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Comprehensive analysis of a
glycolysis and cholesterol
synthesis-related genes
signature for predicting
prognosis and immune
landscape in osteosarcoma

Fangxing Xu1, Jinglong Yan1*, Zhibin Peng2,
Jingsong Liu2 and Zecheng Li1

1Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China, 2Department of Orthopedics, The First Affiliated Hospital of Harbin Medical
University, Harbin, Heilongjiang, China
Background: Glycolysis and cholesterol synthesis are crucial in cancer

metabolic reprogramming. The aim of this study was to identify a glycolysis

and cholesterol synthesis-related genes (GCSRGs) signature for effective

prognostic assessments of osteosarcoma patients.

Methods: Gene expression data and clinical information were obtained from

GSE21257 and TARGET-OS datasets. Consistent clusteringmethod was used to

identify the GCSRGs-related subtypes. Univariate Cox regression and LASSO

Cox regression analyses were used to construct the GCSRGs signature. The

ssGSEAmethodwas used to analyze the differences in immune cells infiltration.

The pRRophetic R package was utilized to assess the drug sensitivity of different

groups. Western blotting, cell viability assay, scratch assay and Transwell assay

were used to perform cytological validation.

Results: Through bioinformatics analysis, patients diagnosed with

osteosarcoma were classified into one of 4 subtypes (quiescent, glycolysis,

cholesterol, and mixed subtypes), which differed significantly in terms of

prognosis and tumor microenvironment. Weighted gene co-expression

network analysis revealed that the modules strongly correlated with

glycolysis and cholesterol synthesis were the midnight blue and the yellow

modules, respectively. Both univariate and LASSO Cox regression analyses

were conducted on screened module genes to identify 5 GCSRGs (RPS28,

MCAM, EN1, TRAM2, and VEGFA) constituting a prognostic signature for

osteosarcoma patients. The signature was an effective prognostic predictor,

independent of clinical characteristics, as verified further via Kaplan-Meier

analysis, ROC curve analysis, univariate and multivariate Cox regression

analysis. Additionally, GCSRGs signature had strong correlation with drug

sensitivity, immune checkpoints and immune cells infiltration. In cytological
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experiments, we selected TRAM2 as a representative gene to validate the

validity of GCSRGs signature, which found that TRAM2 promoted the

progression of osteosarcoma cells. Finally, at the pan-cancer level, TRAM2

had been correlated with overall survival, progression free survival, disease

specific survival, tumor mutational burden, microsatellite instability, immune

checkpoints and immune cells infiltration.

Conclusion: Therefore, we constructed a GCSRGs signature that efficiently

predicted osteosarcoma patient prognosis and guided therapy.
KEYWORDS
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1 Introduction

Osteosarcoma mostly occurs in the metaphysis of long bone

and is the second leading factor of cancer deaths in children and

adolescents (1, 2). Currently, surgical resection, chemotherapy,

radiation therapy, hormone therapy, and small molecule

targeted therapy are the mainstays in osteosarcoma treatment

(3). Although the survival rate of osteosarcoma patients has been

drastically increased with the combined chemotherapy, the 5-

year survival rate is still not ideal for patients with distant

metastasis, even with the use of large doses of adjuvant

chemotherapy combined with radical resection (4). In

addition, the psychological trauma caused by radical resection

and the side effects of chemotherapy drugs are also problems

that need to be addressed in the current treatment of

osteosarcoma. To aid in improving osteosarcoma treatment,

identifying novel therapeutic targets and biomarkers is crucial.

Unlike normal cells, cancerous cells often experience

metabolic reprogramming. Metabolic reprogramming refers to

the modifications to the tumor cells metabolic mode in the

starvation state that allow adaption to the nutritional

microenvironment; that is, to accommodate the requirements

of their own quick growth through sufficient nutrients intake,

metabolic reprogramming is a vital hallmark of malignant

tumors (5). Glycolysis produces a small amount of energy

during the entire glucose metabolism process. Normal cells

mainly obtain energy through aerobic respiration. However,

cancerous cells deviate from normal cells in various aspects.

Even in an aerobic condition, cancerous cells favor the

consumption of extra glucose for aerobic glycolysis in order

for lactate production, a phenomenon referred to as Warburg

effect (6). Calcium-binding protein A10 can accelerate glycolysis

by mediating the AKT/mTOR signaling pathway in

osteosarcoma, thereby enhancing malignancy of osteosarcoma

cells (7). In addition, the novel lncRNA HCG18 enhances
02
aerobic glycolysis in osteosarcoma cells via miR-365a-3p/

PGK1 signaling pathway regulation, which accelerating the

development of osteosarcoma cells (8). HIF-1a oncogene is

present in numerous malignancies, including ovarian, breast,

and bladder cancers, and can induce the glycolytic pathway in

malignant tumors (9–11).

