3 plays a

crucial role in the Toll innate immune defense in fruit flies.
A B D
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C

FIGURE 1

E3 ligase Sip3 positively regulates Toll signaling in Drosophila. (A–D) Wild-type (w1118), MyD88KG03447, and Sip31 mutant flies were injected with
E. faecalis (A, B) or S. aureus (C, D) for 12 h, followed by RT-qPCR assays to monitor the expression levels of Drs (A, C) or Mtk (B, D). Each dot
represents one independent replicate (10 flies for each replicate). (E, F) Fat bodies were dissected from flies (10 flies for each sample) including
c564ts>+, c564ts>Sip3 RNAi #1, and c564ts>Sip3 RNAi #2, followed by Western blot assays (E). Tubulin was used as loading control.
Densitometry analysis to quantify the protein level of samples in (E) is shown in (F). (G, H) Flies including c564ts>+, c564ts>Sip3 RNAi #1, and
c564ts>Sip3 RNAi #2 were infected with E. faecalis. 12 h later, flies were harvested for RT-qPCR assays to detect the transcript levels of Drs (G)
or Mtk (H). Each dot represents one independent replicate (10 flies for each replicate). (I) and (J) Flies including c564>+, c564>Sip3 OE, c564>+;
Sip31, and c564>Sip3OE;Sip31 were infected with E. faecalis, followed by RT-qPCR assays as in (G) and (H). Each dot represents one
independent replicate (10 flies for each replicate). In (A–D) and (F, J), data are shown as mean ± standard errors. *p < 0.05; **p < 0.01; ***p <
0.001; ns, not significant.
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Sip3 is dispensable for impacting the IMD
immune reaction in Drosophila

In Drosophila, the humoral immune defense is principally

governed by two signaling pathways, namely the Toll and the

IMD pathways (11). It is thus reasonable to explore whether Sip3 is

as well involved in regulating the fly IMD innate immunity. To this

end, an alternative set of infection experiment was conducted

utilizing the Erwinia carotovora carotovora 15 (Ecc15), a type of

broadly-used Gram-negative bacteria activating the IMD pathway

in flies. Unfortunately, we hardly detected apparent alterations in

the contexts of host survival (Figure 2F) and IMD downstream
Frontiers in Immunology 04
AMP inductions (Figures 2G, H), between those of the Sip3 LOF

mutants and the wild-type controls upon Ecc15 injection.

Collectively, our data endorse the notion that Sip3 is required for

the Toll but not the IMD innate immune reaction in Drosophila.
ERAD is essential for Drosophila Toll
innate immune defense

As mentioned in the Introduction, Sip3 has been

demonstrated to be responsible for the degradation of

misfolded/unfolded proteins accumulated in the ER following
A B

D E F

G H

C

FIGURE 2

Sip3 contributes to the host resistance against injected bacteria. (A–C) Wild-type and Sip3 mutant flies were infected with sterile PBS (A), E.
faecalis(B), or S. aureus (C). Flies were then counted for mortality every day. The numbers of flies analyzed in A, B and C were as follows. In (A),
WT: 104, 105, 105; Sip3: 105, 102, 107. In (B), WT: 107, 106, 103; Sip3: 104, 107, 105. In (C), WT: 105, 107, 103; Sip3: 104, 102, 106. (D, E) Wild-
type and Sip3 mutant flies were infected with E. faecalis (D), or S. aureus (E). At indicated time points (0, 6, and 12 h), flies were subjected to
bacterial burden assays. Each dot represents one independent replicate (10 flies for each replicate). (F–H) Wild-type and Sip3 mutant flies were
infected with Ecc15, followed by survival rate assays (F) or RT-qPCR assays (G, H). In (F), the numbers of flies were as follows. WT: 104, 107, 105;
Sip3: 105, 102, 107. In (G) and (H), each dot represents one independent replicate (10 flies for each replicate). All the data were shown as mean
± standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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a range of stresses (for instance metabolic dysfunction, excessive

