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Review: The role of HMGB1
in spinal cord injury

Yizhang Mo and Kebing Chen*

Department of Spine Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China
High mobility group box 1 (HMGB1) has dual functions as a nonhistone

nucleoprotein and an extracellular inflammatory cytokine. In the resting

state, HMGB1 is mainly located in the nucleus and regulates key nuclear

activities. After spinal cord injury, HMGB1 is rapidly expressed by neurons,

microglia and ependymal cells, and it is either actively or passively released into

the extracellular matrix and blood circulation; furthermore, it also participates

in the pathophysiological process of spinal cord injury. HMGB1 can regulate the

activation of M1microglia, exacerbate the inflammatory response, and regulate

the expression of inflammatory factors through Rage and TLR2/4, resulting in

neuronal death. However, some studies have shown that HMGB1 is beneficial

for the survival, regeneration and differentiation of neurons and that it

promotes the recovery of motor function. This article reviews the specific

timing of secretion and translocation, the release mechanism and the role of

HMGB1 in spinal cord injury. Furthermore, the role and mechanism of HMGB1

in spinal cord injury and, the challenges that still need to be addressed are

identified, and this work will provide a basis for future studies.
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1 Introduction

High mobility group box 1 (HMGB1), also known as amphotericin or HMG1, is a

nonhistone chromatin binding protein first discovered in the 1960s. HMGB1 shows high

electrophoretic mobility when run on polyacrylamide gels, hence its name (1, 2). HMGB1

is highly conserved in evolution, and the HMGB1 in rodents shares 99% homology with

that in humans (3–5). HMGB1 is also expressed partially in the cytoplasm because it

shuttles back and forth from the nucleus (6). HMGB1 has the dual functions of a

nonhistone nucleoprotein and an extracellular inflammatory cytokine. HMGB1 binds

extensively to DNA in the nucleus and participates in transcriptional regulation, DNA

replication and repair, telomere maintenance and nucleosome assembly (7). Extracellular

HMGB1 is passively released or actively secreted by necrotic tissue or stress cells. As a

chemokine or cytokine, it binds to pattern recognition receptors (PRRs) to create a

damage-associated molecular pattern (DAMP) (6–12). HMGB1 plays an important role
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in many diseases, including traumatic shock, fatty liver disease,

septicaemia, autoimmune diseases, and cancer (8, 11, 13–15).

In recent years, the role of HMGB1 in spinal cord injury

(SCI) has attracted a great deal of attention. SCI is characterized

by sensory, motor and autonomic nerve dysfunction (16)

mediated by complex and diverse pathophysiological

processes, including neuroinflammation, neuronal death, glial

scar formation and axonal regeneration (17–20). The

concentration of HMGB1 in the injured area increases rapidly

and lasts for a long time (21–31), and it not only aggravates

injury by playing the role of an inflammatory cytokine, but it

also promotes the recovery of the injured spinal cord.

This article reviews the research progress of studies

investigating the expression and release of HMGB1 after SCI,

its effect on the injured spinal cord and its potential

therapeutic mechanism.
2 Main text

2.1 The structure of HMGB1 and the
lower function of the resting state

The HMGB1 protein is a highly conserved nuclear protein

that consists of 215 amino acids and has a molecular weight of

approximately 30 kDa. Structurally, HMGB1 is divided into the

following three functional regions: the A-box, the B-box and the

acidic C-terminus. The A-box and B-box are composed of 80-90

amino acid residues with similar amino acid repeat sequences

and nonspecific DNA-binding sites, and the B-box is the

functional structural region that causes inflammation (32, 33);

however, the A-box has a certain antagonistic effect on the B-box

(34). The acidic C-terminus containing aspartic acid and

glutamate is mainly involved in regulating the binding of

HMGB1 to DNA and mediating gene transcription and

chromosome unwinding (35). The B-box domain has two key

binding sites, Toll-like receptor 4 (TLR4) and a receptor for

advanced glycation end (RAGE) products, which regulate the

release of proinflammatory cytokines (36, 37). HMGB1 has two

nuclear localization sequences (NLSs); one is in the A-box, the

other is between the B-box and the C-terminal tail, and the

nuclear export signal (NES) is contained in the DNA-binding

domain (38).

