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The cGAS-STING signaling pathway can trigger innate immune responses by

detecting dsDNA from outside or within the host. In addition, the cGAS-STING

signaling pathway has emerged as a critical mediator of the inflammatory response

and a new target for inflammatory diseases. STING activation leads to dimerization

and translocation to the endoplasmic reticulum Golgi intermediate compartment

or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-kB
and translocates to the nucleus to induce a subsequent interferon response and

pro-inflammatory factor production. Osteoporosis is a degenerative bone

metabolic disease accompanied by chronic sterile inflammation. Activating the

STING/IFN-b signaling pathway can reduce bone resorption by inhibiting

osteoclast differentiation. Conversely, activation of STING/NF-kB leads to the

formation of osteoporosis by increasing bone resorption and decreasing bone

formation. In addition, activation of STING inhibits the generation of type H vessels

with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we

outline the mechanism of action of STING and its downstream in osteoporosis and

discuss the role of targeting STING in the treatment of osteoporosis, thus providing

new ideas for the treatment of osteoporosis.
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1 Introduction

The stimulator of interferon genes (STING, also known as MITA, MPYS, ERIS, and

TMEM173) is a pattern recognition receptor (PRR) that recognizes nucleic acids of

pathogenic microorganisms or cell membrane components, among others (1). It acts as

the first line of defense of cells against pathogenic invasion. Initially found in the endoplasmic

reticulum (ER) membrane of the innate immune cells and later also found to be expressed in

T cells and other cells, it recognizes released DNA and triggers innate immune activation with

essential functions in infection, inflammation, and cancer (2). STING, a necessary protein of

natural immunity, plays a crucial role in antiviral immunity by activating nuclear factor-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1095577/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1095577/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1095577&domain=pdf&date_stamp=2023-01-18
mailto:hzhuster@outlook.com
mailto:liuxiangjie1968@126.com
https://doi.org/10.3389/fimmu.2022.1095577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1095577
https://www.frontiersin.org/journals/immunology


Gao et al. 10.3389/fimmu.2022.1095577
kappa B (NF-kB) and interferon regulatory factor 3 (IRF3) and

producing type I interferon (IFN-I) independently of Toll-like

receptors (TLRs, another type of PRR) (2).

The cGAS-STING in the innate immune response is vital in

defending against pathogenic microbial invasion (3). In addition to its

antiviral immune function, STING can cause inflammatory and

autoimmune diseases (4). Activation of STING causes the

transcription of inflammatory genes and increases pro-

inflammatory cytokines. The increase of overpowering pro-

inflammatory factors then causes inflammatory and autoimmune

diseases (5). Therefore, STING is also the inflammatory protein

that triggers chronic inflammation (6). The cGAS-STING pathway

mediates the cellular inflammatory response and thus plays a crucial

role in the pathogenesis of inflammatory diseases such as ischemic

myocardial infarction (MI), nonalcoholic steatohepatitis (NASH),

traumatic brain injury (TBI), and silicosis (7). A chronic low-grade

inflammatory state accompanies aging. The cGAS-STING pathway

can also induce the senescence-associated secretory phenotype

(SASP) through the accumulation of cytoplasmic DNA during

aging, which leads to the development of aging-related diseases (8).

Hundreds of millions worldwide are affected by bone-related

diseases such as osteoporosis, degenerative disc disease, and

rheumatoid arthritis. Osteoporosis is an age-related degenerative

disease of bone , mainly due to changes in the bone

microenvironment and structural degeneration, resulting in reduced

bone density (9). It seriously endangers patients’ quality of life and

lives due to the extreme risk of fractures and others and causes a
Frontiers in Immunology 02
substantial financial burden on society. Osteoporosis is also a sterile

inflammatory disease characterized by the activation of NF-kB at the

molecular level, which promotes osteoclast-mediated bone resorption

and inhibits osteoblast-induced bone formation (10). Notably, STING

can act as an upstream of NF-kB, stimulating its activation and

transcription, thus mediating pro-inflammatory effects and playing a

role in the pathogenesis of osteoporosis (Figure 1). IFN-b is also a

downstream target of STING. However, unlike NF-kB, although IFN-
b is induced by STING activation in osteoclasts, it can inhibit

osteoclast activation through negative feedback (11). In addition,

STING can act on vascular endothelial cells (ECs) to regulate the

formation of type H vessels, which can control bone formation.

STING activation can impair their formation and thus affect bone

formation (12) (Table 1). Therefore, the role of STING in

osteoporosis deserves further investigation to determine how to

target STING for osteoporosis treatment.
2 cGAS-STING pathway

The cGAS-STING pathway is a significant component of the

host’s innate immune response to viral infection. The cGAS senses

pathogenic DNA to activate STING to modulate the type 1 interferon

response to trigger a natural immune response. Herpes simplex virus

1 (HSV-1) is a double-stranded DNA virus sensed by the cGAS to

activate STING and induce innate antiviral immunity (22). Similarly,

other DNA viruses, such as HIV and CMV, can trigger cGAS-STING
FIGURE 1

The role of STING in bone metabolism Bone metabolism is mainly composed of osteoblast-mediated bone formation and osteoclast-mediated bone
resorption. In addition, type H vessels also can induce bone formation and thus participate in bone remodeling. Osteoblasts are differentiated from
mesenchymal stem cells (MSCs), whereas osteoclasts are differentiated from bone marrow macrophages. STING can act as an upstream of NF-kB,
stimulating its activation and transcription and thus exerting biological effects. NF-kB inhibits the differentiation of MSCs toward osteogenesis and inhibits
osteoblast activity, thus inhibiting bone formation. In osteoclasts, NF-kB can promote osteoclast production and activity, thereby promoting bone
resorption. IFN-b is also a downstream target of STING. However, unlike NF-kB, although IFN-b is induced in osteoclasts after activation by STING, it can
inhibit osteoclast activation through its negative feedback, thereby inhibiting bone resorption. In addition, STING can inhibit the formation of type H
vessels, inhibiting bone formation.
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(23, 24). STING also plays a vital role in the immune response

induced by RNA viruses (25). RNA viruses, like dengue virus and

SARS-CoV-2, have no DNA and cannot induce cGAS autonomously.

