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Leukemia-associated truncation
of granulocyte colony-
stimulating factor receptor
impacts granulopoiesis
throughout the life-course
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Clifford Liongue1,2 and Alister C. Ward1,2*

1School of Medicine, Deakin University, Geelong, VIC, Australia, 2Institute for Mental and Physical
Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
Introduction: The granulocyte colony-stimulating factor receptor (G-CSFR),

encoded by the CSF3R gene, is involved in the production and function of

neutrophilic granulocytes. Somatic mutations inCSF3R leading to truncated G-

CSFR forms are observed in acute myeloid leukemia (AML), particularly those

subsequent to severe chronic neutropenia (SCN), as well as in a subset of

patients with other leukemias.

Methods: This investigation introduced equivalent mutations into the zebrafish

csf3r gene via genome editing and used a range of molecular and cellular

techniques to understand the impact of these mutations on immune cells

across the lifespan.

Results: Zebrafish harboring truncated G-CSFRs showed significantly

enhanced neutrophil production throughout successive waves of embryonic

hematopoiesis and a neutrophil maturation defect in adults, with the mutations

acting in a partially dominant manner.

Discussion: This study has elucidated new insights into the impact of G-CSFR

truncations throughout the life-course and created a bone fide zebrafish

model for further investigation.

KEYWORDS

cytokine receptors, G-CSFR, leukemia, neutropenia, zebrafish
Abbreviations: aCML, atypical chronic myeloid leukemia; AML, acute myeloid leukemia; Cas9, CRISPR-

associated 9; CMML, chronic myelomonocytic leukemia; CNL, chronic neutrophilic leukemia; CRISPR,

clustered regularly interspaced short palindromic repeats; CSF3(R), colony-stimulating factor 3 (receptor);

dpf, days post fertilization; FSC, forward scatter; G-CSF(R), granulocyte colony-stimulating factor

(receptor); GFP, green fluorescent protein; gRNA, guide RNA; hpf, hours post fertilization; HRM, high

resolution melt; MDS, myelodysplastic syndrome; SCN, severe chronic neutropenia; SSC, side scatter;

WISH, whole mount in situ hybridization; Y, tyrosine.
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1 Introduction

The granulocyte colony-stimulating factor receptor (G-

CSFR) is a key regulator of neutrophil production, or

granulopoiesis, by impacting on the proliferation and

differentiation of precursors as well as enhancing neutrophil

survival (1, 2). The G-CSFR is activated by the cytokine G-CSF,

which is produced developmentally (3), but also in response to

injury and infection to stimulate so-called ‘emergency’

granulopoiesis (2). This cytokine is also used clinically in

situations where neutrophil numbers are low (4).

Acquired somatic mutations in CSF3R, the gene encoding G-

CSFR, have been found in a variety of leukemias (5). These

include nonsense and frameshift mutations within exon 17 that

serve to truncate the G-CSFR intracellular domain that are

observed in acute myeloid leukemia (AML), particularly

subsequent to severe chronic neutropenia (SCN) (6, 7), but

also de novo and relapsed forms of the disease (8–10). Similar

mutations have also been identified in chronic neutrophilic

leukemia (CNL), atypical chronic myelogenous leukemia

(aCML) and chronic myelomonocytic leukemia (CMML)

patients (9, 11–14), although these are usually co-incident with

alternative constitutively-activating G-CSFR mutations (15).

The locations of the receptor truncations are quite variable,

being found from position 738 through to 819 (5, 7–14). They

lead to hyperresponsiveness to G-CSF, enhanced signaling

particular of STAT5, and increased proliferation (16–18), with

the ability to mediate leukemic transformation in vitro (10).

Various mouse models of G-CSFR truncation mutations have

been generated by different gene targeting approaches (19–21).

While all exhibited enhanced responsiveness to G-CSF and

altered receptor internalization, they were variable with respect

to their effects on steady-state neutrophil levels.