During the resting state of HMGB1, it is located mainly in

the nucleus and it regulates key nuclear activities, including

transcription, replication, DNA repair and nucleosome

formation, all of which are important for maintaining steady-

state cellular function (7, 38).
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Collectively, these results show that HMGB1 is a highly

conserved protein with proinflammatory and anti-inflammatory

potential. In the resting state, HMGB1 is located mainly in the

nucleus and regulates physiological processes there; however,

there are no related studies on the structural and functional

changes to HMGB1 in the nucleus after SCI.
2.2 Expression of HMGB1 after SCI

After SCI, HMGB1 is expressed and released by neurons,

microglia/macrophages, and ependymal cells (21–23). After

injury, the expression of HMGB1 is rapidly upregulated and

released into the extracellular matrix and circulating blood,

which lasts for a long period of time. In a rat experiment, the

expression of HMGB1 mRNA and HMGB1 protein was found

to be upregulated 2-6 hours after SCI, the peak level was reached

1-3 days after injury, and this enhanced level lasted for 28 days

after SCI (21, 23, 39, 40); however, the number of HMGB1

positive cells in the spinal cord of injured rats was the highest 48

hours after injury (41). In addition, Fan et al. found that the

concentration of HMGB1 in serum increased significantly 3 days

after SCI (42). In a model of SCI using neurons in vitro, we

found that after injury, the concentration of HMGB1 in the

culture medium immediately increased to 5 ng and 17 ng/ml at 6

and 12 hours, respectively, and reached 19 ng/ml HMGB1 at 24

hours (27). Interestingly, in addition to the increased expression

of HMGB1 in the acute and subacute phases after SCI, the level

of HMGB1 also increased significantly in the chronic phase.

Papatheodorou et al. found that HMBG1 levels also increased

significantly in patients 5 or more years after SCI (43). However,

the findings of Fang et al. in zebrafish experiments suggested

different expression patterns of HMGB1, and these results

contradict the continuous increase in HMGB1 found by most

studies. The level of HMGB1 mRNA increased twofold at 4

hours after SCI, decreased 12 hours and 11 days after injury, and

increased again 21 days after injury (22).

Collectively, these results show that the expression of

HMGB1 increases rapidly after SCI and lasts for a long time,

even throughout the acute, subacute, and chronic stages,

implying that HMGB1 may affect the severity of SCI and the

process of recovery. In addition, the expression of HMGB1 was

still upregulated in the chronic phase after injury, and its specific

mechanism and effect still need to be explored. Moreover, the

specific mechanism of the new model of HMGB1 expression

remains to be further validated. Reguarding the role of HMGB1,

we speculate that the first increase in HMGB1 expression is

beneficial to protect injured neurons, then the decrease in
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HMGB1 expression is beneficial to reduce inflammation and

further reduce neuronal death, and then the continuous increase

in expression helps promote nerve regeneration and recovery of

the injured spinal cord.
2.3 Translocation time of HMGB1 after
SCI

After SCI, the expression of HMGB1 increases rapidly,

translocates from the nucleus to the cytoplasm; furthermore, it

may be released into the extracellular matrix through

cytoplasmic vacuoles. Two hours after SCI, the nuclear level of

HMGB1 increased significantly, and HMGB1 in the nucleus was

gradually released into the cytoplasm. Six hours after injury, the

cytoplasmic level of HMGB1 increased significantly. HMGB1 is

located mainly in the nucleus of neurons in the early stages after

SCI, and then it translocates to the cytoplasm a few hours later

(21, 27, 44). Interestingly, in a zebrafish SCI model, Fang et al.

found that HMGB1 was in the cytoplasm of motoneurons 4

hours after injury; however, 12 hours after injury, the

cytoplasmic HMGB1 level in motoneurons decreased. On the

21st day of SCI, the level of HMGB1 in the cytoplasm decreased,

but HMGB1 was again detected in the nucleus. HMGB1 exists in

the motoneuron nucleus and it translocates to the cytoplasm

after injury; furthermore, its expression is downregulated in

motoneurons (22). The most significant change in HMGB1

translocation after SCI in mice was in the macrophages at the

lesion centre and near the lesion boundary. HMGB1 could not

even be detected in the nucleus, while it was still found in small

cytoplasmic vacuoles, implying that HMGB1 may be packaged

in the cell to be secreted into the extracellular space (23).

Taken together, these results indicate that HMGB1 increased

in the nucleus and was released from the nucleus to the

cytoplasm and extracellular matrix; however, the specific time

and node of translocation have not been clarified.
2.4 Possible mechanism of HMGB1
release after SCI

The mechanism of secretion and release of HMGB1 in SCI

has not been specifically explained, but it is generally thought

that HMGB1 mainly comes from the secretion of inflammatory

cells and the release of dead neurons (21–23, 45, 46).

In SCI, HMGB1 may carry out nuclear and cytoplasmic

transport through acetylation, phosphorylation and methylation

of the nuclear localization sites (NLS). In a study of T.

thermophila CU 427 and CU 428, two NLSs were found to

control the nuclear localization of HMGB1 in the steady state

(47). Posttranslational modifications of the NLS site, including
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acetylation, phosphorylation and methylation, regulate the

ability of HMGB1 to be transported to the cytoplasm during

cellular stress (48–51). In a study of mouse fibroblasts, HeLa cells

and Saos-2 cells, it was found that excessive acetylation of lysine

at the NLS site was essential for the translocation of HMGB1

from the nucleus to the cytoplasm in monocytes stimulated by

LPS, TNF or IL-1. Inhibiting the peracetylation of the NLS, can

inhibit the translocation of HMGB1 from the nucleus to the

cytoplasm and block the translocation of HMGB1 from the

cytoplasm to the nucleus (2, 48, 52). In addition, the NLS site of

HMGB1 was found to be phosphorylated and translocated to the

cytoplasm of mouse macrophages stimulated by TNF (53). In

neutrophils, the methylation of the lysine site of HMGB1 NLS

was found to weaken the DNA-binding activity of HMGB1,

resulting in the passive diffusion of HMGB1 out of the

nucleus (49).