However, these RNA viruses can activate the cGAS-STING pathway

by triggering intracellular mitochondrial stress damage to release

mitochondrial DNA (mtDNA), thereby generating antiviral

immunity (26). In addition, cGAS can sense bacterial DNA and the

host’s DNA, such as senescent apoptotic cells, extracellular vesicles,

and chromatin fragments (27). Thus, the cGAS-STING pathway is

critical in many disease processes, including autoimmune diseases,

inflammatory diseases, degenerative diseases, and cancer (5, 28).

STING is a PRR on the ER that does not bind directly to DNA.

Pathogenic microbes and damaged host cells can release free double-

stranded DNA (dsDNA) (29). Then dsDNA is recognized by the

cytoplasmic DNA sensor, the cyclic GMP-AMP synthase (cGAS)

(30). The ds DNA binding to cGAS triggers the conversion of ATP

and GTP to cGAMP (2′,3′-cyclic GMP–AMP) (31). The cGAMP is

canonical cyclic dinucleotides (CDNs) that bind and activate STING

(32). CDNs are essential second messengers produced by cyclic

dinucleotide synthase, which is widely distributed and can trigger

from various cellular signaling cascades, as well as being an activating

ligand for STING (33, 34). The binding of cGAMP to STING triggers

STING conformational transition, dimerization, and translocation to

the endoplasmic reticulum-Golgi intermediate compartment

(ERGIC) and Golgi apparatus (Golgi) (35). Then STING dimers

recruit TBK1, which phosphorylates STING and induces IRF3 (36).

STING also leads to NF-kB activation. IRF3 and NF-kB are

translocated to the nucleus to induce the production of IFN-I and

other cytokines involved in the host immune response (37)(Figure 2).
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Classical STING activation induces the critical transcription

factor IRF3 via the cGAS-STING pathway, which promotes IFN-I

secretion and activates NF-kB to trigger pro-inflammatory cytokines.

In recent years, atypical patterns of STING activation have also been

identified. Keratinocytes generate an innate immune response within

hours of etoposide-induced DNA damage, which involves the DNA

sensing adapter STING but is not dependent on cGAS (38). And this

non-canonical STING signaling predominantly activates NF-kB
rather than IRF3, which induces IFN-I production. This also

provides another way of thinking for future STING research.

Although it has been reported that cytoplasmic DNA-mediated

STING-dependent inflammatory response requires activation of NF-

kB via TBK1 (39), at the same time, activation of TBK1 can also cause

IFN-b production. However, investigators have found that selective

activation of NF-kB can occur in the cGAS-STING pathway, while a

parallel path blocks activation of the IRF3/IFN system (40). In late

2019, SARS-CoV-2 emerged as a highly infectious coronavirus that

causes a human respiratory disease called COVID-19. SARS-CoV-2

infection can cause respiratory symptoms ranging from mild to

severe, resulting in lasting lung damage or death (41). One of the

hallmarks of severe COVID-19 is low levels of IFN-I and high levels of

expression of inflammatory cytokines or chemokines such as IL-6 and

tumor necrosis factor (TNF) (42–44). This unbalanced immune

response fails to limit viral transmission and leads to severe

systemic symptoms. Specific activation of NF-kB and blockade of

IRF3 nuclear translocation occurs in SARS-CoV-2 infected cells, and

STING-targeted drugs can attenuate this NF-kB response (44). This

NF-kB response is induced by mtDNA released from cellular

oxidative stress injury (44, 45). MtDNA mediates the activation of
TABLE 1 Summary of research on targeting STING and it signaling pathways in bone metabolism.

Disease Interventions Mechanism &Target Model Effects

OA Deficient in STING
(13)

Inhibiting STING / IFN-I
signaling

DNase II-/-/ IFNAR-/- double-knockout
arthritis mice

Inhibiting abnormal bone formation

Itaconate (14) Inhibiting STING/NF-kB axis,
Promoting M2 polarization in
macrophages

OA mouse Inhibiting chondrocyte senescence
and ECM degeneration,
Attenuating osteoarthritis

IVDD Lipopolysaccharide (LPS)
(15)

Activating cGAS/STING
pathway

vertebral inflammation-induced caudal IVDD
(VI-IVDD) rat

Building a novel model of VI-IVDD

STING knock-down
(16)

Inhibiting cGAS/STING
pathway

puncture-induced IVDD rat Alleviating IVDD development

Epigallocatechin-3-Gallate
(17)

Inhibiting cGAS/STING/
NLRP3 pathway

H2O2 -Treated NP cells Protecting NP cells from apoptosis

Bone Loss
(including
OP)

STING agonists (18)
(DMXAA, ADU-S100)

Activating STING/IFN-I
signaling

Lewis lung carcinoma or breast cancer
-induced bone loss mice

Reducing bone loss

CDNs (19) Activating STING/IFN-b
signaling

RANKL-induced BMMs,
calvarial implantation mouse

Inhibiting osteoclast differentiation and
bone resorption

Tmem173(STING)
overexpression (20)

Overexpressing STING RANKL-induced BMMs Inhibiting osteoclast differentiation

RTA-408 (21) Inhibiting STING /NF-kB
signaling

OVX-induced bone loss Attenuating osteoclastogenesis

Bone
Fracture,
Bone
Defect

2',3'-cGAMP (12) Activating STING Bone fracture and defect mice Inhibiting type H vessel formation,
Delaying bone healing

STING inhibitors (12)
(C-176 and H-151)

Inhibiting STING Enhancing type H vessel formation,
Accelerating bone healing
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cGAS-STING. Furthermore, cancer studies found that the classical

NF-kB pathway in the cGAS-STING pathway enhances anti-tumor

effects by promoting IFN-I expression. In contrast, the non-classical

NF-kB pathway impedes anti-tumor effects by decreasing IFN-I

expression (40). Activation of STING triggers NF-kB activation that

can be generated independently of IFN-I.
3 STING/IFN-b and osteoporosis

Bone, the body’s central axis system, provides physical support

and protection, is involved in calcium metabolism and endocrine

regulation, and promotes the hematopoietic system in the bone

marrow (10). In response to normal wear and mechanical forces as

well as the aging process, bone in the adult skeleton undergoes

continuous remodeling in which damaged or failing microscopic

parts of the bone are removed by osteoclasts and subsequently

replaced by new bone laid down by osteoblasts (46). Bone

remodeling is a continuous dynamic process that includes bone

formation and bone resorption activities, generally in balance, thus

maintaining bone homeostasis (47). Bone homeostasis depends on

the functional balance between bone-forming cells (osteoblasts) and

bone-resorbing cells (osteoclasts) (48). Disruption of bone

homeostasis is the frequent pathophysiological mechanism of bone

metabolic diseases (49). Excessive osteoclast activity can lead to bone

d i s e a s e s such a s o s t eoporos i s , Page t ’ s d i s e a s e , and

rheumatoid arthritis.
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Osteoclast differentiation is initiated by bone marrow

