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Exosomes (Exos) as drug delivery vehicles have been widely used for cancer

immunotherapy owing to their good biocompatibility, low toxicity, and low

immunogenicity. Some Exos-based cancer immunotherapy strategies such as

tuning of immunosuppressive tumor microenvironment, immune checkpoint

blockades, and cancer vaccines have also been investigated in recent years,

which all showed excellent therapeutic effects for malignant tumor.

Furthermore, some Exos-based drug delivery systems (DDSs) for cancer

immunotherapy have also undergone clinic trails, indicating that Exos are a

promising drug delivery carrier. In this review, in order to promote the

development of Exos-based DDSs in cancer immunotherapy, the biogenesis

and composition of Exos, and Exos as drug delivery vehicles for cancer

immunotherapy are summarized. Meanwhile, their clinical translation and

challenges are also discussed. We hope this review will provide a good

guidance for Exos as drug delivery vehicles for cancer immunotherapy.

KEYWORDS

exosomes, immunotherapy, drug delivery system, immune checkpoint blockade,
tumor immune microenvironment
1 Introduction

Cancer has become a major cause of death worldwide. According to the latest

statistiscs, there will be a total of more than 1.9 million new cancer patients and 600

thousand cancer deaths in the United States in 2022, suggesting that cancer has seriously

threatened human health (1, 2). Although traditional therapeutics, including radiation,

chemotherapy and surgery, have shown a certain tumoricidal ability, there are still some

limitations (3, 4). These therapeutics often kill both cancer and normal cells, leading to

severe side effects and drugs resistance (5). Therefore, it is critical to find an effective

therapeutic approach with low or no side effects (6).
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Cancer immunotherapy is a novel therapeutic approach that

exploits the body’s own immune system to recognize and

eradicate tumor cells (3, 7). In order to achieve sustained

antitumor immune response, the cancer immunity cycle must

be repeatedly initiated and expanded (3), as shown in Figure 1.

Firstly, tumor cells release some tumor-specific immunogenic

antigens, and then, antigen-presenting cells (APCs) including

dendritic cells (DCs) and macrophages present antigens for the

activation of certain lymphocytes via major histocompatibility

complex I (MHC-I). After that, these antigens can be further

recognized by T cells including CD4+ T cells and CD8+ T cells

inside the lymph nodes, and thus resulting in specific immune

responses to the cancer cells. In this case, cancer immunotherapy

can specifically kill cancer cells with minimal effect to normal

cells, and induce immunological memory to trigger long-term

protection against tumor recurrence (5, 8). Therefore, cancer

immunotherapy has attracted widespread attentions in the field

of cancer therapy.
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Nowadays, a series of cancer immunotherapy approaches

including nonspecific immune stimulation (9), immune

checkpoint blockades (ICB) (10), and cancer vaccines (11, 12)

have been evaluated to modulate immune responses. Moreover,

some cancer immunotherapy drugs including cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) inhibitors (10),

programmed cell death 1 (PD-1) inhibitors and programmed

cell death 1 ligand 1 (PD-L1) inhibitors have been authorized by

the United States Food and Drug Administration (FDA) for

clinical use (13, 14). Although these inhibitors have shown

exciting outcomes, some shortcomings still exist. For instance,

many malignant tumors have the ability of releasing different

immunosuppressive molecules into the tumor microenvironment

(TME), promoting their immune escape or suppressing immune

reactions (15). Furthermore, their therapeutic effect is often

diminished by off-targeting delivery, the induction of immune

tolerance and evasion, and all these limit their applications (13,

16). In order to overcome these shortcomings, many researchers
FIGURE 1

Immune actions in the cancer immunity cycle. APCs present antigens which are released by tumor cells to lymphocytes. And then, these
antigens can be subsequently recognized by T cells located in the lymph nodes, thereby activating specific immune responses to the
tumor sites.
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focus on the application of drug delivery systems (DDSs). DDSs

can deliver payloads including immune checkpoint inhibitors

(ICIs) and immunosuppressive regulatory molecules to the

desired site and realize the sustained release of the drugs,

thereby improving the efficiency of cancer immunotherapy.

Currently, various DDSs, such as exosomes (Exos), liposomes,

and nanoparticles, have been extensively studied and hold great

promise in cancer immunotherapy.

Exos, one of drug delivery carriers, are 40–160 nm sized

extracellular vesicles secreted by live cells and can be found in

different types of biological fluids (e.g., serum, saliva, and urine)

(17). They possess many advantages such as small size, good

biocompatibility, low toxicity, and low immunogenicity (18).