In SCI, the mechanism of extracellular secretion of HMGB1

is related to inflammation. Inflammation can induce many kinds

of cells to secrete HMGB1 (54, 55); however, HMGB1 cannot be

actively secreted through the conventional endoplasmic

reticulum-Golgi secretion pathway utilized by most soluble

secretory proteins (56, 57). At present, scholars have proposed

two forms of active release of HMGB1 (58). One is stimulation

and activation of the target cells, causing HMGB1 to be secreted

into the outer space of the cells (48, 59). The second is packaging

HMGB1 into intracellular vesicles, and then releasing HMGB1

outside the cell after the vesicles fuse with the cell membrane (60,

61). The latter is consistent with HMGB1 being in cytoplasmic

vacuoles in macrophages after SCI (23).

HMGB1 translocation and release during aseptic

inflammation can be regulated by calcium-mediated signal

transduction (50, 62, 63). Phosphorylation and release of

HMGB1 are regulated by activation of calcium-mediated

protein kinases, especially calmodulin-dependent protein

kinases (CaMKKs) (64–67). Calcium signal inhibitors inhibit

HMGB1 secretion and protect animals in various disease models

(50, 68). In addition, heat shock protein family A (Hsp70)

member 1A (HSPA 1A, also known as HSP72) can block

HMGB1 secretion in macrophages by inhibiting the

interaction between HMGB1 and XPO1 (69). In different

inflammation and injury models, peroxisome proliferator

activated receptor (PPAR) binds to specific ligands and

activates the transcription of PPAR target genes. The secretion

of HMGB1 in activated macrophages is negatively regulated by

PPAR (70). In contrast, JAK-regulated STAT1 and STAT3

activation plays an active role in the expression, modification

and/or release of HMGB1 (71–75), while extracellular HMGB1

can trigger the activation of the STAT1 and STAT3 pathways

(74–78). In addition, MAPK family members and inflammatory

bodies promote the release of HMGB1 in different inflammatory

and injury models (79–82). Deficiency of complement 5a
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receptor 2 (C5aR2) limits the activation of NLRP3 inflammatory

bodies and the release of HMGB1 in vitro (83).

Expression of the inflammatory cytokines TNF and NF-kB
were upregulated after SCI. TNF knockout or a TNF

neutralization antibody directly inhibited TNF and partially

inhibited HMGB1 release induced by IFN-g and LPS in

macrophages, indicating that the secretion of HMGB1 is

partially mediated by a TNF-dependent mechanism (84). In

addition, the NF-kB pathway is involved in the release of

HMGB1, and the inhibition of the classical NF-kB pathway

limits the secretion of HMGB1 in activated immune cells;

however, the target gene of NF-kB that causes the secretion of

HMGB1 is still unknown (85–87). Furthermore, the

involvement of TNF (the classical NF-kB target gene) in the

NF-kB dependent release of HMGB1 cannot be ruled out.

After SCI, HMGB1 can be passively released after various

types of cell death in response to various stimuli or injuries. In

addition, the release of many intracellular substances (cathepsin,

antioxidant enzymes, DNase, caspases) after cell death can also

promote the secretion of HMGB1 by inflammatory cells (81,

88–100).

In summary, although the secretion and release mechanism

of HMGB1 in SCI has not been specifically described, the release

mechanism of HMGB1 described in other fields if of great value.

In SCI, HMGB1 may be actively released by inflammatory cells

or passively released by necrotic neurons, and intracellular
Frontiers in Immunology 04
substances released by necrotic cells may further induce the

active secretion of HMGB1 (Figure 1).
2.5 HMGB1 may regulate cell migration
after SCI

Although the role of that HMGB1 plays in inducing cell

migration in SCI has not been reported, in other diseases,

HMGB1 has been found to induce cell migration by activating

RAGE or activating the CXCR4 receptor through a heterologous

complex with CXCL12. Many studies have shown that HMGB1,

as a potential host cell-derived chemokine, promotes the

migration of nerve processes and many cell types. These cells

include smooth muscle cells, myoblasts, tumour cells, hepatic

stellate cells, stem cells, endothelial cells, keratinocytes,

monocytes, dendritic cells and neutrophils (101–117).

RAGE is necessary for HMGB1-mediated cell migration.