In recent years, the reprogramming of lipid synthesis has

been considered to be another significant metabolic abnormality

required for tumor growth, in which changes within the

cholesterol biosynthetic pathway are vital (12). Cholesterol

accumulation within cancerous cells can influence cell

pro l i f era t ion and metas tas i s , and enhance tumor

microenvironmental adaptability, hence reinforcing tumor

incidence and progression (13). Studies have demonstrated

that several genes involved in cholesterol production are

overac t ive in mal ignant t i s sue , such as squa lene

monooxygenase and the cholesterol biosynthesis rate-limiting

enzyme 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

(HMGCR), which is upregulated within several types of

malignancies, comprising glioma and prostate cancer (14, 15).

HMGCR overexpression enhances cancer progression and

metastasis, while its inhibition can suppress tumors; therefore,

HMGCR has been used to treat solid cancers, hematological

cancers, and tumors with drug resistance (16–18). In addition,

the copy number of the SQLE locus encoding squalene

monooxygenase is also increased in a variety of tumors. This

copy number increase has been related to pancreatic cancer

radiation tolerance and the development of several cancers

within breast, prostate and colorectal cancer, or a poor patient

prognosis (19, 20). However, similar to gene heterogeneity,

tumor cell metabolism is also highly heterogeneous. In other

words, no single universal change occurs within cancer

metabolism. Tumorous metabolic changes are mainly

characterized by changes in lipid and glucose metabolism.

Recently, relevant research has discovered that changes in the
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combined effects on lipid and glucose metabolism have become

vital in pancreatic cancer, breast cancer, and skin malignant

melanoma (21–23). High-throughput sequencing technologies

are developing rapidly, and researchers possess the better

understanding of pathogenic genes for various diseases, which

is helpful for the discovery of novel biomarkers and pathogenic

mechanisms (24). In recent years, differentially expressed genes

have been screened through bioinformatics analysis to construct

a prognostic signature for predicting osteosarcoma patient

prognosis. For example, Zheng et al. constructed a prognostic

signature and a nomogram relied on characteristics and clinical

variables, which are used to screen out the tumor suppressor

gene FHIT in osteosarcoma (25). However, to our knowledge, no

gene signature related to glycolysis and cholesterol synthesis has

been established to predict osteosarcoma patient prognosis.

During this research, relying on glycolysis and cholesterol

synthesis-related genes (GCSRGs), osteosarcoma patients were

categorized into one of 4 subtypes, and the differences in

patient prognosis and tumor microenvironment between

subtypes were also studied. A GCSRGs signature and an

efficient nomogram were constructed by screening gene

modules and their core genes for associations with glycolysis

and cholesterol synthesis. In addition, the relationship of

GCSRGs signature with drug sensitivity, immune infiltration

and immune checkpoints was investigated, thereby expanding

the genes signature’s prognostic values for patients with

osteosarcoma. Finally, we performed in vitro functional

experiments and pan-cancer analysis to validate the genes of

interest among the GCSRGs.
2 Materials and methods

2.1 Data download

GSE21257 dataset (n=53) was downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/) and the Therapeutically Applicable Research to

Generate Effective Treatment-Osteosarcoma (TARGET-OS)

dataset (n=95) was obtained from the TARGET database

(https://ocg.cancer.gov/programs/target). Both osteosarcoma

datasets contain RNA sequences and clinical information. To

obtain the total cohort dataset for subsequent mining, we

combined TARGET-OS normalized by log2 of the transcript

count per million (TPM) and GSE21257 with the batch effect

removed by the ComBat function. Supplementary Table 1

illustrates all patients’ clinical information in the total cohort.

GCSRGs were obtained from the “REACTOME_GLYCOLYSIS”

(n=72) and “REACTOME_CHOLESTEROL_BIOSYNTHESIS”

(n=25) datasets in the Molecular Signatures Database (MSigDB)

(https://www.gsea-msigdb.org/gsea/msigdb/). In addition,

we downloaded the original pan-cancer mRNA matrix data,

clinical data and copy number data from the University
Frontiers in Immunology 03
of California, Santa Cruz (UCSC) database (https://

xenabrowser.net/).
2.2 Identification of the GCSRGs-related
subtypes

Based on the expression of GCSRGs, the total cohort

excluded metabolic genes with a standard deviation ≤ 0.5 and

then used the genes as the main objects to perform consistent

clustering using ConsensusClusterPlus R package to remove co-

expressed metabolic genes and obtain co-expressed GCSRGs. The

median expression level classified the metabolic subtypes, which

were the quiescent type (glycolysis ≤ 0, cholesterol synthesis ≤ 0),

glycolysis type (glycolysis > 0, cholesterol synthesis ≤ 0),

cholesterol type (glycolysis > 0, cholesterol synthesis > 0), and

mixed type (glycolysis > 0, cholesterol synthesis > 0). The prcomp

function was used for principal component analysis (PCA)

between subtypes, and survival R package and survminer R

package analyzed survival differences between subtypes. The

ESTIMATE algorithm calculated tumor purity, immune,

stromal, and ESTIMATE scores in different subtypes.
2.3 Construction of weighted gene co-
expression network and enrichment
analysis

Weighted gene co-expression network analysis (WGCNA)

employs gene expression data for scale-free network construction.

For the top 25% of expression profiles in terms of variation

coefficients, we built a network using the WGCNA R package.