Meanwhile, Exos can protect cancer immunotherapeutic agents

from degradation, thus increasing their circulation time and

targeting ability (19). Unlike liposomes and other synthetic drug

nanoparticle carriers, Exos are able to inherit the properties of

parent cells and obtain some components of parent cells such as

proteins, lipids and nucleic acids, which may endow them

homing effect and the ability to activate immune responses

(20). Moreover, Exos contain transmembrane and membrane

anchored proteins, which may enhance target cells’ endocytosis

and promote the delivery of their internal content (16). In

addition, Exos could be easily engineered to improve drug-

loading capacity and tissue-specific targeting (21). Therefore,

Exos are recognized as a promising drug carrier.

In order to promote the development of Exos in cancer

immunotherapy, in this review, we comprehensively summarized

the application of Exos as smart drug delivery vehicles for cancer

immunotherapy. First, the biogenesis and composition of Exos are

introduced. Then, Exos as drug carrier for cancer immunotherapy

are discussed. Finally, the clinical translation and challenges of Exos

as drug delivery vehicles are presented.
2 Exosomes

The name “exosome” (Exo) first appeared in 1981. At that

time, Trams et al. (22) extracted plasma membrane-derived

vesicles with 5’-nucleotidase activity, and referred the vesicles

as Exos. Exos are the important subset of extracellular vesicles,

possessing 40–160 nm particle size (23). A large number of

researches have proven that Exos can be actively secreted by

most, if not all, organisms including bacteria (24) and almost all

cell types (e.g., red blood cells (25), platelets (26), immune cells

(27), fibroblasts (28), endothelial cells (29), epithelial cells (30)

and tumor cells (31). Their secretion mechanism is simple, and

the scheme is shown in Figure 2. It is generally recognized that

the generation of Exos involves three major steps: invagination,

multivesicular bodies generation, and secretion (32, 33). The

generation of Exos begins with the inward budding of the plasma

membrane and generates several endocytic vesicles which

encapsulate proteins both on the surface of the plasma
Frontiers in Immunology 03
membrane and in the extracellular matrix (32). And then,

early sorting endosomes (ESEs) are formed under the effect of

the endocytic sorting complex and the proteins required for

transport. After that, ESEs mature into late sorting endosomes,

and continue inward invagination to form multivesicular bodies

(MVBs). Finally, MVBs, which contain many intraluminal

vesicles (ILVs), can either fuse with the cytoplasmic

membrane to release Exos into the extracellular environment

or fuse with lysosomes or autophagosomes to be degraded.

It is generally believed that the biogenesis of Exos is a tightly

controlled process. In brief, two potential mechanisms are

involved in this process: endosomal sorting complexes

required for transport (ESCRT) dependent mechanism and

ESCRT-independent mechanism (34). Of which, ESCRT

provides a crucial mechanism for the formation and sorting of

the ILVs (35). ESCRT consists of a five-part protein complex

with different roles including ESCRT-0, -I, -II, -III and the AAA

ATPase Vps4. Specifically, ubiquitin-binding ESCRT-0 binds

directly to specific structural domains of the endosomal

membrane through the action of hepatocyte growth factor-

regulated tyrosine kinase substrate (HRS) with endosomal-

specific phosphatidylinositol 3-phosphate (PtdIns-3-P) (36).

Then, ESCRT-I and ESCRT-II are recruited by the interaction

between HRS and the ESCRT-I subunit TSG101 (37), and the

complexes further recruit ESCRT-III which consists of various

soluble coiled-coil-containing proteins Vps2, Vps20, Vps24, and

Snf7 to form a protein complex which is involved in promoting

the inward budding processes (38). The ESCRT-III complex

drives vesicle division and is dissociated and recovered from the

MVB membrane through the mediation of the AAA ATPase

Vps4 (39). An increasing number of studies demonstrated that

several ESCRT-related proteins can affect the secretion of Exos

(40, 41). For example, the experimental results of twenty-three

components of the ESCRT machinery in Exos biogenesis and

related proteins in MHC II-expressing HeLa cells by RNA

interference (RNAi) have shown that silencing of HRS,

STAM1 and TSG101 can reduce secretion of Exos and

decrease the expression of MHC II and CD63 proteins (40,

41). Meanwhile, silencing of VPS4B increased secretion of

exosome marker proteins (CD63, MHC II, HSC70), and

depletion of ALIX enhanced MHC II-expression on Exos and

secreting cells (40). Another research also showed that ESCRT-

III-associated protein ALIX interacts with cytoplasmic adaptor

syntenin, thus promoting the intraluminal budding of

endosomal membrane and Exos’ secretion (42). Likewise, the

depletion of ESCRT-III and its associated proteins, including

CHMP4C, VTA1, increased Exos’ secretion (42).