HMGB1 triggers RAGE to induce the transcription of

chemokine genes such as CCL3, CCL4 and CXCL12, while

HMGB1-induced migration can quickly be blocked by anti-

RAGE or anti-HMGB1 neutralizing antibodies, confirming the

importance of RAGE in the process of migration (102, 118–121).

Recent studies have shown that the triggering of RAGE by

HMGB1 induces the transcription of chemokine genes such as

CCL3, CCL4 and CXCL12, and subsequently it participates in
FIGURE 1

Possible mechanism of HMGB1 release after SCI. After SCI, injured neurons passively release HMGB1, and the intracellular substances released
by necrotic neurons and inflammation lead to the active release of HMGB1 by microglia. P, phosphorylation. Ac, acetylation. CH3, methylation.
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cell migration (118, 119, 121). In addition, HMGB1 can induce

cell migration by forming heterocomplexes with CXCL12 is

mediated by CXCR4 receptors, and the HMGB1-CXCL12

complex is more effective in inducing monocyte migration

than CXCL12 alone (109, 122–124). By activating CXCR4

receptors, HMGB1-CXCL12 complexes recruit leukocytes from

the circulation, and then induce leukocytes to activate and

secrete cytokines and chemokines, thus promoting

inflammation (125, 126). Interestingly, HMGB1 not only

stimulates but also inhibits migration in some cells. For

example, exogenous HMGB1 selectively inhibits VEGF-

induced cell migration in pulmonary artery endothelial cells

(HPAECs), but does not inhibit human umbilical vein

endothelial cells (HUVECs). In addition, the IRF3-dependent

TLR4 pathway is necessary for HMGB1-mediated inhibition of

migration in HPAECs (115).

Collectively, these data show that HMGB1 can promote the

migration of a variety of cells, including inflammatory cells and

stem cells. Although the chemotaxis of HMGB1 has not been

studied in SCI, it remains possible that HMGB1 could induce

inflammatory cell migration to aggravate the inflammatory

response or promote injury recovery by inducing stem cell

migration following SCI.
2.6 HMGB1 induces an inflammatory
response after SCI

HMGB1 aggravates the inflammatory response after SCI.

We found that after SCI, HMGB1 and its receptors were

significantly colocalized in the white matter of the injured rat

spinal cord (21). After HMGB1 injection, the focus of activated

microglia was obviously in the ventral horn of the spinal cord

(23), but the lesion area of anti-HMGB1 mAb-treated mice was

significantly smaller than the lesion area of untreated mice (127–

129). HMGB1 is thought to aggravate SCI. To further investigate

its specific mechanism, Nakajo et al. found that anti-HMGB1

mAb treatment could protect the BSCB from damage caused by

SCI, reduce the level of AQP4 protein in the spinal cord, and

inhibit the swelling of the injured spinal cord. Anti-HMGB1

mAb inhibits inflammation after SCI in the early acute phase

and it can prevent BSCB destruction directly or indirectly by

inhibiting the expression of inflammatory cytokines and MMP

in SCI model mice. Anti-HMGB1 mAb can relieve SCI, oedema

and demyelination, thus promoting the recovery of the spinal

cord (27, 128).

After SCI, HMGB1 induces inflammation mainly by

activating microglia rather than astrocytes. Colocalization of

microglial activation and obvious neuronal loss occurs in the

spinal cord of rats with HMGB1 injection (23). HMGB1 has

been reported to induce inflammation by activating microglia/

macrophages (21, 44). In addition, further studies found that
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HMGB1 contributes to the development of the neurotoxic

inflammatory macrophages (M1) phenotype after SCI (23).

The mRNA levels of TNF-a, iNOS and CD86 increased

significantly in microglia treated with HMGB1, which

provided direct evidence for the activation of microglia to the

M1 phenotype by HMGB1. HMGB1 or RAGE inhibition can

inhibit the activation of macrophages/microglia to the M1

phenotype and promote the activation of macrophages/

microglia to the M2 phenotype after SCI (27, 42, 130).

Moreover, recombinant HMGB1 promoted the migration of

BV2 microglia, while the anti-HMGB1 polyclonal antibody

weakened the migration of BV2 microglia. The secretion of

HMGB1 after SCI has been reported to recruit microglia to

participate in the inflammatory response (27); however, HMGB1

failed to activate the classical inflammatory signalling pathway of

primary astrocytes, indicating that astrocytes may not be

induced by HMGB1.

After SCI, HMGB1 regulates the expression of inflammatory

factors and the inflammatory response through RAGE and

TLR2/4. HMGB1,TNF-a and RAGE are expressed in the same

apoptotic neurons after SCI (41). There was a significant

correlation between the levels of HMGB1 and NF-kB and the

expression of TLR4 and NF-kB protein after SCI (131). HMGB1,

TNF-a and RAGE are expressed in the same apoptotic neurons,

and the temporal expression patterns of RAGE and HMGB-1 are

similar (21, 41). The expression of RAGE, TNF-a, NF-kB IFN-g,
IL-1a, IL-6 and IL-17 increased in microglia treated with

HMGB1, while inhibition of HMGB1 decreased the levels of

RAGE, TNF-a, NF-kB IFN-g, IL-1a, IL-6 and IL-17 (27, 42).