macrophages (BMMs) through stimulation of receptor activators of

nuclear factor-kB ligand (RANKL) and macrophage colony-

stimulating factor (M-CSF) (50). Osteoblasts release RANKL and

osteoprotegerin (OPG) to regulate bone homeostasis. RANK, the

receptor of RANKL, is expressed in osteoclasts. Furthermore, RANK-

RANKL interaction activates downstream signaling pathways such as

NF-kB, MAPK, and AKT, thereby inducing the expression of

osteoclast-associated genes, including c-Fos and NFATc1 (51).

Additional studies have shown that osteoclastogenesis generates

reactive oxygen species (ROS), and these ROS can induce the

activation of downstream signaling pathways, such as NF-kB and

MAPK, which also play a role in osteoclast differentiation and bone

resorption (52). Conversely, OPG binds to RANK to reduce RANK-

RANKL signaling, thereby balancing bone resorption (53). C-Fos is

essential for osteoclast differentiation, and lack of c-Fos can lead to

osteosclerosis. It interacts with NFATc1, then activates multiple target

genes for osteoclast function, triggering a transcriptional regulatory

cascade (54). RANKL interactions have been shown to induce IFN-b
production through the induction of c-Fos genes (11)(Figure 3).
3.1 Relationship between
IFN-b and osteoporosis

IFN-b belongs to type I interferons. The human body produces

three known types of interferons: type I, type II, and type III (55).
FIGURE 2

The cGAS-STING signaling pathway STING is a pattern recognition receptor (PRR) on the endoplasmic reticulum (ER) that does not bind directly to DNA.
Pathogenic microorganisms and damaged host cells can release double-stranded DNA (dsDNA). The cytoplasmic DNA sensor, cyclic GMP–AMP
synthase (cGAS), recognizes dsDNA and catalyzes the synthesis of cGAMP from ATP and GTP. The cGAMP binds to STING, triggering STING
conformational transitions, dimerization, and translocation to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi
apparatus (Golgi). The dimerized STING recruits TBK1, which induces the production of IRF3 and NF-kB. Subsequently, IRF3 and NF-kB translocate to the
nucleus to induce the production of IFN-I and pro-inflammatory factors.
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Type I interferons are mainly IFN-a and IFN-b, secreted by innate

immune cells. Type II interferons, IFN-g, is mainly produced by

activated T cells. Type III interferons include IFN-l, whose known

distribution and function are minimal. Type I interferons are mainly

produced by surface or internal receptors of innate immune cells

(TLRs, NLRs, RLRs, and cGAS) binding to specific antigens from

outside or inside the host (56). IFN receptors (IFNAR) are a class of

heterodimers located on the cell membrane and consist of two

subunits, IFNAR1 and IFNAR2, and widely distributed, including

monocytes, macrophages, B cells, T cells, epithelial cells, endothelial

cells, and tumor cells (57). Ligand receptor binding activates

downstream protein kinases JAK1 and TYK2, and kinase activation

activates cytoplasmic transcription factors STAT1 and STAT2,

forming a dimer that enters the nucleus to assist IRF9 in

transcribing some downstream effector genes (56). Type I

interferons can play a biological role in antiviral and

immunomodulatory, inhibiting specific cell growth and

proliferation and killing tumor cells (58, 59). Therefore, interferon

therapy has been used to treat common viral diseases such as hepatitis

(60) and various cancers (61).

When osteoclasts are induced to produce IFN-b, the binding of IFN-
b to its bioreceptor activates ISGF-3 (formed by the aggregation of

STAT1, STAT2, and IRF9) via the classical JAK/STATpathway, initiating

a signal transduction cascade (62). Then, c-Fos will be inhibited, leading

to the inhibition of osteoclast production and activity (11). Thereby, IFN-

b forms negative feedback of its own (Figure 3). Thus, IFN-b also plays a
vital role in regulating bone homeostasis. In addition, osteoclasts express
Frontiers in Immunology 05
iNOS and releaseNO, and theNOproduced by this pathway also acts as a

negative feedback signal to limit RANKL-stimulated osteoclastogenesis

(63). In iNOS-deficient bone marrow cells, RANKL-induced NO

production was inhibited, leading to an increase in the number of

terminally differentiated osteoblasts (64). Direct administration of IFN-

b in RAW264.7 cells stimulated iNOS expression in the absence of

RANKL, thereby upregulating NO expression. NO, like IFN-b, inhibited
osteoclast differentiation. These results suggest that IFN-b may be a key

mediator of iNOS-derived NO induction by RANKL in developing

osteoclasts and that iNOS can mediate the inhibitory effect of IFN-b on

osteoclasts (65).