Exos are regarded as small “progeny” of parental cells,

because it contains components of parental cells. They contain

thousands of proteins, lipids and nucleic acids, and the scheme is

presented in Figure 2. Typically, Exos contain a variety of non-

specific proteins, including heat shock proteins (HSP70, HSP90),

membrane transport proteins (such as annexins and flotillin),
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cytoskeletal proteins (myosin, actin and tubulin), MHC proteins

(MHC I and MHC II) (43), adhesion molecules (CD11b and

CD54) (44), and tetraspanins protein superfamily (CD9, CD63

and CD81) which is considered as the marker protein of Exos

(45). Moreover, ALIX and TSG101 proteins aforementioned are

also the important components of Exos. Cell type-specific

proteins have also been discovered in Exos, such as the A33

protein secreted by the human colon tumor cell line LIM1215

(46), further suggesting that their composition is related to the

type and physiological condition of the source cells. In addition,

Exos also possess extensive lipids, cholesterol, sphingomyelin,

glycosphingolipids and different patterns of RNAs including

mRNAs and non-coding RNAs (e.g., miRNAs, circRNAs,

lncRNAs, ribosomal RNAs (rRNAs) and transfer RNAs

(tRNAs)) (47, 48). Of which, bioactive lipids play an

important role in the stability and structural rigidity of Exos,

cholesterol can regulate Exos’ secretion, and sphingomyelin

triggers calcium influx (47). Meanwhile, exosomal miRNAs,

such as miR-214, miR-29a, miR-1, miR-126, and miR-320,

participate in angiogenesis, hematopoiesis, exocytosis, and

tumorigenesis (48). Moreover, exosomal lncRNAs as an

intercellular signaling are also involved in the development of

oncogenesis and regulation of the TME.
Frontiers in Immunology 04
3 Exos as drug delivery carrier for
cancer immunotherapy

3.1 The source of Exos

Exos, especially these secreted from tumor cells and immune

cells, may influence the phenotype and immune function of

target cells (49). In order to better understand the source of Exos

as drug delivery carrier, in this section, we summarized the

characteristics of immune cell-derived and tumor cell-derived

Exos (TEXs).
3.1.1 Immune cells-derived Exos
Immune cells mainly include DCs, macrophage, B

lymphocytes, T lymphocyte cells, etc. Phagocytes (e.g.,

macrophages and neutrophils) and natural killer (NK) cells act

as the first line of defense against pathogens, rapidly activating

the innate immune response and killing pathogens; T cells, B

cells and related cytokines can activate specialized humoral and

cellular immune responses, respectively (50). However, Exos

produced by immune cells are able to inherit the properties of

parent cells and participate in the innate and adaptive immune
FIGURE 2

The biogenesis and composition of Exos. ER; Endoplasmic reticulum, MVB; Multivesicular Body.
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responses (20). Therefore, a large number of researches have

used immune cells-derived Exos as drug carriers for

cancer immunotherapy.

DCs are classical APCs that stimulate specific antigenic

immune responses (23). DCs-derived Exos (DEXs), which

mainly contain MHC-I, MHC-II, costimulatory molecules

(CD80 and CD86), heat shock proteins (HSP70 and HSP90)

and adhesion molecules (ICAM-1) (51), are the most widely

used immune cells-derived drug carrier. They can activate T cells

to kill cancer cells through directly binding of MHC-peptide

complex and costimulatory molecules to T cell receptors (TCR)

(51). Moreover, DEXs also can present the MHC-peptide

complex to another DCs which is possibly an inactivated DC,

thereby increasing the expression of the MHC-peptide complex,

and subsequently leading to large-scale activation of T cells (52).

In fact, DEXs have the same therapeutic effect as the parent DCs.

For example, genetically modified DEXs contain Th2 cytokines

(e.g., IL-4 and IL-10) and apoptotic proteins (e.g., FASL) to

inhibit inflammation and ameliorate the extent of collagen-

induced arthritis (53). In contrast, NK cells derived Exos

contain NK markers like CD56, NKG2D, CD94, CD40L and

killer proteins (e.g., FASL and perforin) (54). NK cells-derived

Exos can induce tumor cells apoptosis by significant activation of

caspase death pathways via perforin and FASL (55, 56). In

addition to killer proteins, NK cell-derived Exos may also

carry tumor suppressor miRNAs such as miR-186, and thus

inhibiting tumor growth and TGFb1-dependent immune

escape, and all of which exhibited the therapeutic potential of

NK cell-derived Exos (57).