accumulation of reactive oxygen species, infection, etc.), a

process known as ERAD (28, 29). We then sought to

investigate whether other components of the ERAD also

participate in affecting fly innate immunity, which is

analogous to Sip3. To do this, we again debited the c564ts

system to obtain flies with fat body-specific RNAi of Hrd3,

Derlin-1, or Herp, which encode pivotal elements of the fly

ERAD cascade (28, 30). As shown in Figures 3A, B, silence of

Hrd3, Derlin-1, or Herp resulted in marked abatements (by

~34% to 58%) in the inductions of Drs and Mtk post bacterial

stimuli. Accordingly, the c564ts>Hrd3 RNAi, c564ts>Derlin-1

RNAi, and c564ts>Herp RNAi flies were more sensitive to the

injected E. faecalis and S. aureus (Figures 3C–E) but not Ecc15

(Figure 3F) with respective to the controls. Taken together, our

results support the notion that the ERAD is responsible for the

Drosophila Toll innate immune defense upon bacterial infection.
Frontiers in Immunology 05
ERAD regulates Toll-mediated innate
immune response largely via Me31B

We next sought to address how the ERAD is implicated in

impacting the innate immune defense in Drosophila. A

proteomic analysis was performed using dissected fat bodies

from c564ts>Sip3 RNAi and the control flies following bacterial

injection (Supplementary Table 1). Whereas over 1500

proteins/peptides were identified in this assay, the majority

(more than 95%) of them overlapped in both samples

(Figure 4A), implying that the E3 ligase Sip3 is of low

potential for silencing or evoking gene expression. The fact

that knockdown of Sip3 in S2 cells certainly leads to a reduction

in Toll signaling activity (Figure S1A) makes us assume that

when Sip3 is silenced, one (or possibly more) pivotal factors of

the Toll pathway is dysregulated. However, we failed to observe

any significant differences when we compared the appearances
A B

D E

F

C

FIGURE 3

ERAD is essential for the fly Toll innate immune defense. (A, B) Flies including 1: c564ts>+, 2: c564ts>Hrd3 RNAi, 3: c564ts>Derlin-1 RNAi, and 4:
c564ts>Herp RNAi were infected with E. faecalis. 12 h later, flies were harvested for RT-qPCR assays to detect the mRNA levels of Drs (A) or Mtk
(B). Each dot represents one independent replicate (10 flies for each replicate). (C–F) Flies including 1: c564ts>+, 2: c564ts>Hrd3 RNAi, 3:
c564ts>Derlin-1 RNAi, and 4: c564ts>Herp RNAi were injected with sterile PBS (C), E. faecalis (D), S. aureus (E), or Ecc15 (F), followed by survival
rate assays. The numbers of flies were as follows. In (C), c564ts>+: 107, 106, 106; c564ts>Hrd3 RNAi: 102, 107, 105; c564ts>Derlin-1 RNAi: 103,
104, 107; c564ts>Herp RNAi: 103, 102, 102. In (D), c564ts>+: 104, 103, 105; c564ts>Hrd3 RNAi: 105, 106, 104; c564ts>Derlin-1 RNAi: 107, 105,
104; c564ts>Herp RNAi: 105, 102, 106. In (E), c564ts>+: 106, 104, 107; c564ts>Hrd3 RNAi: 105, 106, 105; c564ts>Derlin-1 RNAi: 102, 103, 105;
c564ts>Herp RNAi: 104, 104, 102. In (F), c564ts>+: 104, 103, 104; c564ts>Hrd3 RNAi: 104, 105, 107; c564ts>Derlin-1 RNAi: 106, 102, 103;
c564ts>Herp RNAi: 103, 105, 105. All the data were shown as mean ± standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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of protein/peptide of Myd88, pll, tube, cactus, dorsal, and Dif

from both samples (Figure S3A), even though the Toll

downstream effectors (e.g. BaraA2, Drs, Mtk, IM1) were

markedly reduced by Sip3 RNAi (Figure S3B). Thus, we
Frontiers in Immunology 06
reasoned that the Sip3-mediated ERAD likely engage in an

indirect way to modulate the fly Toll pathway.