Another interaction of IFN-b involved in the regulation of bone

homeostasis is 4-1BBL with 4-1BB. 4-1BB, also known as CD137, is

similar to RANK and is a member of the same TNF receptor family,

encoded by the TNFRSF9 gene. Upon its activation, antigen-

presenting cells, such as dendritic cells, B cells, and macrophages,

express 4-1BBL (66). Osteoclast precursors can express 4-1BB and 4-

BBL after exposure to RANKL (67). In BMMs co-stimulated by M-

CSF and RANKL, 4-1BBL mRNAs are upregulated (68). In the animal

model, 4-1BB knockout mice also showed increased bone mass

compared to the wild group. The number of osteoclasts was

significantly reduced in the presence of immobilized recombinant

4-1BB (4-1BB-Fc). 4-1BB can induce the binding activity of IRF3, and

IRF3 is activated by 4-1BB stimulation, which induces IFN-b (11, 69,

70). It is not difficult to speculate that the decrease in osteoclast

activity caused by 4-1BB should be due to the inhibition of c-Fos

expression by IFN-b.
FIGURE 3

osteoclastogenesis and the role of IFN-b in it Osteoclasts are differentiated from BMMs by stimulating receptor activators for nuclear factor-kB ligand
(RANKL) and macrophage colony-stimulating factor (M-CSF). Osteoblasts release RANKL and osteoprotegerin (OPG) to regulate bone homeostasis.
RANK is a receptor for RANKL, expressed in osteoclasts. In osteoclasts, RANK-RANKL interaction activates downstream signaling pathways that induce
the expression of osteoclast-associated genes such as c-Fos and TRAF6. In comparison, OPG binds to RANK to reduce RANK-RANKL signaling to
balance bone resorption. C-Fos is essential for osteoclast differentiation. The RANK-RANKL interaction has been shown to induce IFN-b production by
the c-Fos. IFN receptor (IFNAR) is a class of heterodimers on the cell membrane consisting of two subunits, IFNAR1 and IFNAR2. IFN-b binds to its
receptor to activate the downstream protein kinases JAK1 and TYK2, then activating the transcription factors STAT1 and STAT2, forming a dimer that can
enter the nucleus and bind to IRF9 to constitute ISGF-3, which exerts its IFN-b mediated transcriptional effects to inhibit osteoclast production. Thus,
IFN-b forms negative feedback, inhibiting osteoclast differentiation. In addition, TRAF6 is essential for osteoclastogenesis and induces the production of
NF-kB. In the resting state, NF-kB in the cytoplasm binds to the inhibitor protein IkB while leaving NF-kB inactive. IkB kinase (IKK) phosphorylates NF-kB
to degrade IkB, and the released p65 and p50 subunits enter the nucleus for transcription of osteoclast-related genes, thus inducing bone resorption.
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3.2 Targeting STING/IFN-b in osteoporosis

As a critical signal transduction molecule involved in the innate

immune response, STING, triggered by cytoplasmic DNA from

pathogens and hosts, can induce type I interferon and pro-

inflammatory cytokine secretion, defend against viral and

intracellular bacterial infections, and regulate the spontaneous anti-

tumor immune response in vivo. Targeted STING is a new tool for

immunotherapy. In addition to immune or oncological diseases, the

role of STING in bone metabolic diseases has been the focus of

attention in recent years. DNase II is a nuclease that degrades dsDNA.

Lack of DNase II causes DNA accumulation in cells and produces

several cytokines, including type I IFN (71). Mice lacking DNase II

and IFNAR were able to develop distal aggressive inflammatory

arthritis (72). However, this arthritis was eliminated in the absence

of STING (71, 73). Surprisingly, the arthritis model (DNase II-/-/

IFNAR-/- double-knockout mice) showed aberrant accumulation of

bone in both long bones and the spleen at sites of local DNA

accumulation (13). STING deficiency inhibited bone accumulation

(13), revealing a potential role of the STING pathway in bone,

although the exact mechanism is unclear.

Patients with advanced cancer often suffer from severe pain due to

bone metastases and bone destruction with osteolytic lesions (74).

Agonists of the immunomodulator STING have significantly

protected against pain (75), bone destruction (13, 19), and local

tumor burden (76). One of its effects is alleviating cancerous bone

pa in by regu la t ing os teoc las t funct ion in the tumor

microenvironment to prevent local bone destruction, which

depends on host-intrinsic STING/IFN-b signaling. Bone metastases

in patients with cancer produce osteolytic bone destruction due to

tumor-induced osteoclast formation and activation (77). Bone loss

was significantly reduced in Lewis lung carcinoma (LLC) or breast

cancer mice treated with DMXAA and ADU-S100, two different

STING agonists, similar to zoledronic acid (ZA) (18). In contrast, the

reversal effect of DMXAA on bone loss was eliminated in the STING

knockout group of mice. Thus, the inhibitory effect of STING agonists

on bone resorption is dependent on STING. Systemic administration

of STING agonists also promotes a robust IFN-I response in the

systemic and bone cancer tumor microenvironment. DMXAA

treatment does not prevent bone destruction in IFNAR1-deficient

mice. IFNAR is required for IFN signaling (57). Thus, the protective

effects of STING agonists against cancerous bone destruction require

IFN-I signaling (18).

STING, also known as Tmem173, has been shown to inhibit

osteoclast differentiation and activity by regulating IFN-b production.

It inhibits the expression of osteoclast-specific genes and related

enzymes and downregulates the activation of osteoclast-specific

transcription factors (20). CDNs are symbiotic bacterial-derived

second messengers in the intestine that regulates bacterial survival,

colonization, and biofilm formation and have immunomodulatory

activity by inducing type I interferon expression by macrophages

through the STING signaling pathway (34, 78). CDNs dose-

dependently inhibit M-CSF and RANKL-induced differentiation of

bone marrowmacrophages to osteoclasts and induce phosphorylation

of TBK1 and IRF3, representative features of STING activation (19).

In contrast, inhibition of osteoclast differentiation was reversed in

STING knockdown BMMs. These suggest that the STING signaling
Frontiers in Immunology 06
pathway plays a crucial role in CDNs-mediated inhibition of

osteoclast differentiation. In addition, CDNs increased the

expression of IFN-b, a member of the IFN-I family, which has also

been identified as a typical negative regulator of RANKL-induced

osteoclast differentiation (79, 80). RANKL induces IFN-b expression

via c-Fos (81). In turn, IFN-b binds to IFNAR on the membrane,

which activates ISGF-3 and prevents RANKL-induced c-Fos

expression from inhibiting osteoclast differentiation (11). The

inhibitory effect of CDNs on osteoclast differentiation was absent in

the presence of antibodies blocking IFNAR, and no inhibitory effect

was observed in knockout IFNAR macrophages (19). These also

confirm that CDNs induce phosphorylation of STAT1, which

mediates IFNAR signaling. Experiments performed with a mouse

cranial implant model showed that CDNs inhibit RANKL-induced

bone resorption (19). These results suggest STING induces IFN-b to

inhibit osteoclast differentiation and bone resorption.

It is well known that IFN-I response is a weapon against viruses.