Macrophage-derived Exos, another immune cells-derived

Exos, exhibit pro-inflammatory and pro-tumor functions,

which mainly depend on the phenotype of macrophages (M1

and M2 subtypes) (58, 59). For instance, M1 phenotype

macrophages-derived Exos (M1-Exos) can activate NLRP3

inflammasomes to enhance the cytotoxicity of T cells and NK

cells and thus inhibiting the growth of tumor (20). Moreover,

they can also upregulate the expression of miRNAs (e.g., miR-

146a, miR-146b and miR-21-3p) and resolve inflammation by

inhibiting NF-kB and TLR signaling pathways (60, 61).

Meanwhile, a study has proven that M1-Exos can repolarize

M2 tumor associated macrophages (TAMs) to M1 macrophages,

resulting in pro-inflammatory cytokines releasing and

synergistic effects of anti-PD-L1 in tumor immunotherapy

(62). In contrast, M2 phenotype macrophages derived Exos

showed the ability to suppress T-cell function and participate

in tumor proliferation, migration, angiogenesis, and facilitate

tumor immune escape (63).

In addition, B lymphocytes and T lymphocyte cells are also

immune cells used for Exos generation. B lymphocytes derived

−Exos contain CD19, B cell-specific markers, and the

immunogenic molecules (e.g., MHC-I, MHC-II, CD40, CD54

and CD86), which stimulate T lymphocytes proliferation,

activation and T(H)2-like cytokine production (64–66).
Frontiers in Immunology 05
Meanwhile, T cell-derived Exos express TCR, adhesion factors

and various markers including CD2, CD3, CD4, CD8, CD11c,

CD25, CD69, LFA-1, CXCR4, FASL, GITR (67). In general, T

lymphocyte cells are classified into two phenotypes: CD4+ T cells

and CD8+ T cells (68). Depending on their functions and the

expression of antigens, CD4+ T cells are further classified as

regulatory T cells (Tregs), Th cells and follicular helper T cells

(Tfhs) (67). The Exos secreted by different phenotypes T cells

have distinct regulatory effects on immune cells and non-

immune cells (67). For example, Exos purified from CD8+ T

cells generate proliferation in autologous resting cells and

produce a higher proportion of CD8+ T cells (69). CD8+

cytotoxic T lymphocyte (CTL)-derived Exos have a potent

benefit when used as DDSs for tumor immunotherapy since

the inherited CTL properties. Exos derived from IL-12-

stimulated CTLs could directly activate naive CD8+ T cells in

the absence of antigen, producing IFN-g and granzyme B, and

eliminating tumor cells (70, 71). Conversely, Treg-derived Exos

contain specific molecular cargo (let-7b, let-7d, miRNA-155 and

iNOS) and cooperate with cytokines (IL-10 and TGF-b) to

perform immunosuppressive functions (72).

Furthermore, other immune cell-derived Exos as drug

delivery carrier, including neutrophil-derived Exos (73), mast

cell-derived Exos (74), eosinophils-derived Exos (75) and

myeloid-derived suppressor cell-derived Exos (76), also

showed an essential role in the immune microenvironment,

participating in immune regulation, inflammatory responses,

intercellular communication, etc. (77, 78).
3.1.2 Tumor-derived Exos
In general, TEXs are rarely used as drug carriers for cancer

immunotherapy, which mainly because they accurately

reproduce the content of parent tumor cells (79–82), and

transfer oncogenic signals including activated oncoproteins,

transcripts, oncogenic DNA sequences and oncogenic micro-

RNAs (83–85) to surrounding immune cells, stromal cells and

other tumor cells, and induce various functional changes in the

ce l l s (86–89) . However , TEXs a l so conta in some

immunostimulatory molecules, such as CD80, CD86, MHC

complexes (90, 91). They can act as adjuvants and participate

in antigen presentation, and thus stimulating the activation of

immune response (92). For example, TEXs serve as effective

carriers of the chemotherapeutic drug methotrexate

and simultaneously act as immunomodulators, stimulating

the recruitment of large quantity of neutrophils to the

cholangiocarcinoma tumor region and activating the

neutrophil anti-tumor response to alleviate obstructive

extrahepatic cholangiocarcinoma (93). TEXs are also

important mediators in intercellular communication and

immune regulation, and the ability of TEXs to protect internal

proteins or nucleic acids from degradation makes TEXs the most

promising choice as diagnostic and prognostic biomarkers (94).
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Currently, TEXs are widely used as diagnostic biomarkers for

non-small cell lung cancer (95), pancreatic cancer (96),

colorectal cancer (97), and gastric cancer (98).
3.2 Drug-loading strategy

Various studies have suggested that exosome is a potential

drug delivery carrier due to its high biocompatibility, low

toxicity, low immunogenicity and the ability of crossing

natural barriers (99). Various drug-loading strategies have

been designed and developed, including incubation (100),

physical loading techniques (e.g., electroporation, ultrasound

and extrusion) (101, 102), and cell engineering techniques

(103), etc. Their pros and cons are presented in Table 1.