HMGB1 induced inflammation by activating TLR2/4 or RAGE,

activating its downstream pathway and upregulating the levels of

TNF-a and NF-kB (28, 132–136). Interestingly, Wang et al.

found that the administration of recombinant HMGB1 did not

increase the levels of inflammatory cytokines TNF-a and IL-1b,
while blocking RAGE reduced the induction of cytokines

induced by LPS. It has been proposed that HMGB1/RAGE

does not directly increase proinflammatory cytokines, and the

effect of RAGE on cytokines may be related to pathogen-related

interactions (137).

Collectively, these results shown that the expression of

HMGB1 is upregulated after SCI, the inflammatory response is

aggravated by regulating the activation of microglia to the M1

phenotype, and the expression of inflammatory factors is

regulated by RAGE and TLR2/4. However, the studies of

Wang et al. indicate different possibilities, and the specific

mechanism remains to be further validated. In addition, these

studies investigated the role of HMGB1 in only acute and

subacute SCI. However, as the expression of HMGB1 is still

upregulated in the chronic phase of SCI, its specific role needs to

be further explored. Finally, extracellular HMGB1 can aggravate

the inflammatory response after SCI, but the specific changes in

nuclear HMGB1 after SCI are not clear, and its specific role
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needs to be understood.
2.7 Effect of HMGB1 on injured
neurons after SCI

After SCI, HMGB1 promotes neuronal death by promoting

nerve inflammation. After HMGB1 injection, focus of activated

microglia and the area of neuronal loss were determined.

Coculture of macrophages stimulated by HMGB1 with

neurons showed a decrease in axonal growth (23). Inhibition

of the HMGB1/TLR4/NF-kB signalling pathway can inhibit

neuroinflammation and apoptosis in SCI, reduce the damage,

oedema and demyelination, improve the survival rate of host

neurons, and promote the recovery of the spinal cord (24, 27, 28,

127, 128, 138–140) Interestingly, Song et al. found that

transplantation of HMGB1-preconditioned neural stem cells

can promote neuronal survival after SCI in rats, promote the

connection between relay neurons and motor neurons;

furthermore, the newly formed neural circuits greatly

improved motor recovery (25, 30). These findings are

consistent with the findings of Wang et al. in cerebral

ischemia-reperfusion injury. HMGB1 preconditioning can

significantly reduce neurological deficits, infarct size, brain

swelling, apoptosis and blood-brain barrier permeability in rats

with cerebral ischemia-reperfusion injury (141). In addition,

RAGE blockade was shown to not be conducive to neuronal

survival after SCI (137), and consistent with the findings of

Huttunen et al. HMGB1 can promote neuronal survival and

axonal growth by activating RAGE and increasing the expression

of the anti-apoptotic protein Bcl2 (142–145). HMGB1 is thought

to be beneficial for the survival of injured spinal cord neurons.

In summary, numerous studies have shown that HMGB1

can exa c e rb a t e n eu rona l i n j u r y by agg r a v a t i n g

neuroinflammation. Some studies have also suggested that

HMGB1 is conducive to the survival and recovery of injured

neurons. However, the specific mechanism by which HMGB1

protects injured neurons and promotes injury recovery is not

clear, and this does not rule out the possibility that HMGB1

indirectly injures neurons by promoting the inflammatory

response and protects neurons through direct action.
2.8 HMGB1 induces neuronal
regeneration after SCI

After SCI, HMGB1 promotes the growth of neuronal axons

and induces the differentiation of neural stem cells. Fang et al.

found that HMGB1 increased significantly and the number of

perivascular motoneurons increased significantly 6th days after

SCI. After inhibition of HMGB1, the number of detected axons

decreased significantly. HMGB1 is thought to participate in
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axonal regeneration and promote motor recovery (22). Further

in vitro experiments showed that HMGB1, especially when close

to the neuronal cell body, significantly increased neuronal

axonal growth (23). In addition, HMGB1 can also promote

neuronal differentiation. HMGB1 can induce the differentiation

of neural stem cells through the ERK signalling pathway and the

RAGE signalling pathway, while antagonism of these pathways

can reduce the expression of marker molecules in mature

neurons (25, 137). These results indicate that HMGB1 can

induce the differentiation and maturation of neural stem cells

through the ERK signalling pathway and the RAGE signalling

pathway. Interestingly, Palumbo et al. found that HMGB1 can

induce stem cells to migrate across the endothelial barrier in

vitro and in vivo (104). Thus, the role of recruiting stem cells in

the recovery of SCI remains to be explored.