Zebrafish has proven to be a robust experimental platform

for the study of blood and immune cell development and its

perturbation in disease (22). Zebrafish granulopoiesis occurs in

multiple waves like mammals (23). This includes a primitive

wave generating myeloid precursors in the rostral blood island

that differentiate into neutrophils as they migrate across the yolk

sac and a definitive wave that ultimately produces neutrophils

from the kidney marrow, the equivalent of mammalian bone

marrow (24). Zebrafish has been shown to have a structurally

and functionally conserved csf3r gene (3), which contributes to

neutrophil production throughout the life-course (25, 26). The

zebrafish csf3r gene was targeted with CRISPR-Cas9 to generate

truncating hyperresponsive G-CSFR mutations based on those

observed in leukemia. These csf3r mutant fish possessed

enhanced numbers of neutrophils during primitive and

definitive hematopoiesis, but in adulthood neutrophil numbers

were normal but maturation was reduced. Together these data

identify on-going impacts of G-CSFR truncations on neutrophil

production, and describe a useful in vivo model for

further studies.
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2 Materials and methods

2.1 Fish husbandry

Wild-type and Tg(mpo::GFP) zebrafish, in which

neutrophils are fluorescently marked (27), were maintained

using standard husbandry practices (28) in a Techniplast

aquarium system at 28.5°C with pH 7.0, ammonia <1.5

ppm, nitrite <3 ppm, nitrate <30 ppm and conductivity at

500 µS on a 14 h/10 h light/dark cycle and fed twice daily.

Embryos were manually spawned and maintained at 28.5°C in

petri dishes containing aquarium water and 0.00005% (w/v)

methylene blue. At 8 h post-fertilization (hpf) this was

replaced with aquarium water containing 0.003% (w/v)

1-phenyl-2-thio-urea (PTU) to inhibit pigmentation and

maintain embryo transparency.
2.2 Genetic manipulation and analysis

Wild-type embryos at the 1 cell stage were injected with 12.5

ng/mL CRISPR guide RNA (gRNA) that targeted a sequence

within csf3r exon 16 (CTGTTAGCAGGAGACGAGCC) in

order to recapitulate human truncation mutations and 100 pg/

nL Cas9 in sterile nuclease-free water along with 1:16 vol:vol 1%

(w/v) phenol red and raised to adulthood. These were out-

crossed with wild-type fish and carriers of relevant mutant alleles

identified from fin clips obtained under anesthesia with

benzocaine. Genomic DNA was isolated with QuickExtract

following the manufacturer’s instructions, and subjected to

PCR with csf3r-specific primers for High Resolution Melt

(HRM) analysis (29) with primers 5’-ATTCCTCCAACC

TCCAGC and 5’-CAGAGAAGCGGTTCAGTGC using

Precision Melt Supermix and Analysis Software (BioRad) to

identify potential mutants that were confirmed by Sanger

sequencing using the primers 5’-CAGTGCTGGTGTATC

TGTCCC and 5’-GCGAGTTAGATGTGATTGACC at the

Australian Genome Research Facility. These founder fish were

further out-crossed before being in-crossed to generate

homozygous mutant fish. One allele was also crossed onto the

Tg(mpo::GFP) (27) background. In some experiments in vitro

transcribed csf3amRNA was injected into 1-8 cell stage embryos

to stimulate the G-CSFR as described (30), since the encoded

ligand appears more potent than that produced by the alternate

orthologue csf3b (31).
2.3 Whole-mount in situ hybridization

Embryos were collected at appropriate time points reflecting

primitive (22 hpf) and definitive (5 dpf) waves of hematopoiesis

(24) and anesthetized with 0.4 mg/mL benzocaine before

fixation with 4% (w/v) paraformaldehyde in phosphate-
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buffered saline. Fixed embryos were stored at 4°C for at least 1

day, after which embryos were dehydrated with 100% (v/v)

methanol for long-term storage at -20°C. Rehydrated embryos

were subjected to WISH with anti-sense DIG-labeled probes

specific for blood and immune cell lineages as described (32, 33).