Incubation is the simplest drug-loading method, where the

drug diffuses into the exosome membrane or cell membrane

according to a concentration gradient (99). Up to now, three

incubation strategies have been developed: direct incubation,

transfection reagent-mediated incubation, and source cell-

mediated incubation (118). They present multiple advantages

such as simple operation, no special equipment requirement,

preservation of exosome integrity and with minimum damage to

Exos and drugs, and these drug-loading strategies have been

applied to load different types of drugs. For example, study

showed that ExoCe6+R848 was constructed by simple co-incubation

of HEK 293T cell-derived Exos with Chlorin e6 (Ce6) and

immune adjuvant R848 to reprogram immunosuppressive

M2-like phenotypic macrophages and restore the immune

microenvironment (119).

Although some payloads cannot be loaded by co-incubation,

commercial reagents with better transfection efficacy (e.g.,

lipofectamine and dharmaFECT3) have been applied to load

drugs into Exos (120, 121). For instance, PD-L1 siRNA can be

entrapped by Lipofectamine® 2000, and then, adding Exos

inside can decrease its cytotoxicity and improve its targeting

(120). In addition, source cell-mediated incubation was also

utilized to obtain DDSs (122). Specifically, donor cells were co-

incubated with drugs, causing the secretion of Exos loaded with

active drug components (123). Although incubation presents

many advantages, the variety of encapsulated drugs is limited

and the drug-loading efficiency is relatively low (124).

Physical loading methods including electroporation,

ultrasound and extrusion have also been widely applied to

load drugs (125). Electroporation is a strategy that drugs are

instantaneously loaded into Exos under an electrical impulse

(126). In this situation, when the transmembrane potential

reaches a certain threshold, a hydrophilic channel is formed in

the membrane allowing small molecules hydrophilic nucleic

acids to be rapidly loaded by the electric field, followed by self-

healing of membranes, which can improve the drug-loading
Frontiers in Immunology 06
efficiency (127). In view of this, bone marrow mesenchymal stem

cell (BM-MSC) Exos were loaded with galectin-9 siRNA by

electroporation and modified with oxaliplatin (OXA) prodrug as

an immunogenic cell death trigger to disrupt tumor

immunosuppression by M2 TAMs and recruit cytotoxic T

lymphocytes, achieving significant therapeutic efficacy in the

immunotherapy of pancreatic ductal adenocarcinoma (128). In

another study, it was indicated that the loading efficiency of

electroporation was three times higher than that of normal

incubation (129). Although electroporation showed high drug-

loading efficiency, it may damage the intact structure of the Exos

and cause cargo aggregation. Therefore, in order to solve these

shortcomings, various innovative electroporation strategies were

developed to load cargo into Exos (130, 131). Chang et al. (130)

batch-produced a 3D NEP chip with a uniform and parallel

nanochannel array. The results indicated that this chip showed a

significant higher efficiency and transfection uniformity. In

addition, our groups (131) developed a cellular nanoporation

(CNP) biochip with 500 nm nanochannels, and the scheme is

presented in Figure 3. In this work, pores were produced in the

cell membrane under transient electrical pulses, and DNA

plasmids were shuttled from the buffer into cells. The

experimental results indicated that this approach causes less

cellular damage and produces more than 50-fold Exos than that

of conventional strategies. Moreover, more than 1000-fold

mRNA transcripts were loaded inside compared to control.

Different from this, the ultrasound method allows the drug to

enter the Exos via disrupting the Exos membrane by mechanical

shear (132). However, ultrasound can result in a degree of

membrane damage (106). Extrusion is a technology that

breaks the exosome membrane by external force, allowing the

mixture of Exos and drugs to recombine into a new exosome

(110). Though physical loading methods have been widely used,

they also exist some limitations, such as damage the stability and

integrity of Exos, specialized equipment requirement and

limitation of production scale (118).

In addition to above-mentioned approaches, cell engineering

technology is also a drug-loading method. It is a technology that

modify the donor cells through gene editing technology or other

methods to secrete Exos with target proteins on the cell surface.