The modules strongly correlated with glycolysis and cholesterol

subtype were screened, and the genes in the modules were pooled

as key metabolic genes. Enrichment analysis of GO and KEGG

pathway was conducted using clusterProfiler package.
2.4 Establishment and validation of a
GCSRGs prognostic signature

To screen prognosis-related genes, in a random manner we

categorized the total cohort into training and verification cohort,

and utilized survival R package to do univariate Cox regression

analysis upon the key modules’ genes in training cohort. In order

to further minimize the dimensionality and build the risk

signature, least absolute shrinkage and selection operator

(LASSO) Cox regression analysis has been conducted via

glmnet R package and survminer R package, and patients’ risk

scores were then determined. The training, verification, and total

cohorts were categorized into high- and low-risk groups based

on risk score’s median value. Survminer R package and
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survivalROC R package generated survival and receiver

operating characteristic (ROC) curves for the high- and low-

risk groups. Area under curve (AUC) determined the signature’s

predictive ability. Once AUC > 0.6, signature became reliably

predictive. We then performed univariate and multivariate Cox

regression analyses to see if the risk score was an independent

prognostic factor for osteosarcoma patients.
2.5 Nomogram construction and
validation

The rms R package plotted the clinical nomogram.

Performance of nomogram in predicting overall survival (OS)

of osteosarcoma patients was evaluated using independent risk

factors such as sex, age, metastatic status, and risk score. The

calibration curve then proved the nomogram’s efficacy.
2.6 Analysis of immune landscape and
drug sensitivity

The single-sample gene set enrichment analysis (ssGSEA)

method analyzed immune cells infiltration differences across the

high- and low-risk groups. Differential expression analysis of

immune checkpoints was used to assess the difference in the

efficacy of immunotherapy. The pRRophetic R package was

utilized to assess the drug sensitivity of different groups.
2.7 Pan-cancer analysis of TRAM2

To perform additional research into the role of TRAM2 in

tumors, TRAM2 differential expression was assessed in pan-

cancer, and we performed a correlation analysis of TRAM2 with

patient prognosis, tumor mutational burden (TMB), and

microsatellite instability (MSI). Furthermore, we performed a

co-expression analysis of TRMA2 with immune cells and

immune checkpoints.
2.8 Cell culture and transfection

All cell lines had been obtained from Procell (Wuhan,

China). These cell lines were cultivated into DMEM/F12

medium containing 10% fetal bovine serum. TRAM2 siRNA

and the corresponding si-control had been bought from

GenePharma (Shanghai, China). Lipofectamine 3000 reagent

(Invitrogen, California, USA) transfected cells as per the

guidelines. After 48h of transfection, cells were utilized for

protein quantification. The following sequences were utilized for
Frontiers in Immunology 04
the targeting of TRAM2: 5’-GCGUCCUCAUCGGGCUUAUTT-

3’ (si-TRAM2-1); 5’-CCUCGGUGAUUUGGUGCUUTT-3’ (si-

TRAM2-2); 5’-GCACGCACUUCCUGAGCUATT-3’ (si-

TRAM2-3).
2.9 Western blotting

In a nutshell, the protein samples were first isolated using

SDS-PAGE. Later, proteins on the gel were moved to PVDF

membrane and blocked. Primary antibodies were incubated

overnight at a temperature of 4 °C, including anti-TRAM2

(Proteintech, 13311-1-AP, Wuhan, China), anti-E-cadherin

(Proteintech, 20874-1-AP), anti-N-cadherin (Proteintech,

22018-1-AP), anti-Vimentin (Proteintech, 10366-1-AP), and

anti-GAPDH (Zhongshanjinqiao, TA-08, Beijing, China). On

day 2, the membrane underwent secondary antibody incubation.

Next, enhanced chemiluminescence (ECL) color developing

solution was utilized to develop the membrane after it had

been rinsed with TBST three times.
2.10 Cell viability assay

The transfected cells have been cultured within 96-well

plates at 5000 cells/well. Prior to Detection, Cell Counting Kit

8 (CCK8) reagent (Dojindo, Kumamoto, Japan) was added and

incubated at 37 °C. A microplate reader took 450 nm absorbance

readings once every 24 h up until 72 h.

In order to evaluate the osteosarcoma cells’ capabilities for

colony formation, a plate cloning assay was carried out. The

transfected cells were evenly seeded in 6-well plate, and

then cultured for 12 days with periodic replacements of the

medium. Fixation and staining were accomplished with

paraformaldehyde and crystal violet staining solution. A digital

camera was used to snap photographs of the cells and

recorded data.
2.11 Migration and invasion assays

To determine if osteosarcoma cells underwent migratory

changes, a scratch assay was performed. 6-well plate was seeded

with the transfected cells. After reaching 80% - 90% cell density,

the cells were scratched using a pipettor tip oriented

perpendicular to the plate’s base. Results were photographed

and recorded at 0 h and 48 h.