IFN-I is induced during STING-mediated immune responses. IFN-I

can also be stimulated by the osteoclast-specific gene c-Fos and

ultimately inhibits osteoclast production and activation through

IFNAR transmission (11, 82). STING regulates the inhibitory effect

of IFN-I on osteoclasts, and the knockdown of STING reverses this

effect (79). Knockdown of STING can offset this effect (19). Therefore,

targeting STING/IFN-b to increase IFN-b expression and thereby

inhibit osteoclast bone resorption is expected to be a new approach to

treating osteoporosis. In addition, interferon therapy has been used in

the clinic. And IFN-b has a relatively good clinical tolerability and

safety profile. However, it faces several tests when using IFN-b to treat
bone metabolic diseases, including osteoporosis. First, as with other

protein drugs, treatment with interferon results in the production of

neutralizing antibodies in the patient (83). Second, effective delivery

of the drug to the bone microenvironment is another challenge in

using IFN-b for treating bone metabolic diseases (84). Targeting

STING to increase the level of interferon in the body may solve these

problems faced by treatment with interferon alone. In addition, the

inhibitory effect of IFN-b on osteoclasts is mainly due to its negative

feedback mechanism. However, the action of IFN-b is also inhibited

by another kind of negative feedback. Suppressors of cytokine

signaling (SOCS)-1 and SOCS-3 in response to RANKL can act as

inhibitory factors that significantly inhibit IFN-b signaling (85). Thus

IFN-b-mediated inhibition of osteoclastogenesis has a potential

counteracting pathway. It may be the same challenge for targeting

STING/IFN-b with interferon therapy alone.
4 STING/NF-kB and osteoporosis

Past studies have indicated that the cGAS-STING pathway is a

key component of the innate immune response as a host defense

against multiple pathogens. At the same time, sustained STING

activity may lead to fatal inflammatory diseases (39). The

continuous secretion of pro-inflammatory cytokines enhances tissue

destruction and impairs the organism’s homeostasis, thus affecting

functional integrity. NF-kB is a downstream target of STING

signaling and can be activated by it. NF-kB is a ubiquitous

transcription factor activated by various stimuli, including infection,

inflammation, and oxidative stress (86). The aging process is
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accompanied by a chronic and persistent inflammatory state (87).

NF-kB is also a hub of the aging process, promoting transcription and

expression of various genes associated with inflammation and can

regulate inflammatory signaling during aging induced by oxidative

stress (88). NF-kB is associated with many age-related diseases and

inflammatory diseases (89), including Alzheimer’s disease (90),

diabetes mellitus (91), cancer (92), and autoimmune and

inflammatory diseases (93). Activation of NF-kB signaling was

found in senescent ARPE-19, and NF-kB was confirmed to be a

downstream target of STING in oxidative stress-induced senescent

retinal pigment epithelium (RPE) (94). In microgliomas,

polyglutamine binding protein 1 (PQBP1) activates cGAS-STING

by interacting with sensing extrinsic tau 3R/4R proteins (95).

Activation of the PQBP1-cGAS-STING pathway leads to nuclear

translocation of NF-kB and expression of inflammatory genes,

resulting in brain inflammation and cognitive dysfunction in mice.

Psoriasis, a chronic inflammatory skin disease, is associated with

innate and adaptive immune responses. STING antagonist H-151

ameliorates psoriasis by inhibiting STING/NF-kB-mediated

inflammation (96).

Inflammation is also closely associated with bone metabolism

diseases, including osteoporosis (97), osteoarthritis(OA) (98),

intervertebral disc degeneration(IVDD) (99), bone lysis (100), and

spondyloarthritis (101). STING upregulation was found to be

associated with the development of IVDD. And vertebral

inflammation mediated by activation of the cGAS/STING

molecular pathway is a novel form of animal model used to induce

disc degeneration (15). Excessive accumulation of ROS can lead to

DNA damage, which activates the cGAS/STING pathway (102). ROS-

induced DNA damage is thought to be one of the leading causes of

nucleus pulposus (NP) cell degeneration during IVDD progression

(103). Moreover, the knockdown of STING expression can attenuate

ROS-induced disc degeneration (16). Similarly, pharmacological

inhibition of STING also protects NP cells from inflammation-

induced apoptosis (17). Moreover, the process of OA is also

accompanied by increased expression of STING and NF-kB, and
exogenous supplementation with itaconate can inhibit the STING/

NF-kB signaling pathway to alleviate the progression of OA (14).

Osteoporosis, an age-related disease of bone metabolism, is also an

inflammatory disease. Elevated levels of NF-kB can also be found in

osteoporosis models. Aging-associated bone loss is characterized by

decreased bone formation and increased bone resorption, and it is

often referred to as senile osteoporosis (104). Aging is a biological

process characterized by changes in the redox state of the organism

and inflammatory responses induced by oxidative stress (105).

Oxidative stress can release mtDNA (106), which can act as an

upstream of the cGAS-STING signaling pathway and activate

STING (107). The activation and transduction of STING are crucial

in the development and progression of aging-related diseases (108,

109). Therefore the application of targeting STING/NF-kB in

osteoporosis is worth exploring.
4.1 NF-kB

NF-kB is one of the best-characterized transcription factors that

regulate inflammation and innate and adaptive immune responses
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(110). Activation of NF-kB signaling leads to the production of

various inflammatory cytokines, chemokines, adhesion molecules,

transcription factors, and antimicrobial effector molecules that

initiate and mimic inflammatory responses and coordinate the

immediate host response to pathogens and tissue damage. The NF-

kB transcription factor family includes five members p50 (NF-kB1),
p52 (NF-kB2), RelA (p65), RelB, and c-Rel (111). All NF-kB subunits

have a structurally conserved N-terminal sequence spanning 300

amino acid residues called the Rel homology structural domain

(RHD) (112). The RHD is responsible for DNA binding,

dimerization, and nuclear translocation of NF-kB subunits, which

can divide into three structural components - the N-terminal

structural domain (NTD), the dimerization structural domain

(DD), and the nuclear localization sequence (NLS) polypeptide - all

of which mediate the various activities of the RHD and subsequent

NF-kB signaling (110, 113, 114). Subunits RelA, RelB, and c-Rel are

produced as mature proteins. In contrast, the p50 and p52 subunits

are produced by the precursor proteins (113).