This approach is the most well-established and complex method,

and has been extensively applied to load cargo into Exos (133,

134). Yong et al. (117) developed Exosome-sheathed

doxorubicin-loaded PSiNPs (DOX@E-PSiNPs) generated by

exocytosis of the tumor cells after treatment with DOX-loaded

porous silicon nanoparticles (PSiNPs), penetrating deep into the

tumor and exhibiting significant tumor toxicity. In spite of the

wide range of applications and greater scope for manipulation of

cellular engineering modifications, there are still limitations,

such as complicated operations and uncertainty about the

cargo of Exos and the amount of cargo (135).
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3.3 Exos-based cancer
immunotherapy strategies

Exos as a promising drug carrier show the advantage of good

biocompatibility, low toxicity, and low immunogenicity. Exos-

based cancer immunotherapy strategies including tuning of

immunosuppressive tumor microenvironment (ITME), ICB,

and cancer vaccines have been widely applied, as shown in

Table 2. In order to better understand these strategies, their

research status was summarized below.

3.3.1 Tuning of immunosuppressive
tumor microenvironment

As is known to us, TME is very complex and comprised of

multiple components including cytokines, inflammatory

cytokines, extracellular matrix and blood vessels, etc. (3). It
Frontiers in Immunology 07
plays an important role in the recruitment of immune cells

and tumor progression (143). However, some cancer cells may

evade immune systems due to the downregulation of tumor

assoc ia ted ant igens , h igh infi l t r a t ion of mul t ip le

immunosuppressive cells such as TAMs, and low expression of

ant i tumor cytokines (144) . In addi t ion , both the

physicochemical properties of cancer cells (e.g., hypoxia and

weak acidity) and the abnormal metabolic activities can also

promote the immune escape of tumors, resulting in an ITME,

which becomes one of the major obstacles in cancer

immunotherapy (136). Therefore, tuning of ITME can

efficiently enhance cancer immunotherapeutic effects.

TAMs, essential elements of the immune responses in TME,

play a critical role in inhibiting tumor growth and metastasis (6).

TAMs were divided into two phenotypes: tumor-suppressing

M1 macrophages and tumor-promoting M2 macrophages. In
FIGURE 3

Schematic representation of CNP-generated EVs for targeted nucleic acid delivery (Reprinted with the permission from Ref. 131). Abbreviation:
CNP: Cellular Nanoporation; BBB: Blood Brain Barrier; BBTB: Blood Brain Tumor Barrier.
TABLE 1 The pros and cons of exosomes-based drug-loading strategies.

Drug-loading
strategies Pros Cons Ref

Incubation
Simple operation; No special equipment required; Preservation
of exosome integrity; Little damage to exosomes and drugs

Low drug loading efficiency; Cause
cytotoxicity

(99, 100, 104, 105)

Ultrasound High drug loading efficiency Exosome membrane damage (106–109)

Extrusion High drug loading efficiency; Uniform exosome particle size After reintegrating exosome integrity damage (110–113)

Electroporation High drug loading efficiency
Exosome aggregation; Require process
optimization; Damage to exosome integrity

(101, 102, 107, 114)

Cell Engineering
Techniques

Well-established operating strategy; Toxicity reduction
Complicated operation; Uncertainty of
exosomal contents and the amount of cargo

(103, 115–117)
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general, TME promotes the functionality of TAMs into M2

phenotypes, and M2 macrophages produce immunosuppressive

cytokines to facilitate tumor progression (145). In contrast, M1

macrophages are activated by pro-inflammatory cytokines,

resulting in tumor suppression (146). Thus, regulation of

macrophage polarization from M2 phenotypes to M1

phenotypes can efficiently inhibit cancer progression. In order

to reactivate TME and enhance the efficiency of breast cancer

therapy, Zhao et al. (6) designed and established exosome

delivery system derived from M1 macrophage (DTX-M1-Exo).

The results indicated that DTX-M1-Exo can promote the

development of naïve macrophages into M1 phenotype.

Meanwhile, M1 macrophages was long-term maintained by
Frontiers in Immunology 08
modulating mitochondrial function. DTX-M1-Exo showed a

great antitumor therapeutic efficacy. Similarly, Zhou et al.

(128) designed and developed a pancreatic-targeting Exos-

based dual delivery biosystem (iEXO-OXA) for pancreatic

immunotherapy, and the scheme is shown in Figure 4A). In

their work, Exos were secreted from bone marrow mesenchymal

stem cell. Galectin-9 siRNA was loaded inside Exos by

electroporation method, and OXA was modified on the surface

to trigger immunogenic cell death. The results indicated that

iEXO-OXA promoted the polarization of M2 phenotype to M1

phenotype upon disrupting the combination of galectin-9 and

dectin 1, and TME was reprogrammed, increasing anti-tumor

immunity for pancreatic cancer. Moreover, researches showed
TABLE 2 The samples of Exos-based DDSs for cancer immunotherapy.