The invasive potential of osteosarcoma cells was measured

using the Transwell assay. After pre-plating the Transwell

chamber with Matrigel, the transfected cells were resuspended

in fresh basal medium and added to the upper chamber. In the
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lower chamber, we put in full medium. The upper chamber’s

cells were completely removed following 48 h. The remaining

cells were stained after fixation, and photographed under

a microscope.
2.12 Statistical analysis

GraphPad Prism 7 and R (version 3.6.3) were utilized

throughout this investigation for all statistical testing and

analysis. We used ClusterProfiler R package for consistent
Frontiers in Immunology 05
clustering. The Kaplan-Meier (KM) method was utilized for

the survival analysis, and survival R package performed the

log-rank test. In order to conduct LASSO analysis with

cross-validation, the glmnet R package was used. The

survminer R package and survival R package were used to

create the ROC curve. Features selection was performed via

univariate and multivariate Cox regression analyses.

Wilcoxon test compared the continuous variables .

Spearman correlation test was used for correlation

analysis. P < 0.05 was considered statistically significant

unless otherwise stated.
B

C D
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A

FIGURE 1

Classification of osteosarcoma patients based on expression of GCSRGs. (A) Heatmap showing consensus clustering solution for GCSRGs in
osteosarcoma sample (B) Scatter plot depicting classification of samples based on GCSRGs expression. (C) Heatmap showing expression levels
of co-expressed GCSRGs across each subgroup. (D) PCA showing significant differentiation between different subgroups of patients. (E) Kaplan-
Meier survival curves of patients in the different subgroups. Log-rank test P values are displayed. (F–I) Violin plots showing the immune score,
stromal score, ESTIMATE score and tumor purity across different metabolic subgroups. ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1096009
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.1096009
3 Results

3.1 Identification of the 4 subtypes of
osteosarcoma patients by analysis of the
expression of GCSRGs

The RNA-seq data and clinical information in the

GSE21257 dataset and the TARGET-OS dataset were

integrated after the batch effect was removed. The total

cohort was obtained for subsequent analysis. Based on the

gene sets of GCSRGs, metabolic-related genes with a standard

deviation ≤0.5 were excluded from the total cohort. Then,
Frontiers in Immunology 06
consistent clustering was performed using the genes as the

main body, thereby removing the co-expressed mixed

metabolic genes C2 and C3, and the respective co-expressed

metabolic genes were obtained including co-expressed

glycolysis genes C1 and co-expressed cholesterol genes C4

(Figure 1A). We classified the total cohort into 4 metabolic

subtypes based on the median expression levels of GCSRGs.

Glycolysis ≤ 0 and cholesterol synthesis ≤ 0 was the quiescent

subtype, glycolysis > 0 and cholesterol synthesis ≤ 0 was the

glycolysis subtype, glycolysis ≤ 0 and cholesterol synthesis > 0

was the cholesterol subtype, and glycolysis > 0 and cholesterol

synthesis > 0 was the mixed subtype (Figure 1B). Figure 1C
B

C D

E

A

FIGURE 2

WGCNA to identify similar genes networks of GCSRGs. (A) The scale independence (left) and mean connectivity (right) of WGCNA analysis.(B)
Color coding of co-expression network modules for genes. (C) Heatmap showing the correlation of gene modules and glycolysis-cholesterol
synthesis. (D) Scatter plot displaying the correlation between module membership and gene significance in midnight blue network. (E) Scatter
plot displaying the correlation between module membership and gene significance in yellow network.
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illustrates the expression levels of GCSRGs in the 4 subtypes.

According to the PCA of the 4 subtypes, the principal

components of the 4 subtypes had a good degree of

discrimination (Figure 1D). Further analysis of the

differences in the prognosis between subtypes revealed the

significant differences in the prognosis of different subtypes.

Among them, prognosis for the glycolysis subtype was

significantly better than the cholesterol subtype, and the

quiescent subtype’s prognosis was significantly better than

the mixed subtype, and the mixed subtype’s prognosis was

similar to the cholesterol subtype (Figure 1E). In addition, to

further analyze the differences in tumor microenvironment

between different subtypes, ESTIMATE algorithm ranked the

immune, stromal, and ESTIMATE scores as quiescent subtype

> glycolysis subtype > cholesterol subtype > mixed subtype,

but the reverse trend was noted for the tumor purity

(Figures 1F–I).
3.2 GCSRGs co-expression network and
biological activity

WGCNA was used to discover additional GCSRGs for

further studies. The gene network achieved both high

internal connectivity and gene similarity when the soft

threshold was 4 (Figure 2A). Using hybrid dynamic shear

tree, with a minimum of 25 genes per gene network module,

16 networks were found to be different from one another and

were assigned distinct colors to represent them (Figure 2B).

Then, the modules with strong correlations with glycolysis and

cholesterol synthesis were screened, namely, the midnight blue

and the yellow modules (Figure 2C). Among them, the

glycolysis-related midnight blue module (P = 0.0044)

contained 35 genes, and the cholesterol synthesis-related

yellow module (P < 0.001) contained 367 genes. Figures 2D,

E illustrates gene significance and module membership of the 2

modules. A robust positive relationship was identified between

these variables’ values.