Stained embryos were mounted in 2% w/v methylcellulose and

visualized using MVX10 monozoom microscope with a

1 ×MVXPlan Apochromat lens (NA = 0.25) with an Olympus

DP74 camera. Quantitation was achieved by enumeration of

individual cells stained with the probe or measuring the area of

staining using ImageJ software in a blind fashion on images

taken on a dissecting microscope. Data were analyzed for

significance with a Student’s t-test, using Welch’s correction

where necessary.
2.4 Reverse-transcription polymerase
chain reaction

Total RNA was extracted from 20-30 pooled zebrafish

embryos with RNeasy Mini Kit (Qiagen) following the

manufacturer’s protocol, and subjected to quantitative real-

time reverse-transcriptase PCR (qRT2-PCR) with the primers

for actb (5’-TGGCATCACACCTTCTAC and 5’- AGACCA

TCACCAGAGTCC), and csf3r (5’- CAGAGAAGCGGT

TCAGTGC and 5’-ATTCCTCCAATCCTCCAGC). Data was

normalized relative to actb and fold-change in csf3r expression

calculated using the DDCT method (34).
2.5 Ex vivo analyses

Adult zebrafish were euthanized with benzocaine and

blood and kidney collected. Kidneys from fish on the Tg

(mpo::GFP) background were placed in ice-cold phosphate-

buffered saline supplemented with 1 mM EDTA and 2% (v/v)

fetal calf serum and passage through a 40 mm sieve. These

isolated kidney cells were analyzed using a BD FACSCantoII

analyzer with lineages identified in a SSC/FSC plot, and GFP+

neutrophils identified in the FITC channel, while apoptosis was

assessed using a PE-Annexin V/7-AAD apoptosis detection kit

(Biolegend). A minimum of 100,000 events were collected for

each sample using FACSCanto II flow cytometer (BD

Biosciences) and analyzed using BD FACSDiva software

(v6.0). Neutrophils were sorted on a FACSAriaIII (BD

Biosciences) for further analysis. Cytospin preparations of

blood and sorted GFP+ neutrophils were stained with

Giemsa (Sigma) and slides viewed on a Leica DME

stereomicroscope and imaged with a DP70 camera and

differential counts performed, with overall cell and nuclear

morphology used to stage neutrophils. Data were analyzed for

significance with a Student’s t-test.
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3 Results

3.1 Generation of zebrafish csf3r mutants
based on human hyperresponsive
truncation mutations

Truncation mutations affecting the human G-CSFR

intracel lular domain have been observed in AML,

commencing from position 739 through 819 (5, 8–10), and in

other leukemias from 738 through 791 (9, 11–14), with

truncations across this range able to mediate leukemic

transformation in vitro (10) (Figure 1A). The intracellular

domain is largely conserved in the zebrafish G-CSFR

(Figure 1A), and so exon 16 of the zebrafish csf3r gene was

targeted by genome editing using CRISPR/Cas9 (35) to

recapitulate the human mutations (Figure 1B). A guide RNA

(gRNA) was designed targeting sequences encoding a di-leucine

motif shown to play an important role in G-CSFR

internalization (17) (Figure 1C) that lies roughly in the middle

of the AML mutants (Figure 1C). Wild-type embryos injected

with this gRNA and Cas9-encoding mRNA at the one cell stage

were raised to adulthood, with their progeny subjected to HRM

and Sanger sequencing to identify potential csf3r mutations. A

total of four csf3r mutant alleles were identified with fish

carrying these alleles out-crossed before the resultant carrier

progeny were in-crossed with the mutations clearly evident

upon sequencing of homozygote carriers of each allele. Two

alleles were chosen: mdu26 containing a complex indel (1 bp

insertion and 8 bp deletion) and mdu27 containing a 5 bp

insertion (Figure 1C). Both mutations caused a frameshift

followed by a stop codon rendering the intracellular domain

truncated, specifically P751fs23* for mdu26 and L752fs2* for

mdu27, including the complete or partial loss of the di-leucine

motif in each case. Of the other alleles, one had a 1 bp deletion

leading to P751fs25* and so almost identical to mdu26, while

the other had a 17 bp insertion and 2 bp deletion resulting in a

5 amino acid insertion but no truncation, and so mdu26 and

mdu27 were chosen for further study. The mdu27 allele was

crossed with Tg(mpo:GFP) fish in which neutrophils are

fluorescently marked (27). Expression of csf3r was found to

be similar in wild-type and mutant embryos at several

timepoints (Figure 1D), ruling out any significant nonsense-

mediated decay (36).
3.2 Impact of G-CSFR truncation
mutation on embryonic
primitive hematopoiesis