DDSs Exos source Disease Kind of study Immunotherapy
strategy Immunotherapy efficacy Ref

PTX-M1-Exos
M1-polarized
macrophages

Breast
cancer

In vivo; breast
xenograft tumors
model

Tuning of ITME High anti-tumor effects (109)

Exo@DOX–EPT1 Milk

Oral
squamous
cell
carcinomas

In vivo; oral squamous
cell carcinoma
xenograft tumors
model

pH targeting and
tuning of ITME

High effectively treat oral
squamous cell carcinomas

(136)

cGAMP@dual-antiExos Melanoma cell Melanoma In vitro; B16F10 cells ICB
Effectively activating immune
response and inhibiting of
immune escape

(137)

Exos encapsulated with
sonosensitizers Ce6 and
immune adjuvant R848

HEK293T cells
Prostate
cancer

In vivo; mouse brain
inflammatory model

Tuning of ITME
Activating effector T cells and
reverting the immunosuppressive
microenvironment

(119)

Engineered multifunctional
immune-modulating Exos

Expi293F cell

Triple
negative
breast
cancer

In vivo, NOD.Cg-
Prkdcscid Il2rgtm1Wjl/
SzJ (NSG) mice model

ICB
Activating T cells and eliciting
robust anticancer immunity, and
thus killing cancer cells

(138)

CpG-SAV-exo Tumor cell
Murine
melanoma

In vivo, B16BL6
tumor-bearing mice
model

Antigen presentation
and T-cell activation

Presenting stronger in vivo
antitumor effects in B16BL6
tumor-bearing mice

(9)

Exos loaded CD62L and
OX40L

HEK293T cells
Metastatic
breast
cancer

In vitro; 4T1 syngeneic
mouse model

Tuning of ITME
Activating effector T cells and
inhibiting Treg induction, and
inhibiting tumor development

(139)

iEXO-OXA
Bone marrow
mesenchymal
stem cell

Pancreatic
cancer

In vivo, Rthotopic
PANC-02/luci tumor-
bearing mice model

Tuning of ITME
Achieving significant therapeutic
efficacy in cancer treatment

(128)

Exos with MART-1 peptide
and CCL22 siRNA

Immunogenically
dying tumor cells

Bladder
cancer

In vivo; bladder cancer
mice model

Cancer vaccines High anti-tumor effects (140)

Exos CAR-T cell

Triple-
negative
breast
cancer

In vivo; triple-negative
breast cancer model

T-cell activation
Showing a highly effective tumor
inhibition rate

(141)

SMART-Exos Expi293 cells
Breast
Cancer

In vitro; breast cancer
cells (HCC 1954 cells)

T-cell activation
Showing a highly effective tumor
inhibition rate

(142)

PTX-M1-Exos; M1-exosomes loading paclitaxel, ITME; Immunosuppressive tumor microenvironment, Exo@DOX–EPT1; Exosome-doxorubicin-anthracene endoperoxide derivative,
ICB; Immune checkpoint blockades, Ce6; Chlorin e6, CpG-SAV-exo; CpG-SAV-exosomes, iEXO-OXA; Exosomes losding oxaliplatin; Exos, Exosomes.
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that high molecular-weight folic acid could suppresses M1

macrophage polarization and enhance M2 polarization,

resulting in immunosuppression (15). In order to modulate

TME, Feng et al. (15) designed and fabricated folic acid

modified exos with expressing of human hyaluronidase

(PH20) drug delivery platform (Exos-PH20-FA) for cancer

therapy. The results indicated that Exos-PH20-FA can degrade
Frontiers in Immunology 09
high molecular-weight folic acid to low-molecular-weight folic

acid and polarize macrophages to the M1 type, thereby

improving the efficiency of cancer therapy. Meanwhile, Exos-

PH20-FA also reduced tumor cell metastasis, which provides a

promising treatment for cancer.