A total of 402 genes within the midnight blue and yellow

modules were pooled and used as key metabolic genes. The

ClusterProfiler R package was conducted for GO and KEGG

pathway enrichment analysis. The bubble plots showed the top

10 in GO-BP, GO-CC, and GO-MF and the top 7 in KEGG. GO

functional annotation indicated that GCSRGs were mainly

associated with hypoxia response, decreased oxygen response,

focal adhesion, cell−substrate junction, ribosome, ribosome

structural constituent, and monosaccharide binding

(Figure 3A). KEGG functional annotation showed that

GCSRGs were mainly associated with pathways including

r i bo some , HIF - 1 s i gna l i ng pa thway , g l y co l y s i s /

gluconeogenesis, and central carbon metabolism in

cancer (Figure 3B).
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3.3 Identification and construction of the
GCSRGs signature to predict OS in
osteosarcoma patients

The total cohort was categorized in a random manner into

training and verification cohorts. Univariate Cox analysis was

carried out on key metabolic genes (genes in the midnight blue

and yellow modules) in the training cohort to screen prognosis-

related genes via the survival R package, and 12 genes were

related to patient prognosis (P < 0.05) (Figure 4A). As

Figures 4B–G indicates, the Kaplan-Meier (KM) survival

curves of the top 6 genes from low to high in terms of the P

value were listed. Then, LASSO Cox regression analysis further

reduced dimensionality and constructed genes signature. In the

Cox regression based on the LASSO penalty, as log l changed,

the corresponding coefficient of the determined gene also

decreased to 0, and in the cross-validation, 12 genes reached

the partial likelihood estimation bias minimum value

(Figures 4H, I). 5 genes were identified as independent

predictors by LASSO Cox regression analysis in training

cohort, namely, RPS28, MCAM, EN1, TRAM2, and VEGFA.

We determined the risk scores via following formula: Risk

score = RPS28 × 0.513 + MCAM × 0.701 - EN1 × 0.718 +

TRAM2 × 0.575 + VEGFA × 0.467. The training, verification,

and total cohorts were all categorized into high- and low-risk

groups based on their median risk score. In each of the three

cohorts, it was discovered that the low-risk group’s survival

probability was significantly greater than the other group (P <

0.005) (Figures 5A–C). Then, ROC curve analysis evaluated

whether the GCSRGs signature is an efficient prognosis predictor

of osteosarcoma patients. The 1-, 3-, and 5-year AUC predicted by

the genes signature in training cohort were, 0.873, 0.889, and 0.856,

respectively; in verification cohort, were 0.673, 0.810, and 0.823,

respectively; in total cohort, were 0.747, 0.835, and 0.820,

respectively (Figures 5D–F). In the low-risk group, the expression

of 4 high-risk genes (RPS28, MCAM, TRAM2, and VEGFA) was

low,while the low-risk gene EN1 expressionwas high (Figures 5G–

I). Finally, we compared the survival status between the two groups

in the three cohorts (Figures 5J–L) and plotted an expression

heatmap of the risk genes (Figures 5M–O).
3.4 Independent prognostic analysis of
the GCSRGs signature

To determine if the risk score and the other clinical

characteristics are independent prognostic factors for

osteosarcoma patients, univariate and multivariate Cox

regression analyses were conducted. Univariate Cox regression

analysis revealed the risk score (P = 0.019) and the clinical

pathological parameters of metastasis (P = 0.001) were

independent prognostic factors for osteosarcoma patients
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(Figure 6A), and multivariate Cox regression analysis showed

the same results (Figure 6B). Furthermore, we developed a

prognostic nomogram for estimating the osteosarcoma

patients’ survival likelihood (Figure 6C). This prognostic

nomogram could systematically anticipate the 1-, 3-, and 5-

year OS of osteosarcoma patients. The calibration curve showed

that actual results were consistent with predicted

results (Figure 6D).
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3.5 Immune landscape and drug
sensitivity analysis of the GCSRGs
signature

For confirming if the GCSRGs signature was associated

with tumor immunity, we used the ssGSEA method for

evaluating differences in immune cells infiltration between

the two groups. As Figure 7A indicates, the expression of
B

A

FIGURE 3

Functional enrichment analysis of genes in the screened modules. (A) The results of GO functional enrichment in GCSRGs. (B) The results of
KEGG pathways enrichment in GCSRGs.
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eosinophils, macrophages, and natural killer cells had

significant difference between the two groups. Among

them, within the high-risk group, eosinophils proportion

was significantly increased, while the opposite results

occur red in macrophages and na tura l k i l l e r ce l l

proport ions . Addit ional ly , as Figure 7B indicates ,

significant differences were found in immune checkpoints

expression, including LGALS9, HAVCR2, LAIR1, TNFSF4,
Frontiers in Immunology 09
PDCD1LG2, TNFSF15, ICOS, CD200R1, TNFSF14, and