Primitive hematopoiesis commences around 12 hpf in

zebrafish and is well established by 22 hpf (37). Both

heterozygous csf3rwt/mdu26 and homozygous csf3rmdu26/mdu26
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1095453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bulleeraz et al. 10.3389/fimmu.2022.1095453
embryos showed increased numbers of cells expressing mpo, a

marker of mature neutrophils (38), compared to csf3rwt/wt

embryos (Figures 2A–D). A similar increase in mpo was

observed in embryos homozygous for the other allele

(cs f3rmdu27 /mdu27 ) compared to cs f3rw t /w t embryos

(Supplementary Figures 1A–C). In contrast, no differences

were seen in the number of cells expressing spi1b, a marker of

myeloid precursors (39) (Figures 2E–H) or the area of

expression for gata1a, a marker of erythrocyte precursors (40)

(Figures 2I–L).
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3.3 Impact of G-CSFR truncation
mutation on embryonic definitive
hematopoiesis

Definitive hematopoiesis commences during the second day

post-fertilization (dpf) and fully supplants primitive hematopoiesis

by 5 dpf (22). At this time point, a significant increase inmpo+ cells

was observed in homozygous csf3rmdu26/mdu26 compared to csf3rwt/

wt embryos, but there was no longer a difference between

heterozygous csf3rwt/mdu26 and csf3rwt/wt embryos (Figures 3A–D).
A

B

D

C

FIGURE 1

Generation of leukemia-derived G-CSFR truncation mutants. Schematic diagram of the G-CSFR showing the extracellular immunoglobulin
domain (pink), cytokine receptor homology domain (orange) and fibronectin type III-like domains (purple), transmembrane region (green), and
intracellular region (blue) containing Box 1-3 (black rectangles). The intracellular region is expanded to show tyrosine (Y) residues and a di-
leucine motif (LL) in both human and zebrafish proteins, with the relative positions of truncation mutations found in various human leukemias or
demonstrated to be leukemogenic in vitro shown above (A). Exons 14-16 of the zebrafish csf3r gene encoding the intracellular region presented
as numbered boxes with connecting lines depicting introns (B). Sequence traces of the indicated part of csf3r showing homozygous wild-type
(wt/wt) and mutant zebrafish, with nucleotide sequence above and encoded protein sequences below, in purple for native and orange for de
novo sequence (C). The gRNA target site is shown above in blue, with deleted nucleotide sequences indicated with a brown dotted box and
inserted sequences shown with black boxes. The csf3rmdu26 (mdu26) allele represents a complex 1 bp insertion/8 bp deletion and the csf3rmdu27

(mdu27) allele a 5 bp insertion both of which cause a frameshift resulting in translation from an alternative reading frame followed by a stop
codon. Gene expression analysis of csf3r in pooled WT and mutant embryos at the indicated timepoints presented as fold-change (log2) relative
to actb (D), showing mean and SEM (not significant, n=3).
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A similar elevation in mpo+ cells was seen in homozygous

csf3rmdu27/mdu27 compared to csf3rwt/wt embryos (Supplementary

Figures 1D–F). In contrast, therewere nodifferences in the number

of cells positive for mpeg1.1, a marker of macrophages (41)

(Figures 3E–H), or the area of staining for rag1, a marker of T

cells (42) (Figures 3I–L), or of hbbe1.1, a marker of mature

erythrocytes (43) (Figures 3M–P).
3.4 Impact of G-CSFR truncation
mutation on adult steady-state
hematopoiesis

Adult blood samples were subjected to histological analysis,

which was quantified using differential counting. No significant

differences were observed between csf3rmdu26/mdu26, csf3rwt/mdu26

and csf3rwt/wt fish with regard to specific blood populations

(Figures 4A–D), which was confirmed in csf3rmdu27/mdu27 and

csf3rwt/mdu27 adults (Supplementary Figures 1G–J). The adult

kidney marrow was further analyzed in csf3rmdu27/mdu27
fish on

the Tg(mpo::GFP) background using FACS. The SSC/FSC plot

revealed a significant increase in the relative number of myeloid

cells in, with other populations concomitantly decreased

(Figures 4E–H). However, specific analysis of the GFP+

neutrophil population revealed no change in overall neutrophil

numbers (Figures 4I–L). Moreover, histological analysis of
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sorted GFP+ cells revealed a decrease in relative maturity of

neutrophils in both csf3rwt/mdu27 and csf3rmdu27/mdu27 compared

to csf3rwt/wt fish (Figures 4M–P).