Since blockade of the ERAD leads to accumulation of

misfolded/unfolded proteins, we thus prioritized higher
A B

D E

F G

I

H

J

C

FIGURE 4

ERAD modulates Toll signaling in an Me31B-dependent manner. (A–C) Proteomic analysis of fat bodies dissected from wild-type (c564ts) and
Sip3 RNAi (c564ts>Sip3 RNAi 2#) flies (100 flies for each sample, 3 biological replicate for each group). In (A), total numbers of peptides/proteins
that were identified by the LC-MS/MS assay. In (B), numbers of peptides that were increased by various indicated folds (>2-fold, 1.5- to 2-fold,
or 1- to 1.5-fold) in the Sip3 RNAi samples relative to the controls. In (C), gene ontology analysis of the increased (>2-fold) peptides/proteins.
(D, E) Flies including 1: c564>+, 2: c564>Sip3 RNAi #2, 3: c564>Tango1 RNAi, 4: c564>Me31B RNAi, 5: c564>Tango1 RNAi;Sip3 RNAi #2, and 6:
c564>Me31B RNAi;Sip3 RNAi #2 were infected with E. faecalis. 12 h later, flies were subjected to RT-qPCR assays. Each dot represents one
independent replicate (10 flies for each replicate). (F–H) Flies with same genotypes as in (D) were injected with sterile PBS (F), E. faecalis (G), or
S. aureus (H), followed by survival rate assays. The numbers of flies were as follows. In (F), c564>+:105, 103, 102; c564>Sip3 RNAi #2: 104, 105,
106; c564>Tango1 RNAi: 105, 106, 105; c564>Me31B RNAi: 102, 103, 105; c564>Tango1 RNAi;Sip3 RNAi #2: 106, 104, 107; c564>Me31B RNAi;
Sip3 RNAi #2: 106, 104, 102. In (G), c564>+:103, 104, 107; c564>Sip3 RNAi #2: 103, 105, 103; c564>Tango1 RNAi: 105, 102, 103; c564>Me31B
RNAi: 106, 106, 106; c564>Tango1 RNAi;Sip3 RNAi #2: 104, 106, 105; c564>Me31B RNAi;Sip3 RNAi #2: 106, 102, 104. In (H), c564>+:101, 105,
104; c564>Sip3 RNAi #2: 104, 104, 104; c564>Tango1 RNAi: 104, 102, 105; c564>Me31B RNAi: 103, 106, 102; c564>Tango1 RNAi;Sip3 RNAi #2:
106, 104, 103; c564>Me31B RNAi;Sip3 RNAi #2: 102, 107, 106. (I) and (J) Flies including 1: c564>+, 2: c564>Hrd3 RNAi, 3: c564>Hrd3 RNAi;
Me31B RNAi, 4: c564>Derlin-1 RNAi, 5: c564>Derlin-1 RNAi;Me31B RNAi, 6: c564>Herp RNAi, and 7: c564>Herp RNAi;Me31B RNAi were
infected with E. faecalis. 12 h later, flies were subjected to RT-qPCR assays. Each dot represents one independent replicate (10 flies for each
replicate). All the data were shown as mean ± standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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existences of proteins/peptides present in the Sip3 RNAi flies, as

we hypothesized that they are probably the key to the

deregulated Toll signaling. Based upon the data from the

proteomic analysis, only around 70 proteins/peptides out of

the ~1500 were significantly increased (by more than 2-fold) by

down-regulation of Sip3 (Figure 4B). Gene ontology (GO)

analysis upon the increased proteins/peptides indicated that

the top 3 categories regarding their molecular functions were

1) catalytical activity, 2) ion binding, and 3) hydrolase

activity (Figure 4C).

We first focused on the top 10 increased proteins/peptides

(including Cbp80, Kat60, Arts, Tango1, Cpb, LManV, Me31B,

Vasa, CG7900, and CG31974). They were barely detectable in

the control samples, whereas they enormously accumulated in

the Sip3 RNAi fat bodies. Among these, Tango1 and Me31B are

the only two candidates considered to be ER-related proteins

(31, 32), allowing us to postulate that they are likely under the

control of the ERAD and play potential roles in the ERAD-

mediated innate immunity of Drosophila. To test this

assumption, we used Tango1 RNAi and Me31B RNAi flies for

genetic manipulations. We observed that the induction of Drs

or Mtk post bacterial infection was not affected by knockdown

of Tango1 or Me31B in fat bodies (Figures 4D, E). However,

double knock down of Me31B and Sip3 restored the induction

of the Toll pathway-regulated AMPs, and this was not observed

in the case of Tango1 and Sip3 double RNAi (Figures 4D, E).