BTLA between the two groups, with higher expression

within the low-risk group than the other, pointing to the

fact that there may be limited differences in the efficacy of

immunotherapy. Drug sensitivity analysis indicated that 11

drugs were sensitive to patients in the high-risk group

(Figure 7C), and 13 drugs were sensitive to patients in the

low-risk group (Figure S1).
B C D

E F G
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FIGURE 4

Construction of a GCSRGs prognostic signature in training cohort. (A) Forest plot of univariate cox regression analysis of the survival-related 12
differentially expressed genes. (B–G) Kaplan-Meier survival curves of patients with differential expression of prognosis-related genes. (H)
Obtainment of the optimal l value. (I) The LASSO Cox analysis identified 5 genes associated with prognosis.
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3.6 Functional verification of TRAM2 in
vitro

We searched the relevant literature of the aforementioned

GCSRGs and found that TRAM2 was crucial in some

malignancies. However, studies on the mechanism of TRAM2

action in osteosarcoma are scarce. Therefore, TRAM2 is

expected to emerge as a promising new biological target in

osteosarcoma treatment. Our study first revealed that TRAM2

expression in osteosarcoma cell lines was higher than the human

osteoblast cell line according to Western blot results (Figure 8A).

Then, si-TRAM2 was transferred to HOS and U2OS cell lines to
Frontiers in Immunology 10
discover the effect of TRAM2 on the osteosarcoma cell

progression. Western blot results confirmed transfection

efficiency (Figure 8B), and si-TRAM2-2 was chosen for further

experiments. Based on CCK8 experiment results, TRAM2

downregulation inhibited HOS and U2OS cell lines viability

(Figure 8C). According to the results of the plate cloning assay,

downregulation of TRAM2 expression inhibited the colony-

forming ability of the HOS and U2OS cell lines (Figure 8D).

Furthermore, we conducted cell scratch and Transwell cell

invasion assays. Experimental results indicated TRAM2

downregulation inhibited HOS and U2OS cell migration

ability (Figure 8E) and invasion (Figure 8F). Prior studies have
B C

D E F

G H I

J K L

M N O

A

FIGURE 5

Prognostic value of the GCSRGs signature in training cohort, verification cohort and total cohort. (A–C) Kaplan-Meier survival curves according
to risk score in the training cohort (A), verification cohort (B), and total cohort (C). (D–F) ROC curves for predicting overall survival in the
training cohort (D), verification cohort (E), and total cohort (F). (G–I) Distribution of risk score in the high-risk group and the low-risk group in
the training cohort (G), verification cohort (H), and total cohort (I–L) Survival status between the high-risk group and the low-risk group in the
training cohort (J), verification cohort (K), and total cohort (L-O).Heatmap of the expression profile of the included glycolysis-cholesterol
synthesis related genes in the training cohort (M), verification cohort (N), and total cohort (O).
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revealed that epithelial-mesenchymal transition (EMT) was vital

in tumor progression and metastasis (26). So, we examined

TRAM2 downregulation effect on EMT-related proteins

expression. TRAM2 downregulation promoted E-cadherin

expression while suppressing N-cadherin and vimentin

expression in the HOS and U2OS cell lines, according to

Western blot results (Figure 8G).
3.7 Pan-cancer analysis of TRAM2

To further analyze the important role of TRAM2 in other

malignant tumors, we performed pan-cancer analysis of

TRAM2. Figure 9A shows the expression of TRAM2 in 33

types of cancers, where TRAM2 had the highest expression in

SARC. In addition, TRAM2 expression differed significantly

between tumor tissues and normal paracancerous tissues in

several types of cancer (Figure 9B). As shown in Figures 9C–E,

TRAM2 was relevant to OS, progression free survival (PFS) and

disease specific survival (DSS) in a range of cancers. Further

analysis of the above data obtained KM survival curves (Figure
Frontiers in Immunology 11
S2). Moreover, TRAM2 was relevant to TMB and MSI in a range

of cancers (Figures 9F, G). To elucidate the relationship of

TRAM2 with immune-related genes and immune checkpoints,

we conducted gene co-expression analysis. As Figures 9H, I

illustrates, TRAM2 can affect immune cell infiltration and

immune checkpoint expression in pan-cancer.
4 Discussion

Osteosarcoma is a highly invasive cancer. Its poor prognosis

is related to problems with current treatments (27). Therefore,

there is a need to develop and study prognostic models of

osteosarcoma to guide targeted therapy. With the development

of bioinformatics and sequencing technology, many scholars

have constructed different prognostic models of osteosarcoma to

analyze the characteristics of the disease (28–30). However, most

of the parameters used to construct prognostic models consider

only the genome or transcriptome and do not consider biological

processes. As a result, osteosarcoma features cannot be

represented accurately within these models. Recently, tumor
B

C D

A

FIGURE 6

Assessment of the independent prognostic value and construction of the nomogram based on risk score and clinical factors. (A) Forest plot of
univariate cox regression analysis of various clinical feature and risk score in osteosarcoma. (B) Forest plot of multivariate cox regression analysis
of various clinical feature and risk score in osteosarcoma. (C) The nomogram to predict the 1-, 3- and 5-year survival risk of osteosarcoma
patients. (D) Calibration curve for the 1-, 3-, and 5-year predicted survival nomogram. **P < 0.01, ***P < 0.001.
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energy metabolism has attracted increasing interest. Glycolysis

and cholesterol synthesis pathways are involved in the metabolic

reprogramming of tumors and are crucial in tumor progression

(31, 32). In our work, for the first time, we constructed a

prognostic signature with glycolysis and cholesterol synthesis

as the main characteristics, which can effectively predict

osteosarcoma patient prognosis.