Since G-CSFR signaling has been implicated in cell survival

(2), it was of interest to assess if this might explain the altered

granulopoiesis. However, no difference was observed for early

(AnnexinV+/7AAD-) and late apoptotic (AnnexinV+/7AAD+)

populations between csf3rmdu27/mdu27 and csf3rwt/wt fish in either

the total myeloid (Supplementary Figures 2A–D) or GFP+

neutrophil (Supplementary Figures 2E–H) populations.
3.5 Impact of truncating G-CSFR
mutants on emergency granulopoiesis

G-CSF is known for its key role in ‘emergency’ neutrophil

production such as during an infection (1, 2). Moreover, G-CSF is

directly administered to SCNpatients to alleviate neutropenia (44).

Therefore, it was important to identify the effects of G-CSFR

intracellular truncation mutations on emergency hematopoiesis

stimulated by G-CSF. Both csf3rmdu27/mdu27 and csf3rwt/wt embryos

were injected with csf3amRNA encoding a zebrafish G-CSF or left

uninjected, as previously described (3). WISH analysis revealed a

significant increase in mpo+ cells at 23 hpf following enforced G-

CSF expression in csf3rwt/wt embryos (Figures 5A, B, E), as expected

(3). Both uninjected and injected csf3rmdu27/mdu27 mutants had
A B D

E F G

I

H

J K L

C

FIGURE 2

Effect of G-CSFR truncation mutation on primitive hematopoiesis. Wild-type (wt/wt), heterozygous (wt/mdu26) and homozygous (mdu26/
mdu26) mutant csf3r embryos were subjected to WISH at 22 hpf with mpo (A–C), spi1b (E–G) and gata1a (I–K), with representative images
shown. Individual embryos were assessed for the number of mpo+ (D) or spi1b+ (H) cells or the area of gata1a (L) staining, with mean and SEM
in red and level of statistical significance indicated (***: p < 0.001, ns: not significant; n=20-30).
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significantly more neutrophils than the corresponding csf3rwt/wt

embryos (Figures 5A–E), but there was no significant difference in

neutrophil numbers in injected versus uninjected csf3rmdu27/mdu27

embryos (Figures 5C–E). A significant increase in mpo+ cells in

injected compared to uninjected csf3rwt/wt embryos at 5 dpf was

again evident (Figures 5F, G, J) and between uninjected csf3rmdu27/

mdu27 and both uninjected csf3rwt/wt (Figures 5F, H, J) and injected

csf3rmdu27/mdu27 embryos (Figures 5H–J), but not between the

injected csf3rmdu27/mdu27 and injected csf3rwt/wt embryos

(Figures 5G, I, J). This was confirmed in csf3rmdu27/mdu27 and

csf3rwt/wt embryos on the Tg(mpo::GFP) background

(Supplementary Figure 3).
4 Discussion

The G-CSFR has a pivotal function in the regulation of

neutrophil production and function, as well as hematopoietic

stem cell mobilization, particularly in ‘emergency’ situations (1,
Frontiers in Immunology 06
2). Mutations that render the G-CSFR non-functional have been

shown to result in profound neutropenia (45–47), which has

been verified in mice (19, 48). In contrast, mutations that

enhance G-CSFR signaling are associated with leukemias and

other myeloproliferative disorders (11, 12). These include

acquired truncation mutations first identified in SCN patients

with a strong predisposition to the development of AML (5, 49),

but also described in de novo and recurrent AML, as well as

CNL, aCML and CMML patients (8–14). These mutations serve

to truncate the G-CSFR intracellular domain, resulting in

hyperresponsiveness to G-CSF (5, 18, 49). Previous studies

have shown zebrafish possess a conserved G-CSFR, including

key residues critical for intracellular signaling (3), with

inactivating mutations of zebrafish G-CSFR able to reproduce

the sustained neutrophil deficiency observed in SCN (25, 26).