Pioneering studies have demonstrated that Drosophila Me31B

is a putative DEAD-box helicase, which is functionally

involved in protein translation and mRNA decay through a

set of associations with other adaptor proteins (33–37).

Consistently, when we looked at the fly survival post

infection of E. faecalis or S. aureus, we found that the low

resistances to bacterial infection in Sip3 RNAi flies were

profoundly elevated by Me31B RNAi (Figures 4F–H).

Moreover, loss of Me31B also prevented the passive impacts

on bacteria-driven AMP inductions by RNAi ofHrd3, Derlin-1,

or Herp (Figures 4I, J). Taken together, our results indicate that

the ERAD contributes to the Toll innate immune defense to a

large extent in an Me31B-dependent manner in Drosophila.
Silence of Xbp1 partially rescues the
phenotype of Sip3 mutants

Our next aim is to explore how accumulation of Me31B

negatively impacts on Toll signaling. It is reported that the

accumulated misfolded/unfolded proteins on ER can be

recognized by diverse stress sensors, namely inositol

acquisition enzyme-1 (IRE1), double-stranded RNA-activated

protein kinase-like ER kinase (PERK), and/or activated

transcription factor 6 (ATF6), in a manner that leads to the

activation of specific signaling cascades (referred to as unfolded
Frontiers in Immunology 07
protein response to ER, UPRER) (29, 38–40). We thereby sought

to determine whether the stockpiled Me31B by the ERAD

dysfunction is responsible for the activation of UPRER, which

passively impacts on the Toll innate immune pathway. Indeed,

we observed an elevated mRNA occurrence of Xbp1RB

(generated by splicing of Xbp1 mRNA) and PERK in the Sip3

RNAi fat bodies (Figures S4A, B), implicating that activation of

UPRER in the fly fat bodies with the ERAD blockade. Notably, we

detected decreased transcript levels of both Drs and Mtk in the

Sip3 RNAi samples relative to those in the control (Figures S4C,

D). In addition, we obtained flies with fat body-specific RNAi of

Sip3 combined with Xbp1, PERK, or Atf6 RNAi and conducted

infection experiments. As illustrated in Figures 5A, B, down

regulation of PERK or Atf6 was dispensable for affecting the Sip3

RNAi-mediated decrease of Drs or Mtk induction following E.

faecalis infection. However, loss of Xbp1 partially rescued the

reduced transcript levels of Drs and Mtk in the Sip3 RNAi flies

upon challenging. Regarding fly survival, we observed that the

Xbp1 and Sip3 double RNAi flies were more resistant to both E.

faecalis and S. aureus than flies with Sip3 RNAi alone

(Figures 5C–E), implying an epistatic relationship between

Xbp1 and Sip3 in modulating the fly innate immunity.

To obtain additional genetic evidence, we generated Hrd3,

Derlin-1, or Herp RNAi flies together with Xbp1 RNAi. When

these flies were challenged with E. faecalis, we obtained similar

results with respect to the inductions of AMPs (Figures 5F, G).

Further, we subjected flies with fat body specific down regulation

or ectopic expression of Xbp1 to bacterial infection. We observed

remarkable reduction in the inductions of Drs and Mtk in the

c564ts>Xbp1-EGFP flies, although it was not the case in the

c564ts>Xbp1 RNAi samples (Figures 5H, I). Since Xbp1 mainly

functions as a transcription factor governing expression of

downstream targets (29, 41–43), it is probably that one/some

factor(s) of the Toll pathway is/are under the control of Xbp1.