We first utilized consensus clustering to confirm the 2

groups of stable independent metabolic genes of glycolysis and

cholesterol synthesis and then divided osteosarcoma patients

into 4 subtypes (glycolysis subtype, cholesterol subtype,

quiescent subtype, and mixed subtype) on basis of median

gene expression. Survival across the subtypes showed

significant differences based on the prognostic analysis, with

the cholesterol subtype and the mixed subtype having the worst
Frontiers in Immunology 12
prognosis. Additionally, significant differences were observed in

tumor purity, scores of immune, stroma, and ESTIMATE, which

also confirmed prognosis differences in the 4 subtypes. We used

WGCNA to screen out the modules related to glycolysis and

cholesterol synthesis and conducted GO and KEGG enrichment

analysis. Hypoxia is strongly correlated with poor prognosis,

with its pathway activated throughout cancer advancement (33).

The HIF-1 protein is heterodimeric with two different subunits,

HIF-1a and HIF-1b. This protein activates several genes

transcription that encode proteins engaged with angiogenesis,

extracellular mesenchymal remodeling, migration, invasion, and

metastasis (34). Consistent with the above conclusions, the

results of enrichment analysis, such as response to hypoxia

and decreased oxygen, and HIF-1 signaling pathway, indicated

that this module’s key metabolic genes had tight association with
B

C

A

FIGURE 7

Immune status and drug sensitivity differences between high- and low-risk groups. (A) Comparison of immune cell infiltration between the
high-risk group and low-risk group. (B) Comparison of the expression of immune checkpoints between the high-risk group and low-risk group.
(C) Drug sensitivity in the high-risk group and low-risk group. *P < 0.05, **P < 0.01.
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FIGURE 8

TRAM2 suppressed the progression of osteosarcoma in vitro. (A) The protein levels of TRAM2 in Saos2, HOS, U2OS, MG63 cells and normal
hFOB1.19 cells. (B) The protein levels of TRAM2 in HOS and U2OS cells after transfection of si-NC, si-TRAM2-1, si-TRAM2-2 and si-TRAM2-3.
(C) CCK-8 proliferation assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (D) Plate cloning assay in HOS and U2OS cells
after transfection of si-NC and si-TRAM2-2. (E) Scratch assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (F) Transwell
assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (G) The protein levels of EMT-related proteins including E-cadherin,
vimentin and N-cadherin in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. All results are presented as mean ± SEM. *P <
0.05, **P < 0.01.
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hypoxia process. Previous studies have demonstrated that focal

adhesions, as mediators of tumor cells and the extracellular

matrix, are vital in various ways within tumor migration,

invasion, and drug resistance (35). The results of GO

enrichment analysis, such as focal adhesion and cell-substrate

junction, indicated that the key metabolic genes in the module

may be closely associated with metastasis. Subsequently,
Frontiers in Immunology 14
univariate Cox and LASSO Cox regression analysis had been

conducted on key metabolic genes in the selected modules, and 5

genes (RPS28, MCAM, EN1, TRAM2, and VEGFA) were

screened as relevant genes for the GCSRGs signature

construction. The GCSRGs signature had good predictive

ability in all cohorts and can be utilized as an independent

prognostic factor for osteosarcoma patients. Several researchers
B

C D E

F G
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A

FIGURE 9

Analysis of TRAM2 in pan-cancer. (A) Expression of TRAM2 in 33 cancers. (B) Expression of TRAM2 in tumor and normal tissue in pan-cancer.
(C) Overall survival of TRAM2 in pan-cancer. (D) Progression free survival of TRAM2 in pan-cancer. (E) Disease specific survival of TRAM2 in pan-
cancer. (F) Tumor mutation burden of TRAM2 in pan-cancer. (G) Microsatellite instability of TRAM2 in pan-cancer. (H) Co-expression analysis of
TRAM2 and immune cells in pan-cancer. (I) Co-expression analysis of TRAM2 and immune checkpoints in pan-cancer. *P < 0.05, **P < 0.01,
***P < 0.001.
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have investigated the relationship among glycolysis, cholesterol

synthesis and immune responses. Regulating cholesterol

metabolism can improve CD8 (+) T cells’ anticancer effect

(36). Additionally, Li et al. indicated that the glycolysis process

of tumor tissues within breast cancer had association with low

natural killer T (NKT) cells infiltration (37). In our study,

macrophages and NKT cells expression levels within the low-

risk group were significantly higher than the other group.

According to our knowledge, NKT cells are crucial for

controlling tumor cell progression and affecting cancer patient

prognosis (38). For macrophages, high infiltration of tumor-

associated macrophages in some malignant tumors has a strong

correlation with better prognosis (39, 40). That’s consistent with

our study findings and helps explain, to a certain extent, why

patients who were classified as low-risk group had superior

survival outcomes. In addition, our study found that the total 10

immune checkpoint genes expression showed different levels

between the two groups, with low-risk group showing higher

expression than the other group, indicating that there may be

limited differences in the efficacy of immunotherapy.