In the resting state, NF-kB subunits bind to IkB proteins, inhibiting

their activity and maintaining NF-kB subunits in an inactive state

(115). In turn, IkB kinase (IKK) can degrade these inhibitory proteins

(116). Once activated by upstream signaling cascades, phosphorylated

IKK degrades the IkB protein and releases the subunits of the NF-kB.
Then these subunits go into the nucleus as dimers and participate in the

transcription of various target genes (10). For example, the functional

subunits p65 and p50 enter the nucleus and bind to target genes,

producing large amounts of inflammatory mediators, and the gene

products further activate NF-кB, causing an expanded cascade of

uncontrolled inflammatory responses. More and more NF-kB target

genes have been identified (117), including various cytokines such as

interleukin (IL) and TNF, interferons, and antiapoptotic proteins, such

as BIRC2, BIRC3, and BCL2L1.
4.2 Relationship between
NF-kB and osteoporosis

Bone homeostasis is necessary for the maintenance of normal

bone function. Bone homeostasis is maintained by bone remodeling

mediated by osteoblasts and osteoclasts, which are responsible for

bone formation and resorption (48). Osteoblasts and osteoclasts are

the essential cells that regulate bone homeostasis. NF-kB is the master

transcription factor that regulates the inflammatory response and

bone remodeling process (118, 119). Chronic inflammation induces

excess pro-inflammatory cytokines, disrupting homeostasis (120).

These result in abnormal bone remodeling, including osteosclerotic

and osteolytic lesions (121).

Pro-inflammatory cytokines driven by NF-kB are powerful

signals to regulate bone homeostasis (122). Elevated expression of

TNF, IL-1, IL-6, and IL-7 has been found in various chronic

inflammatory bone diseases, including osteoarthritis (123),

osteoporosis (124), and periodontal disease (125). These pro-

inflammatory cytokines are all produced by macrophages,

lymphocytes, osteoblasts, and bone marrow stromal cells under the

regulation of NF-kB and stimulate NF-kB signaling in target cells,

which further serves to amplify inflammation (126). Osteoclasts are

specialized cells of the monocyte-macrophage lineage responsible for
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bone resorption. In contrast, osteoblasts are differentiated from

mesenchymal stem cells to osteogenesis and are responsible for

establishing new bone. NF-kB has an essential role in osteoblasts

and osteoclasts, thus affecting bone regulation.

4.2.1 Role of NF-kB in bone resorption
NF-kB signaling is directly involved in the differentiation and

activation of osteoclasts responsible for bone resorption (127). The

binding of RANKL to RANK triggers a complex and unique signaling

cascade that controls lineage commitment and activation of osteoclasts

(128). Activating NF-kB signaling in osteoclasts is essential for their

differentiation and activation (54). TNF receptor–associated factor

(TRAF) proteins are cytoplasmic adaptor proteins that bind to

various receptors of the TNF receptor (TNFR) superfamily. An

essential role of TRAFs in RANK-RANKL signaling is inducing NF-

kB (51). Among TRAFs, TRAF6 is the most critical adaptor of RANK-

RANKL-induced osteoclastogenesis (129). Genetic experiments have

shown that TRAF6 is required for osteoclast formation and activation

(130). Like mice lacking NF-kB p50 and p52 subunits (131), TRAF6-

deficient mice develop severe osteoporosis (132).

Usually, NF-kB in the cytoplasm is bound to the inhibitory protein

IkB while keeping NF-kB in a resting state. While various stimuli lead

to the activation of IKK, which leads to the degradation of IkB bound to

the NF-kB subunits, the released NF-kB enters the nucleus as a

homodimer or a heterodimer and activates transcription, thus

exerting biological effects. For example, released p65 and p50

subunits enter the nucleus for transcription of osteoclast-related

genes, thus inducing bone resorption (21). IKK is a complex of three

subunits, IKKa (also known as IKK1), IKKb (also known as IKK2), and
IKKg(also known as NEMO). IKKb is required for osteolysis in vitro

and in vivo, and the knockdown of IKKb can lead to bone loss in mice

(133). While IKKa is required for RANK ligand-induced osteoclast

formation in vitro, it is not required in vivo (134). Thus, targeting IKK

can regulate the NF-kB activity of osteoclasts and prevent bone loss,

providing a new idea for the treatment of osteoporosis (135). In

conclusion, NF-kB is an essential mediator of osteoclastogenesis

(136), which leads to excessive bone resorption and osteoporosis.

Pharmacotherapy can inhibit RANKL-mediated osteoclastic

formation by targeting the NF-kB pathway to attenuate

inflammatory factors and ROS production and can reduce bone loss

in vivo in ovariectomized (OVX) model (137).

4.2.2 Role of NF-kB in bone formation
Osteoblasts derived from mesenchymal stem cells (MSCs) are

responsible for bone formation. NF-kB activity is suppressed in

mature osteoblasts, so NF-kB activation in osteoblasts inhibits bone

formation (136). NF-kB activation occurs in bone trabeculae of

naturally aging mice (138). Increased NF-kB activity was found in

MSCs isolated from agedmice compared to youngmice, and inhibition

of theNF-kB pathway partially rescued the reduction in osteogenesis in

agedMSCs (139). And increased RANKL and reducedOPG expression

was observed in aged MSCs, which resulted in increased RANKL/OPG

ratio and osteoclast activation. Chronic NF-kB activation has also been

shown to impair the differentiation of MSCs along the osteogenic

pathway and osteoblast-mediated bone formation (140).

In the absence of NF-kB activation, prolonged c-Jun N-terminal

kinase (JNK) activation, which regulates FOSL1 (also known as Fra1)
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expression, contributes to bone formation (126, 141). Mice

specifically lacking IKK-b in osteoblasts exhibit increased bone

mass, mainly because reduced NF-kB activity by IKK-b deficiency

increases JNK activity and Fra1 expression, ultimately leading to

increased bone formation to maintain bone mass in OVX mice (142).

Fra1 is an important transcription factor involved in bone matrix

formation (143). Chronic inflammation can inhibit bone formation.

For example, the pro-inflammatory factor TNF-a inhibits osteoblast

differentiation (144), but the IKK inhibitor BAY11-7082 rescues the

TNF-a-induced inhibition of osteoblast differentiation by inhibiting

NF-kB (145). Thus, inhibition of osteoblast NF-kB can promote bone

formation. A decrease in NF-kB activity in osteoblasts leads to an

increase in bone formation (146). The NF-kB inhibitor, S1627,

upregulates the mRNA of osteoblast-specific genes (such as type I

collagen and alkaline phosphatase) to increase osteoblast

differentiation and bone formation in vitro (147). Moreover, it can

increase bone formation to repair bone defects in a mouse cranial

defect model and alleviate osteoporosis in the OVX mouse model.