Ultimately, our data point to a working model in which the

accumulated Me31B in the ERAD defective flies largely relies on

the Xbp1-involved axis of the UPRER pathway to antagonize the

Toll innate immune defense (Figure 5J).
Discussion

ER has been well known for its fundamental importance in

the proper post-translational modification and folding of

proteins (44). Nevertheless, it is constantly challenged by

diverse pathological insults and/or physiological defects, which

may lead to ER dysfunction and the accumulation of some

misfolded/unfolded proteins in ER (29, 38–40). As an E3 ligase,

Drosophila Sip3 harbors a critical action in the ubiquitination

and degradation of misfolded/unfolded ER proteins (also known

as ERAD) (28), thus positively contributing to the maintenance

of ER homeostasis to ensure its function. In flies, the Sip3-
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FIGURE 5

ERAD controls the Toll innate immunity partially via the Xbp1 axis of UPRER. (A, B) Flies including 1: c564>+, 2: c564>Sip3 RNAi #2, 3: c564>Xbp1
RNAi;Sip3 RNAi #2, 4: c564>PERK RNAi;Sip3 RNAi #2, and 5: c564>Atf6 RNAi;Sip3 RNAi #2 were infected with E. faecalis, followed by RT-qPCR
assays. Each dot represents one independent replicate (10 flies for each replicate). (C–E) Flies with same genotypes as in (A) were injected with
sterile PBS (C), E. faecalis (D), or S. aureus (E), followed by survival rate assays. The numbers of flies were as follows. In (C), c564>+: 106, 102, 104;
c564>Sip3 RNAi #2: 104, 106, 103; c564>Xbp1 RNAi;Sip3 RNAi #2: 103, 105, 103; c564>PERK RNAi;Sip3 RNAi #2: 103, 105, 106; c564>Atf6 RNAi;
Sip3 RNAi #2: 102, 107, 102. In (D), c564>+: 103, 105, 103; c564>Sip3 RNAi #2: 104, 106, 106; c564>Xbp1 RNAi;Sip3 RNAi #2: 107, 105, 105;
c564>PERK RNAi;Sip3 RNAi #2: 104, 102, 103; c564>Atf6 RNAi;Sip3 RNAi #2: 105, 102, 102. In (E), c564>+: 102, 104, 103; c564>Sip3 RNAi #2: 106,
105, 107; c564>Xbp1 RNAi;Sip3 RNAi #2: 105, 102, 104; c564>PERK RNAi;Sip3 RNAi #2: 106, 106, 101; c564>Atf6 RNAi;Sip3 RNAi #2: 103, 104, 105.
(F) and (G) Flies including 1: c564>+, 2: c564>Hrd3 RNAi #2, 3: c564>Hrd3 RNAi;Xbp1 RNAi, 4: c564>Derlin-1 RNAi, 5: c564>Derlin-1 RNAi;Xbp1
RNAi, 6: c564>Herp RNAi, and 7: c564>Herp RNAi;Xbp1 RNAi were infected with E. faecalis, followed by RT-qPCR assays. Each dot represents one
independent replicate (10 flies for each replicate). (H) and (I) Flies including c564ts>+, c564ts>Xbp1 RNAi, and c564ts>Xbp1-EGFP were infected with
E. faecalis. RT-qPCR assays were performed to monitor the transcript levels of Drs (H) and Mtk (I). Each dot represents one independent replicate
(10 flies for each replicate). (J) Working model by which ERAD modulates Drosophila Toll innate immune response. In the wild-type (WT) fat bodies,
the ERAD remains homeostasis without negatively impacting Toll signaling. When ERAD is blocked (e.g. in the Sip3 LOF fat bodies), accumulated
Me31B activates the Xbp1 axis of the UPRER, thereby antagonizing the Toll pathway. In (A–I), data were shown as mean ± standard errors. *p < 0.05;
**p < 0.01; ***p < 0.001; ns, not significant.
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involved ERAD on retinal degeneration has been well

established (28), yet whether it fulfils a role in innate immune

modulation remains elusive. In the present study, we observed

remarkably reduced induction of the Toll downstream AMPs

and increased mortality in the Sip3 LOF mutants following

bacterial infection. Importantly, ectopic expression of Sip3 in

fat bodies almost fully rescued the Sip3 LOF mutant phenotypes

in our experimental system. Further, we provided a series of

genetic evidence suggesting that the ERAD is involved in

governing the Toll innate immune defense. Our study provides

a potential functional linkage between ER homeostasis and

innate immunity in Drosophila.