In our analysis, we selected 5 GCSRGs (RPS28, MCAM,

EN1, TRAM2, and VEGFA) as the relevant genes for

constructing the risk genes signature. RPS28 is a 40S

ribosome component and is crit ical for 18S rRNA

biosynthesis (41). There are few studies on the effect of RPS28

on cancer, and most research results are only predictions

generated by bioinformatics and have not been confirmed by

corresponding biological experiments (42, 43). However, some

researchers have found that reducing the expression of RPS28

protein can reduce the cell viability of HeLa cells and induce

tumor cell apoptosis (44), indicating that RPS28 has a major

regulatory function in cancer. Additionally, RPS28 can

influence tumor immunosurveillance and regulate T cell

kill ing (45). MCAM is highly expressed in various

malignancies and has tight association with their growth and

metastasis, such as melanoma (46), prostate cancer (47), gastric

cancer (48), and lung cancer (49). Prior investigations revealed

that MCAM was associated with poor prognosis of

osteosarcoma patients and can improve the migration ability

of osteosarcoma cells (50). For immunotherapy, MCAM

deficiency significantly impairs T cell-mediated antitumor

effect (51). Solid tumor progression and metastasis are

accompanied by angiogenesis stimulation, with VEGFA as the

main factor driving tumor vascular bed expansion (52). VEGFA

is involved in angiogenesis, progression, and metastasis in

various malignancies, including osteosarcoma, and has a

strong association with a poor prognosis (53–55). Moreover,

the expression of co-inhibitory receptor and regulatory T cell

expansion are both influence by VEGFA signaling (56). Hence,

targeted VEGFA therapy is a key area for improving the

osteosarcoma prognosis (57). TRAM2 is a translocon

component and can transport proteins synthesized by
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ribosomes to the endoplasmic reticulum (ER), acting as ER

channels for calcium concentration regulation within it (58). In

glioma, through its PI3K/AKT/mTOR signaling pathway

regulation, TRAM2 is able to enhance tumor cells migration,

invasion, proliferation, and EMT (59). In addition, TRAM2 and

YAP activity in various cancers shows a very strong expression

correlation, demonstrating that TRAM2 acts a significant role

in malignant proliferation and invasion caused by YAP (60).

However, no relevant studies have shown the relationship

between TRAM2 and osteosarcoma. Therefore, to ensure the

validity of the GCSRGs signature, we chose to use TRAM2 for

cell function validation and pan-cancer analysis.

TRAM2 protein expression was demonstrated to be

significantly different across the osteosarcoma and the human

osteoblast cell lines during experimental validation. In addition,

inhibiting of EMT-related protein expression, cell viability,

colony formation, migration, and invasion were achieved by

downregulating TRAM2 protein expression in osteosarcoma

cells. These findings provide further support for validity of

genes signature based on glycolysis and cholesterol synthesis

and suggest that TRAM2 is involved in osteosarcoma cells

progression. In addition, TRAM2 was not only involved in

osteosarcoma progression but also closely related to OS, PFS,

DSS, TMD, MSI, immune cell infiltration and immune

checkpoints in pan-cancer, suggesting that the GCSRGs

signature and the target genes in the signature have the

potential to serve as the prognostic indicators for a wide range

of cancers.

Although we confirmed the effective role of the GCSRGs

signature in predicting the prognosis of osteosarcoma patients

and confirmed the tumor-promoting effect of TRAM2 in

osteosarcoma cells in cytological experiments in vitro, this

study still has certain drawbacks that require further research.

First, the patient sample size was small within the datasets used,

and their clinical characteristics were not sufficiently detailed.

Therefore, a larger sample size with more detailed clinical

characteristics is needed. In addition, besides TRAM2, other

signature-related genes should also be verified at the

cytological level.

During this research, osteosarcoma patients were

categorized into 4 subtypes according to GCSRGs expression

matrix, and these subtypes differed significantly from one

another in terms of prognosis and tumor microenvironment.

Through WGCNA, the gene modules most closely associated

with glycolysis and cholesterol synthesis were screened, and a

risk signature of osteosarcoma consisting of 5 GCSRGs was

constructed for the first time. In addition, we found that this

signature was closely related to immune cells infiltration and

immune checkpoint expression in osteosarcoma patients. These

findings not only provide a new method to predict the prognosis

o f os teosarcoma pat ients but a l so prov ide nove l

therapeutic targets.
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The 13 drugs were selected for osteosarcoma patients with the low-

risk group
SUPPLEMENTARY FIGURE 2

Correlation between the expression of TRAM2 and survival prognosis in

pan-cancer (A) Kaplan-Meier survival curves of the relationship between

TRAM2 expression and overall survival in pan-cancer. (B) Kaplan-Meier
survival curves of the relationship between TRAM2 expression and

progression free survival in pan-cancer. (C) Kaplan-Meier survival curves
of the relationship between TRAM2 expression and Disease specific

survival in pan-cancer.
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