This study aimed to create truncating G-CSFR mutations in

zebrafish using CRISPR-Cas9-mediated genome editing and to

characterize their impact on primitive, definitive and

emergency hematopoiesis.
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FIGURE 3

Effect of G-CSFR truncation mutation on definitive hematopoiesis. Wild-type (wt/wt), heterozygous (wt/mdu26) and homozygous (mdu26/mdu26)
mutant csf3r embryos were subjected to WISH at 5 dpf with mpo (A–C), mpeg1.1 (E–G), rag1 (I–K) and hbbe1.1 (M–O), with representative images
shown. Individual embryos were assessed for the number of mpo+ (D) or mpeg1.1+ (H) cells or the area of staining for rag1 (L) or hbbe1.1 (P), with
mean and SEM shown in red and level of statistical significance indicated (***: p < 0.001, ns: not significant; n=20-28).
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Three mouse models of truncated ‘hyperresponsive’G-CSFR

mutants have been generated. One in which the endogenous

mouse gene was mutated (19) and another in which a truncated

human G-CSFR was expressed transgenically (21) showed

decreased peripheral neutrophils, although the bone marrow

contained normal neutrophil numbers and an elevated number

of immature myeloid cells. In contrast, an alternate mouse

model with targeted mutation of the endogenous gene showed

normal circulating neutrophil numbers, but elevation of band

and segmented neutrophils as well as progenitors in the bone
Frontiers in Immunology 07
marrow (20). The results in zebrafish adults are consistent with

this last mouse model, with the number of peripheral

neutrophils not significantly different between genotypes, but

those in the kidney marrow exhibiting reduced maturation. This

zebrafish study has allowed for the first time to assess the effect of

hyperresponsive truncating G-CSFR mutations on primitive and

early definitive hematopoiesis. Strikingly, during primitive

hematopoiesis, neutrophil numbers were elevated. While this

is clearly different to what is observed in adult mice and

zebrafish, it should be noted that G-CSF/G-CSFR signaling in
A B D

E F G

I

H

J K L
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FIGURE 4

Effect of G-CSFR truncation mutation on adult hematopoiesis. (A–D). Adult blood cells from wild-type (wt/wt), heterozygous (wt/mdu26) and
homozygous (mdu26/mdu26) mutant csf3r fish were subjected to Giemsa-staining (A–C), along with differential quantitation of the indicated
blood cell populations for individual fish (D), with mean and SEM shown in red and level of statistical significance indicated (ns: not significant;
n=4). Abbreviation: n: neutrophil. (E–P). Adult kidney cells from wild-type (wt/wt), heterozygous (wt/mdu27) and homozygous (mdu27/mdu27)
mutant csf3r fish on a Tg(mpo::GFP) background were subjected to FACS analysis using SSC/FSC (E–G) and GFP fluorescence (I–K), along with
quantitation of indicated cell populations (H) and GFP+ neutrophils (L), with sorted GFP+ cells subjected to Giemsa-staining (M–O), along with
differential quantitation of relative differentiation (P). Panels (H, L, P) display results for individual fish, with mean and SEM shown in red and level
of statistical significance indicated (*: p < 0.05, ns: not significant; n=4-9). im, immature; int; intermediate; m, mature.
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zebrafish has been shown to be particularly important for

primitive neutrophil production, with ablation of either

leading to an almost complete loss of this population (3, 26).

This developmental stage is therefore perhaps more comparable

to the situation when adult mice are injected with G-CSF, when

significant increases in neutrophils are observed. In contrast,

during early definitive zebrafish hematopoiesis the effects of G-

CSFR truncation were less marked, consistent with previous

studies showing the G-CSFR ablation has a more modest impact

on zebrafish neutrophils during this phase (3, 26). All mouse

models noted hyperresponsive to exogenous G-CSF resulting in

increased production of cells along the neutrophil lineage (19–

21). This collectively illustrates the complex regulation of

neutrophil production mediated by G-CSFR.

TruncatedG-CSFRmutants have been described extensively as

exerting a ‘dominant-negative’ effect on wild-type receptors (5).

However, thedatapresentedhere indicated that the truncating csf3r

allele was not strictly dominant over the wild-type allele. Notably,

heterozygous mutants were similar to homozygous mutants with

respect to primitive hematopoiesis, but more like wild-type fish

with respect to early definitive hematopoiesis and variable in adults.