Collectively, these results show that HMGB1 can promote

the growth of neuronal axons and induce the differentiation of

neural stem cells after SCI; although, the specific mechanism

needs to be further explored. In addition, in the chronic stage of

SCI, the upregulation of HMGB1 may be involved in regulating

neuronal regeneration and promoting motor recovery.
2.9 HMGB1: A potential target for clinical
treatment after SCI

After SCI, HMGB1 aggravates the damage by inducing

inflammation, and after treatment with hyperbaric oxygen,

shikorin, glycyrrhizin, Higenamine, ethyl pyruvate,

glycyrrhizin, Catalpol, Dihydrotanshinone I, mir-34a, anti-

HMGB1 mAb, etc., HMGB1 can reduce inflammation and

reduce spinal cord oedema, protect spinal cord neurons and

promote functional recovery after SCI by downregulating the

expression of HMGB1 and NF-kB (24, 26, 30, 42, 127–129, 131,

146–153). Among these studies, Higenamine induced an

increase in M2 macrophages and saw an enhanced the anti-

inflammatory effect (147). miR-34a, miR-129-5p, Catalpol and

shikonin-induced HMGB1 downregulate the NF-kB signalling

pathway involved in the decreased expression of TLR4 (24, 131,

148, 149, 151). Dihydrotanshinone I was shown to protects

against SCI in vivo through the HMGB1/TLR4/NOX4 pathway.

Ethyl pyruvate or glycyrrhizin we shown to reduce spinal cord

oedema by reducing the expression of AQP4 in the spinal cord of

rats with SCI (129). Furthermore, glycyrrhizin reduced the area

of the cystic cavity and glial scar formation (153). However, as

mentioned earlier, HMGB1 does not only induce inflammation

to aggravate SCI, but it also promotes neuronal regeneration.

Transplantation of neural stem cells pre-treated with HMGB1

promotes neuronal survival after SCI in rats. The motor recovery

of rats in the HMGB1 combination with neural stem cell group

was better than the motor recovery of rats in the single

transplantation group and in HMGB1 group (25) (Table 1).
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TABLE 1 Summary of targeted HMGB1 treatment of SCI.

S.N. Study Model Intervention and
Dosing Schedule

Observations References

1 SCI model of adult
SD rats established
by Allen gravity
drop method

HBO (8~10L/min, 2.5 ATA,
Once or twice a day.
Inhaling oxygen for 45
minutes at a time)

HMGB1 mRNA and protein expression water, NF-kB mRNA decreased averagely,
and Basso, Beattie and Bresnahan scores increased significantly after HBO
intervention.

(146)

2 SCI model of
contusion in
C57BL/6J WT male
mice

Higenamine (10 mg/kg, i.p.) HG decreased the expression of HMGB1, increased the expression of IL-4 and IL-
10, promoted the production of HO-1 and the activation of macrophage M2, and
increased the BMS score of mice.

(147)

3 SCI model of adult
SD rats established
by Allen gravity
drop method

HBO (8~10L/min, 2.5 ATA,
Once a day. Inhaling
oxygen for 45 minutes at a
time)

The production of HMGB1 mRNA, NF-kB mRNA, TLR4 protein and NF-kB
mRNA decreased, and BBB score increased. HMGB1 mRNA and TLR4 mRNA
were positively correlated with TLR4 protein.

(131)

4 SCI models of adult
male Sprague-
Dawley rats
established by
gravity drop
method

1.5 m L RAGE antibody (1
m g/ml) injected into the
affected area.

RAGE inhibition reduced the expression of Nestin in MAP-2, a marker of mature
neurons, and did not improve the Basso, Beattie, and Bresnahan (BBB) scores after
SCI.

(137)

5 SCI model of adult
male S D rats
established by Allen
gravity drop
method

Shikonin (10-100mg/kg,
i.p.)

Shikonin decreased the expression of HMGB1, TLR4 and NF-kB, alleviated
inflammatory reaction, spinal cord oedema and increased BBB score after SCI.

(148)

6 SCI model of male
SD rats established
by aneurysm clip
compression

Dexmedetomidine
intrathecal injection (1, 2,
and 4mg/kg)

Dexmedetomidine pretreatment increased the expression of a 7nAChR and
acetylcholine and activated PI 3 K/Akt, and increased the BBB score of mice after
SCI.

(40)

7 SCI model of
NOD-SCID female
mice established by
Infinite Horizon
Impactor

anti-HMGB1 (2-16 mg/kg,
i.p.)

After treatment with anti-HMGB1 antibody, the destruction of blood spinal screen
and the formation of oedema were alleviated, the survival from neurons was
increased, and the BMS score was increased, suggesting that the functional
recovery was increased. The subsequent hiPSC-NSC transplantation greatly
enhanced this recovery.

(127)

8 SCI model of adult
female S D rats
established by Allen
gravity drop
method

Ethyl pyruvate (50 mg/kg,
i.p.)
Glycyrrhizin (50 mg/kg,
i.p.)