Therefore, targeting NF-kB could provide a novel and effective

therapeutic strategy for osteoporosis and other inflammatory

bone diseases.
4.3 Targeting STING/NF-kB in osteoporosis

Excessive accumulation of ROS leading to redox imbalance and

overactive osteoclasts is associated with the progression of

osteoporosis. The process of osteoclastogenesis is accompanied by

the production of ROS, which plays a role in osteoclast differentiation

and bone resorption (52). In addition, ROS-induced mtDNA release

induces inflammation through the activation of cGAS/STING (148).

ROS can induce NF-kB through the RANKL/RANK cascade reaction,

which is further involved in osteoclastogenesis (149). In addition to

promoting type I interferon production in the innate immune

response (150), STING can also act as an NF-kB upstream of NF-

kB, stimulating its production.

In the past, it was generally considered that NF-kB activation via

STING is exclusively dependent on TBK1. However, studies have now

demonstrated that TBK1 is dispensable for NF-kB, although TBK1

and its kinase activity are essential for STING-dependent IRF3

activation and INF-I. In fact, TBK1 and IKK redundantly drive NF-

kB activation when the IFN-I reaction is triggered by TBK1 and its

homolog, IKK (151). Inhibition by TBK1/IKK kinase indicates that

IRF3 activation highly depends on TBK1 kinase activity. In contrast,

NF-kB sensitivity to TBK1/IKK kinase inhibition is significantly

reduced, and TBK1 was dispensable for NF-kB activation

downstream of STING in vitro and in vivo (151). So, NF-kB
production can be activated by STING through a non-classical

pathway, a process that is independent of IFN-b (44). In addition,

non-classical STING signaling activates NF-kB pathways mainly

through K63-mediated ubiquitination and has no effect on IFN-I (38).

CDNs can inhibit osteoclast differentiation by inducing IFN-b
through STING signaling (19), suggesting that activation of STING

can inhibit osteoclast differentiation through IFN-b. A sustained

activation state of STING can cause a series of inflammatory

responses in the organism. NF-kB, acting as a pro-inflammatory

gene, is involved in osteoclastogenesis as another downstream of
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STING. In contrast to NF-kB, nuclear factor erythroid2-related factor

2 (Nrf2), a critical antioxidant molecule, has been shown to inhibit

osteoclast formation and bone resorption by reducing ROS (152). In

addition, Nrf2 negatively regulates STING signaling (153).

RTA-408 was found to act as an activator of Nrf2 that inhibits

STING expression and subsequent NF-kB activation but does not

affect IFN-b expression (21). RTA-408 inhibits RANKL-induced K63

ubiquitination of STING by suppressing the interaction between

STING and the E3 ubiquitin ligase TRAF6. As a downstream of

STING, NF-kB was also inhibited by RTA-408, mainly by suppressing

IkBa protein degradation, preventing p65 from translocating to the

nucleus and thus rendering NF-kB inactive. Overexpression of

STING rescued the inhibitory effect of RTA-408 on NF-kB
signaling and osteoclastogenesis. In vivo experiments showed that

RTA-408 attenuated osteoclastogenesis-induced bone loss in C57BL/

6 mice by inhibiting STING-mediated NF-kB (21). Thus, inhibition

o f STING-dependen t NF-kB s igna l ing cou ld inh ib i t

osteoclastogenesis and reduce bone loss. Targeting STING/NF-kB
may be a promising pathway for the future treatment of osteoporosis.
5 STING/type H vessels
and osteoporosis

In recent years, it has been found that in addition to osteogenic and

osteoclastic effects, angiogenesis also plays a vital role in bone

homeostasis in the mammalian skeletal system. Type H vessels that

can induce bone formation have been discovered recently and are

named for their high expression of EMCN and CD31 (154).

Angiogenesis, the development of new blood vessels from pre-

existing vessels, is closely associated with osteogenesis during skeletal

development and bone remodeling. Blood vessels provide bone tissue

with essential nutrients, oxygen, growth factors, and hormones and

play a crucial role in the regulation of bone formation (155).
5.1 Relationship between
type H vessels and osteoporosis

Osteogenesis is linked to angiogenesis (156). The close spatial and

temporal link between osteogenesis and angiogenesis has been termed

“angiogenesis-osteogenesis coupling” (157). Type H vessels are located

near the epiphyseal growth plate, the epiphyseal periosteum, and the

endosteum. Type H vessels are densely surrounded by osteoprogenitors

expressing Osterix, a potent promoter of bone formation (158). These

osteoprogenitor cells can differentiate into osteoblasts and osteocytes.

Under aging conditions, osteoblasts are significantly reduced in the long

bones ofmice (159), which is associatedwith a decrease in TypeHvessels

and reduced bone mass (160). The abundance of Type H vessels is an

essential indicator of bone loss in elderly subjects and patients with

osteoporosis (161).

PDGF-BB is a chemotactic and mitogenic factor of the PDGF

family, produced by hematopoietic stem cells (162). It is essential for

promoting the migration, proliferation, and differentiation of various

mesenchymal cell types, such as endothelial progenitor cells and

mesenchymal stem cells, to promote angiogenesis and osteogenesis

(163, 164). PDGF-BB enhanced type H vessels and bone formation
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during bone plastination and remodeling. The concentration of

PDGF-BB was decreased in the OVX mouse model (165).

Pharmacological stimulation was able to secrete PDGF-BB to

stimulate H-type angiogenesis, thereby promoting osteogenesis to

prevent bone loss in OVX mice (166). Glucocorticoids reduce

vascularity and blood flow to the bone, causing osteonecrosis and

bone loss (167, 168). Glucocorticoid-induced osteoporosis (GIO) is

also common osteoporosis. In GIO mouse models, glucocorticoids

inhibit PDGF-BB secretion by pre-osteoblasts, inhibiting Type H

vessels and reducing osteogenic capacity (169). And L-235, a

cathepsin K inhibitor, prevents bone loss by inhibiting osteoclast-

inducing bone resorption while maintaining PDGF-BB secreted by

preosteoclasts preserving Type H vessels (169).

HIF-1a is a transcription factor that mediates the cellular

response to an altered oxygen environment and controls

angiogenesis (170).HIF-1a plays a crucial role in bone formation,

regeneration plays a key role in bone formation and regeneration, and

its expression and activity are regulated by hypoxia Oxygen is

required for the high metabolic demand of osteoblasts. Therefore,

osteoblasts and nearby ECs may increase HIF-1a expression during

relative hypoxia during osteogenesis (155). And ECs express HIF-1a
at high levels in young mice, which decreases with age and is

associated with a decrease in ECs and age-dependent bone loss.