Moreover, close examination reveals that this is also the case in

other studies. For example, while heterozygous and homozygous

mutant mice showed equivalent initial responses to G-CSF

injection, these were more sustained in homozygote animals (50).

In other studies, cells expressing both normal and truncated G-
Frontiers in Immunology 08
CSFR exhibited intermediate phenotypes or responses, including

with respect to sustained signaling and impaired internalization

(17, 50). Thus, truncating G-CSFR mutations should be more

accurately described as ‘co-dominant’. Indeed, there are good

biochemical rationale as to why this may be. Firstly, since

functional receptor complexes consist of multimers, a relevant

cell in a heterozygous individual will express a mixture of

receptor forms on their surface, a proportion of which will

contain only wild-type receptors able to signal normally.

Secondly, those receptor complexes that contain at least one wild-

type receptor chain will still interact with the normal regulatory

machinery. Thirdly, the enhanced signaling in heterozygote cells is

likely associatedwith increased expressionof SOCS3, a keynegative

regulator of the G-CSFR (51), enhancing its ability to act on those

receptor complexes carrying a wild-type G-CSFR chain, since it

retains the requisite SOCS3 binding site (52).

Zebrafish expressing truncated G-CSFRs did not exhibit overt

leukemia, which is also true of mouse models (19–21), confirming

that co-operating genes are absolutely required. In patients who

have acquired AML subsequent to SCN, a number of common

genetic lesions have been identified, including partial or complete

loss of chromosome 7 and activating RAS mutations (53, 54).

Inactivatingmutations in RUNX1 (55, 56) and CEBPA (57) as well

as the PML-RARa oncoprotein fusion (58) have been reported to

cooperate with truncated hyperresponsive G-CSFR mutations. In

addition, STAT5, which shows particularly strong sustained
FIGURE 5

Effect of G-CSFR truncationmutation on emergency hematopoiesis. Wild-type (wt/wt) and homozygous (mdu27/mdu27) mutant csf3r embryos, either
uninjected or injectedwithmRNA encoding G-CSF (+ csf3a) were subjected toWISHwithmpo during primitive (A–D) and early definitive (F–I) hematopoiesis,
with representative images shown. Individual embryos were assessed for the number ofmpo+ cells for primitive (E) and definitive (J) hematopoiesis, withmean
and SEM shown in red and level of statistical significance indicated (***: p < 0.001, *: p < 0.05, ns: not significant; n=17-30).
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activation by truncated G-CSFRs (17), has been implicated in

mediating the effects of truncated G-CSFRs (59). The zebrafish

model that was generated in this study will be highly valuable in

analyzing additional co-operating genes.

A range of other G-CSFR mutations have been identified that

are associated a variety of leukemias and myeloproliferative

disorders (5). These include activating mutations such as T618I

in CNL and related disorders (11, 55, 60), and a E785K

polymorphism associated with MDS (61). These exert distinctive

pathological effects, activate different (and sometimes overlapping)

pathways (11, 60), and have been demonstrated to respond

differentially to pharmacological agents. For example, the JAK2

inhibitor ruxolitinib has been shown to decrease proliferative

signaling and neutrophil count in patients with G-CSFR-T6181

mutationswhereas the SRC inhibitordasatinib (butnot ruxolitinib)

was able to selectively inhibit proliferation of cells expressing

truncated G-CSFRs (11). Analyzing the array of pathogenic G-

CSFR mutants in zebrafish provides an opportunity to explore the

specificity of their action, downstream pathways and therapeutic

sensitivity in the context of a whole animal, which is an exciting

prospect. Finally, the truncating mutations often occur

concurrently with these (and other) G-CSFR mutations (11, 55,

62), which could also be investigated in zebrafish.

This study has successfully created and characterized a

zebrafish model of hyperresponsive G-CSFR truncations.

Significantly enhanced neutrophil production was observed

throughout successive waves of embryonic hematopoiesis, but

a defect in neutrophil maturation was also evident in adult

kidney marrow. The G-CSFR truncation also displayed partial

dominance. Collectively, this has shed new light on the impact of

such mutations across the lifespan and generated a bone fide

zebrafish model to facilitate further clinically-relevant studies to

explore the role of co-operating mutations and genes, as well as

downstream effector pathways that may inform new approaches

to therapy, which could be readily trialed in this model.
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