Both EP and GL could effectively inhibit the expression of HMGB1 in spinal cord
and the level of serum HMGB1 in SCI rats, inhibit the activation of TLR4/MyD88/
NF-kB signal pathway, reduce the overexpression of SCI-related GFAP and AQP4
in spinal cord, improve the motor function of SCI rats, reduce the water content of
spinal cord and relieve spinal cord oedema.

(129)

9 SCI model of C57
BL/6 female mice
established by
Infinite Horizon
impactor

Catalpol (60 mg/kg, i.g) Catalpol treatment can reduce the expression of HMGB1/TLR4/NF-kB pathway
protein, inhibit apoptosis, reduce inflammation and oxidation, and increase the
BBB score of SCI mice.

(24)

10 SCI model of adult
female S D rats
established by Allen
gravity drop
method

Glycyrrhizin (100 mg/kg,
i.p.)

Glycyrrhizin decreased the expression of GFAP, CSPG, HMGB1 and NF-kB in
spinal cord, reduced the formation of glial scar and promoted the recovery of
hindlimb motor function in rats.

(153)

11 SCI model of male
SD rats established
by modified Tetzlaf
lateral spinal cord
compression

Glycyrrhizin (100 mg/kg,
i.p.)
FPS-ZM1 (1 mg/kg, i.p.)

Inhibition of HMGB1 or RAGE effectively reduced the number of harmful
proinflammatory macrophages/microglia and increased the number of anti-
inflammatory cells after SCI. Inhibition of HMGB1 or RAGE significantly reduced
neuronal loss and demyelination after SCI, and improved functional recovery after
SCI.

(42)

(Continued)
F
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In summary, HMGB1 plays a multifunctional role in SCI.

Inhibition of HMGB1 inhibits nerve inflammation and protects

the spinal cord; furthermore, HMGB1 can be used to protect

neurons, promote neuronal regeneration and induce neuronal

differentiation to promote the recovery of SCI. This information

will provide new theoretical support and therapeutic targets for

SCI; however, at present, research on treating SCI by targeting

HMGB1 is not sufficient, and its specific application scheme still

needs to be further explored.
3 Discussion

The HMGB1 protein is a highly conserved nonhistone binding

nuclear protein. Structurally, HMGB1 is divided into the following

three functional regions: the A-box, the B-box and the acidic C-

terminus, with similar amino acid repeat sequences and nonspecific

DNA-binding sites; the B-box is the functional structural region that

causes inflammation, the A-box has a certain antagonistic effect on

the B-box, and the C-terminal is involved mainly in regulating the

binding affinity of HMGB1 and DNA, mediating gene transcription

and chromosome unwinding. In the resting state, HMGB1 is located

primarily in the nucleus and it regulates key nuclear activities,

including transcription, replication, DNA repair and nucleosome

formation, all of which are important for maintaining steady-state

cellular function; however, there are no related studies on the

structural and functional changes in HMGB1 after SCI.
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After SCI, HMGB1 is expressed and released by neurons,

microglia/macrophages and ependymal cells. After injury, the

expression of HMGB1 is rapidly upregulated and released into

the extracellular matrix and circulating blood, where it remains

for a long time. Interestingly, in addition to the increased

expression of HMGB1 in the acute and subacute phases after

SCI, the level of HMGB1 also increased significantly in the

chronic phases. The expression of HMGB1 increases after SCI,

and it runs through the acute, subacute and chronic stages of

SCI, indicating that HMGB1 may affect the severity and recovery

process of SCI. In addition, the expression of HMGB1 is still

upregulated in the chronic phase after injury, and its specific

mechanism and effect still need to be explored. HMGB1

increased in the nucleus and it was then released from the

nucleus to the cytoplasm and extracellular matrix; however, the

specific time and node of translocation have not been clarified.

In SCI, the secretion and release mechanism of HMGB1 has

not been specifically described, but it is generally thought that

most HMGB1 comes from the secretion of inflammatory cells

and the release of dead neurons. Inflammation can induce many

kinds of cells to secrete HMGB1; however, HMGB1 cannot be

actively secreted through the conventional endoplasmic

reticulum-Golgi secretion pathway utilized by most soluble

secretory proteins. Scholars have proposed two mechanisms

for secretion. Among these, one mechanism hypothesizes that

HMGB1 is packaged into intracellular vesicles, and then

HMGB1 is released out of cells after the fusion of vesicles and
TABLE 1 Continued

S.N. Study Model Intervention and
Dosing Schedule

Observations References

12 SCI model of male
SD rats established
by aneurysm clip
compression

NSCs preconditioned with
1 ng/ml HMGB1 in 3 µl
DMEM

NSCs pre-treated with HMGB1-increased the number of functional Nissl bodies in
neurons, increased the number of bIII-tubulin+ cells in the injured spinal cord of
SCI rats, promoted the differentiation of NSCs into neurons and increased BBB
score.