Activation of hypoxic signaling in ECs increased the number of

Type H vessels and enhanced angiogenesis and osteogenesis (171).

EC-specific deletion of HIF-1a resulted in a significant decrease in

osteoblast producers and was associated with reduced trabecular

formation. Thus, HIF-1a signaling is vital in regulating type H

vascular abundance and couples angiogenesis to osteogenesis (172).

Tetramethylpyrazine activates the AMPK/mTOR/HIF-1a signaling

pathway to induce type H vessel angiogenesis and improve bone

homeostasis in aging mice (173). This provides an additional

therapeutic target for the treatment of age-related osteoporosis.
5.2 Targeting STING/type H
vessels in osteoporosis

Type H vessels also play an indelible role in bone remodeling.

Osteoblasts, osteoclasts, and periosteal cells interact with vascular

endothelial cells. The STING signaling pathway may act directly on

these cells, thereby affecting the angiogenic process. Several studies

have shown an association between STING and angiogenesis. STING

is expressed in endothelial cells, and cGAMP leads to the activation of

cGAS-STING in endothelial cells (174, 175). STING-associated

vascular disease (SAVI) , with onset in infancy, is an

autoinflammatory disease caused by mutations in STING function,

which can cause vascular and pulmonary syndromes and cause

systemic inflammatory responses (176, 177).

Previous studies have shown that STING can affect angiogenesis in

multiple ways. In the zebrafish xenograft model, exogenous

administration of cGAMP can activate STING-dependent STAT3,

leading to the inhibition of tumor vascular proliferation and migration

(178). Palmitic acid (PA) induces mtDNA into the cytoplasm by

inducing mitochondrial damage, activating the cGAS-STING-IRF3

signaling (179). Activation of the cGAS-STING-IRF3 pathway

dysregulates the Hippo-YAP pathway and inhibits angiogenesis. In
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addition, STING-IRF3 can trigger endothelial inflammation in response

to PA-inducedmitochondrial damage (180). In retinalmicroangiopathy,

mtDNA drives inflammation of microvascular endothelial cells via the

cGAS-STING signaling pathway (181). Inflammation in the

physiological state is a protective mechanism for tissue damage and

the basis for tissue repair and regeneration. Nevertheless, an excessive

inflammatory response can impair the integrity of the tissue and its

function. The persistent inflammatory state of the vascular endothelium

leads to impaired angiogenesis andpoor bone healing, which affects bone

reconstruction (182).

Activation of the STING signaling pathway impairs angiogenesis,

including type H vessels. In addition, the prolonged inflammatory

response stimulated by the STING pathway delays the bone healing

process. Activation of STING inhibits angiogenesis both in vitro and in

vivo and slows the bone healing process in vivo (12). Conversely,

inhibition of STING accelerated bone healing by enhancing type H

vessel formation during coupled osteogenesis (12). Therefore, targeting

STING to enhance type H vessel formation and thus promote

osteogenesis provides a new idea for the treatment of osteoporosis.
6 Conclusions

Osteoporosis is a bonemetabolic disease and an aseptic inflammatory

disease. In recent years, bone immunology has become a hot research

topic in bone metabolic diseases by studying the functional interactions

between the skeletal and immune systems, including various cytokines

and transcription factors that affect both systems, to explore new

immunological therapeutic avenues for bone metabolic diseases.

STING is the core of natural immunity and a new target for

immunotherapy. The core of IFN-b treatment for osteoporosis is also

inseparable from bone immunology. With the discovery that IFN-b can

play a unique role in regulating bone homeostasis, targeting the STING/

IFN-b signaling pathway is also emerging as a potential therapeutic tool

for osteoporosis. However, the STING pathway has a dual role in bone

metabolism. In addition to its immune function, STING can also act as an

inflammatory protein to induce NF-kB, thereby mediating the

development and progression of various inflammatory diseases,

including osteoporosis. But in studies on osteoclastic inhibition by

STING/IFN-b, the effect of another STING downstream signaling

molecule, NF-kB, had rarely been considered, which is a drawback of

related studies. If NF-kB is not disturbed in the activation of STING/IFN-

b pathway to inhibit osteoclastic resorption, it will be amore rigorous and

appropriate choice. The classical STING/NF-kB pathway, the cGAS-

STING pathway, is dependent on the activation of TBK1, which not only

activates NF-kB but also mediates the production of IFN-b by activating

IRF3. In contrast, the non-classical STING/NF-kB pathway blocks the

production of IRF3/IFN-b in parallel. Inhibition ofNF-kB activation and,
thus, osteoclast differentiation by targeting STING without affecting the

level of IFN-b has been shown to alleviate bone loss in the OVX mice.

Therefore, targeting the STING/NF-kB pathway is also expected to be a

new therapy for osteoporosis. In addition, activation of STING leads to a

prolonged inflammatory response that delays revascularization and

inhibits the production of type H vessels, which are closely related to

osteogenesis and can induce bone formation. Targeting STING/type H
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vessels also promotes bone reconstruction and osteogenesis by promoting

tape H vessel formation. To enhance bone formation and inhibit bone

resorption, a STING inhibitor would be a reasonable choice if it were

designed to specifically target NF-kB rather than IFN-b.
Overall, STING has a unique role in osteoporosis. The drugs

commonly used in clinical to treat osteoporosis are mainly

bisphosphonates, which inhibit bone resorption, and calcitonin and

estrogen drugs, which can also promote osteoblastogenesis, but they all

have many side effects. Therefore, how to safely and effectively treat

osteoporosis remains a challenge to tackle. Targeted STING has been

applied in antiviral immunotherapy and does represent a rather

promising therapeutic option in the new field of treatment of

osteoporosis. Targeted STING not only has the ability to directly

inhibit osteoclast-mediated bone resorption and promote osteoblast-

mediated bone formation but also can promote type H vascular

angiogenesis to indirectly enhance the osteogenic effect. However,

the network of regulatory pathways involved in STING is also very

complex, and the decrease in IFN-b production-mediated bone

resorption due to STING activation is in contradiction with the

increase in bone resorption and decrease in bone formation

mediated by NF-kB activation and type H vascular inhibition.

Targeting STING as a therapeutic option for osteoporosis requires

balancing these conflicting biological effects. Therefore, there is still

much room for exploration of the STINGpathway in bonemetabolism.
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