How does the ERAD positively contribute to modulating the

Toll innate immune defense? Despite our proteomic analyses

revealing an increase of a series of proteins/peptides that are

primarily involved in several pathways in the Sip3 RNAi fat body

cells, it appears that none of the crucial factors of the canonical

Toll pathway is altered. We therefore shifted our attention

unbiasedly to the most increased proteins/peptides (top10)

and focused on the proteins shown to be localized in ER,

because Sip3 plays a critical role in the ERAD. Between the

two potential candidates (Me31B and Tango1 in our study), we

identified that Me31B is likely the major downstream effector in

the ERAD-mediated Toll innate immune defense, as silencing

Me31B nearly completely reverses the innate immune defects in

the Sip3, Hrd3, Derlin-1, or Herp RNAi flies. Nonetheless, our

current data cannot address whether the accumulated Me31B is

misfolded/unfolded and if so, how the E3 ligase Sip3 promotes

its ubiquitination and degradation. It would be worthwhile in the

future to obtain a Me31B variant that could somehow mimic its

misfolding/unfolding pattern and to inspect its effect in the fly

innate immune regulation.

Several lines of evidence have indicated that ERAD and

UPRER can intersect to control ER homeostasis and relevant

cellular processes (30, 45, 46). Interestingly, in blocking the Xbp1

axis of the UPRER, we observed a striking impact on the ERAD-

involved Toll innate immune reaction, albeit the immune

dysfunction in the ERAD-deficient flies cannot be entirely

rescued by Xbp1 RNAi. One possibility is that the three UPRER

signaling cascades could be somehow reciprocally interrelated

under the current experimental conditions. Nevertheless, in

accordance with our results, we would like to hypothesize that

while the ERAD is blocked, bacterial stimuli possibly lead to

excessive accumulation of unfolded/misfolded Me31B protein in

ER, where it activates the Xbp1-involved UPRER to antagonize

the Toll innate immune defense in flies (Figure 5J). In agreement

with this model, we further observed that ectopic expression of

Xbp1 in fat bodies markedly prevented the pathogen-driven

induction of the Toll downstream AMPs, through a way in
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which we currently have no knowledge. As a reminder, ERAD

has been proposed to be deployed for the clearance of proteins

not only misfolded/unfolded (“quality” control), but also

excessively abundant (“quantity” control) (47). Indeed, several

pioneering studies revealed that Me31B is abundant in variable

types of ribonucleoprotein granules as a putative ATP-

dependent RNA helicase for post-transcriptionally modulating

specific target RNAs (36, 48). It would thus not be surprising if

further studies demonstrate a functional utility of Me31B in

correlating with and governing the fates of some mRNAs

instrumental to the Drosophila Toll pathway.
Materials and methods

Fly strains

All flies were maintained under normal condition (12h light/

12h dark, 65% humidity) with medium (6.65% cornmeal, 7.15%

dextrose, 5% yeast, 0.66% agar, 2.2% nipagin, and 3.4ml/l propionic

acid). The c564-gal4;tub-gal80ts (c564ts) was used to allow gene

manipulation in fat bodies at adult stage. The following strains were

obtained from Bloomington Drosophila Stock Center: Sip31

(#86518), MyD88KG03447 (#14091), Me31B RNAi (#38923),

Tango1 RNAi (#67887), and UAS-Xbp1-EGFP (#60730). The

following strains were purchased from Vienna Drosophila RNAi

Center: Sip3 RNAi 2# (#6870), Hrd3 RNAi (#1161), Derlin-1 RNAi

(#44210),Herp RNAi (#11724), Xbp1 RNAi (#109312), PERK RNAi

(#16427), and Atf6 RNAi (#36504). The Sip3 RNAi 1#

(#TH01506.N) was obtained from Tsinghua Stock Center. The

UAS-Sip3 strain was described previously (49).
RT-qPCR assay

RT-qPCR assays were performed according to protocols

described previously (50). Briefly, whole flies (male) or dissected

fat bodies were homogenized in the RNA-easy Isolation Reagent

(Vazyme) using glass beads. Total RNAwas extracted, followed by

cDNA synthesis using the first-strand cDNA synthesis kit

(Transgen) according to the manufacturer’s instructions.