(25)

13 SCI model of adult
SD rats established
by Allen gravity
drop method

Dihydrotanshinone I (2-4
mg/kg, p.o.)

DI treatment inhibited the levels of TLR4, MyD88, HMGB1, NOX 4, TNF-a, IL-
1b, IL-6, iNOS and TOS, increased the level of TAS, alleviated the pathological
injury caused by SCI and promoted the recovery of neurological function.

(26)

14 SCI model of
C57BL/6 female
mice prepared by
clamp method

Electroacupuncture (1.5 Hz/
7.5 Hz,1.0mA) was applied
to “jiaji” (EXH-B2) for 10
minutes, once a day for 5-
14 days, separately

After electroacupuncture treatment, the expression level of TLR4 protein, HMGB1
and Iba1 protein decreased significantly, the number of Iba1 positive cells and
HMGB1/Iba1 copositive cells in spinal cord decreased significantly, and the
morphology of microglia in spinal cord changed from overactivated state to resting
state. BBB score increased significantly.

(152)

15 SCI model of male
Wistar rats
established by
aneurysm clip
compression

1 mM ATRA-treated BM-
MSCs

ATRA-MSCs increased the levels of Beclin-1 and LC3-II, downregulated the levels
of proteins related to HMGB1/NF-kB/NLRP3 pathway, inhibited proinflammatory
cytokines, improved the motor activity of hindlimb, and contributed to the survival
of neurons, showing a greater beneficial effect than MSCs.

(31)

16 SCI model of male
SD rats established
by aneurysm clip
compression

Glycyrrhizic Acid (100 mg/
kg, i.p.)

GA significantly decreased the expression of HMGB1 and inflammatory factors
after SCI. GA decreased the phosphorylation of p38 and JunN-terminal kinase
proteins, but did not decrease their expression levels.

(44)
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the cytoplasmic membrane, consistent with the cytoplasmic

vacuoles of HMGB1 observed in macrophages after SCI.

After SCI, HMGB1 may promote the active release of

inflammatory cells through calcium-mediated signal

transduction in inflammation, HSPA1A inhibition of the

interaction between HMGB1 and XPO1, MAPK family

members, inflammatory bodies, activation of STAT1 and

STAT3 regulated by JAK, and upregulated expression of TNF

and NF-kB. HMGB1 may also be passively released by necrotic

neurons, and the intracellular substances released by necrotic

cells can also induce further active secretion of HMGB1.

HMGB1 that is secreted and released into the extracellular

space can induce the migration of inflammatory cells, aggravate

the inflammatory response by regulating the activation of

microglia to the M1 phenotype, and regulate the expression of

inflammatory factors through RAGE and TLR2/4. However, the

studies of Wang et al. show different results, and the specific

mechanism needs to be further explored. In addition, the above

studies address the role of HMGB1 only in acute and subacute

SCI; however, the expression of HMGB1 is still upregulated in

the chronic stage of SCI. Its specific role needs to be further

explored, and the possibility that HMGB1 promotes the recovery

of SCI cannot be ruled out. Moreover, extracellular HMGB1 can

aggravate the inflammatory response after SCI, but the specific

changes in nuclear HMGB1 after SCI are not clear, and its

specific role remains to be understood.

HMGB1 can aggravate neuronal inflammation and lead to

neuronal death, and it is also beneficial to neuronal survival and

recovery. However, the specific mechanism by which HMGB1

protects injured neurons and promotes injury recovery is not

clear, and possibility that HMGB1 injures neurons indirectly by

promoting the inflammatory response, while protecting neurons

through direct action has not been excluded. In addition, further

studies have found that HMGB1 can promote the growth of

neuronal axons and induce the migration and differentiation of

neural stem cells. The specific mechanism needs to be further

explored. In the chronic stage of SCI, the upregulation of

HMGB1 may be involved in regulating neuronal regeneration

and promoting motor recovery.

HMGB1 plays a multifunctional role in SCI. Inhibiting

HMGB1 inhibits nerve inflammation and protects the spinal

cord; furthermore, it can be used to protect neurons, promote

neuronal regeneration and induce neuronal differentiation to

promote the recovery of SCI. These findings provide a new

theoretical basis for studying SCI and new therapeutic targets for

SCI treatment. However, at present, research into the treatment

of SCI based on targeting HMGB1 is not sufficient, and its

specific application scheme still needs to be further defined.

For future research, we suggest focusing on the different

roles of HMGB1 in the nucleus and in the extracellular space
Frontiers in Immunology 09
after SCI, clarifying the specific secretion and release

mechanism, and determining the spatiotemporal relationship

of HMGB1 expression, the protective effect on neurons, and the

mechanism of promoting differentiation.

In summary, HMGB1 plays a complex role in SCI, and its

mechanism remains to be understood. Additional research will

provide a new theoretical basis and therapeutic target for the

treatment of SCI.
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