Quantitative PCR assays were performed using SYBR Green

Mix (Transgen) in triplicate on a Bio-Rad iCycler iQ5 PCR

Thermal Cycler. All results were normalized to the endogenous

reference RpL32, which encodes the ribosomal protein Rp49.

Primers used in RT-qPCR assays were shown as follows.

RpL32-s: GCTAAGCTGTCGCACAAATG; RpL32-as:

GTTCGATCCGTAACCGATGT; Drs-s: CGTGAGAACCTTTT

CCAATATGATG; Drs-as: TCCCAGGACCACCAGCAT; Mtk-s:
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CAGTGCTGGCAGAGCCTCAT; Mtk-as: ATAAATTGGA

CCCGGTCTTG; Dpt-s: TTTGCAGTCCAGGGTCACCA; Dpt-

as: CACGAGCCTCCATTCAGTCCAATCTCGG; CecA1-s:

ACGCGTTGGTCAGCACACT; CecA1-as: ACATTGG

CGGCTTGTTGAG; Xbp1RB-s: CAACCTTGGATCTGCC

GCAGGG; Xbp1RB-as: CGCTCCAGCGCCTGTTTCCAG;

PERK-s : CTGCGCAGTCTTCGGGACGG; PERK-as :

AGCTGCTGAAGGTGCGGCTG.
Infection, survival rate and bacterial
burden assays

Overnight bacterial cultures were harvested and diluted in

sterile 1×PBS at a concentration of OD600 = 1. Indicated male

flies were injected with 4.6nl of diluted bacteria or the same

volume of PBS as controls. After infection, flies were

immediately transferred to fresh vials (30-40 flies per vial)

every day. For survival assays, the numbers of death were

counted every day. Flies that died within 2h (< 5% of the

total) after bacterial challenge were not considered in

the analyses.

For bacterial burden assays, 10 flies were harvested, dipped

in 75% EtOH and subsequently volatilized with EtOH on the fly

pad for several minutes. Flies were then homogenized in 200ml of
sterile 1×PBS. The ground homogenate was serially diluted and

100ml of each diluent was placed on LB agar. Plates were

incubated in a 30°C culture hood overnight before counting

the numbers of bacterial colonies.
Western blot assay

Western blot assays were performed as described

previously (51). In brief, fat bodies were lysed in lysis buffer

(150mM NaCl, 50mM Tris-HCl, pH=7.4, 10% glycerol, 0.5%

TritonX-100, and 1mM PMSF). Lysates were then centrifuged

at 12,000rpm for 10min at 4°C. The supernatant was subjected

to Western blot analysis. The Sip3 polyclonal antibody was

generated by immunizing mice with purified GST-tagged

Sip3527-626. The b-Tubulin antibody was purchased from

Cowin (1:2000, Cat#CW0098M).
Proteomic analysis by LC-MS/MS

Proteomic analysis by LC-MS/MS was performed according

to previously described method (25). Briefly, Fat bodies were
Frontiers in Immunology 10
harvested from indicated flies in three independent biological

replicates, followed by lysate preparation using lysis buffer

(50mM Tris-HCl, pH=7.5, 150mM NaCl, 0.5% TritonX-100,

10% glycerol with 1mM PMSF). Samples were precipitated

overnight with acetone on ice. Proteins/peptides were digested

with Trypsin (Promega) and then desalted (PiecrceTMC-18 Spin

Columns, Thermo) according to manufacturer’s instructions.

Peptides were then subjected to LC-MS/MS assays. Resulting

MS/MS data were processed using Thermo Proteome Discovery

(version 1.4.1.14) and tandem mass spectra were searched

against UniProt-Drosophila database.
Statistical analysis

All statistical analyses were performed by using GraphPad

Prism 8. Data were shown as mean and standard errors.

Statistical significance was determined by using the ANOVA

or Mann-Whitney tests except for survival assays, in which the

Log-Rank test (Kaplan-Meier method) was used for statistical

analysis. The p value of less than 0.05 was considered

statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001; ns,

not significant.
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