Persistent inflammation is also another characteristic of

TME (146). It can induce stromal destruction and normal
A

B

C

FIGURE 4

(A) Pancreatic-targeting exosomes-based dual delivery biosystem for pancreatic immunotherapy and reprogramming tumor microenvironment
(Reprinted with the permission from Ref. 128); (B) The Scheme of NEs-Exos system for glioma immunotherapy (Reprinted with the permission
from Ref. 147); (C) The preparation scheme and therapeutic process of Exo@DOX–EPT1 for oral squamous cell carcinoma (Reprinted with the
permission from Ref. 136). iEXO-OXA, Exosomes losding oxaliplatin; ICD, immunogenic cell death; EPT1, Endoperoxide derivative; NPs,
Nanoparticles; DOX, Doxorubicin; ROS, reactive oxygen; Ce6, Chlorin e6.
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tumor vasculature, and thus inhibiting tumor growth.

Researches showed that the secretion of pro-inflammatory

cytokines, such as TNF-a, can trigger the apoptosis of cancer

cells in tumor site (148). Wang et al. (109) established DDSs

based on M1-EXOs. The results indicated that the expression

level of caspase-3 and pro-inflammatory cytokines were

elevated when M1-Exos were exposed around macrophages.

Macrophages were polarized to M1 phenotype, and thus

enhancing antitumor activity. In addition, in recent years,

inflammatory TME targeting has been recognized as a

promising and attractive therapeutic strategy. Encouraged by

these, Wang et al. (147) designed and developed a neutrophil-

Exos (NEs-Exos) system to deliver DOX for glioma

immunotherapy, and the scheme is shown in Figure 4B). First,

they isolated Exos from neutrophil by ultracentrifugation

technique. And then, DOX was loaded inside Exos by

sonication. The cellular uptake and the effect of NEs-Exos in

vitro were investigated. In addition, the tumor-targetability and

anti-glioma effect of NEs-Exos were also examined in vivo. The

results indicated that NEs-Exos not only present the ability of

crossing blood brain barrier, but can also respond to

inflammatory stimuli and move to inflamed glioma site.

In addition, owing to high glycolysis rate and increased

production of lactate, weak acidity becomes another distinct

hallmark of ITME, and it can induce irreversible tumor

metastasis and promote the tumor growth (149). Therefore,

many researchers were devoted to develop pH-responsive DDSs

to target tumors and improve tumor therapy efficiency. Kim et al.

(149) fabricated a pH-responsive DDSs based on i-motif-modified

Exos (Exo-i-motif) to delivery DOX for anti-proliferation activity.

The results indicated that Exo-i-motif showed significant anti-

proliferation effect in MCF-7/MDR cells. Meanwhile, hypoxia is

another feature of ITME and it can promote the tumor growth

(149). In this situation, the reactive oxygen (ROS) secreted could

correct hypoxia in TME and suppress cancer cells. Therefore,

targeting acidic TME and correcting the hypoxic TME is also a

promising approach for cancer therapy. Based on these, Zhang et al.

(136) established a novel pH/light sensitive drug delivery platform

using milk-Exos (Exo@DOX–EPT1) in squamous cell carcinoma

therapy, and the scheme is shown in Figure 4C). In their work,

DOX was conjugated to the membrane of Exos by a pH-cleavable

bond which can target acidic microenvironment. Endoperoxides

and Ce6 were both incorporated inside the Exos. The results

indicated that Exo@DOX–EPT1 can be efficiently accumulated in

tumor site and DOX was specifically released by acid environment

stimulation. Ce6 could produce plasmonic heat upon NIR

irradiating and ROS was effectively released to kill cancer cells.
3.3.2 Immune checkpoint blockade
ICB as an emerging cancer immunotherapy can block the

regulatory receptors which are expressed on immune cells or

tumor cells, and thus activating antitumor cytotoxic T-cell
Frontiers in Immunology 10
responses and improving cancer therapy efficiency (110, 150).

In the past years, PD-1 and CTLA-4 inhibitory receptors were

extensively studied and undergone clinic success (151). Despite

ICB showed excellent cancer therapy effects, and some inhibitors

including anti-CTLA-4 and PD-L1 monoclonal antibodies have

been approved by FDA, however, some limitations still exist

such as high off-target, low objective response rate and the risk of

immune-related side effects (152). Therefore, in order to solve

aforementioned drawbacks, many researchers focus on ICB

inhibitors DDSs. For instance, Fan et al. (137) developed an

Exos-based DDSs (named as cGAMP@dual-anti-Exos) in which

anti-PD-L1 and anti-CD40 were all engineered on the surface of

Exos for cancer immunotherapy, and the scheme is shown in

Figure 5A). Firstly, lipophilic DSPE-PEG-anti-CD40 and DSPE-

PEG-PLGVA-anti-PD-L1 were synthesized and applied to

donor cells. Meanwhile, immune drug (2’-3’-cyclic guanosine

monophosphate-adenosine monophosphate (cGAMP)) was also

incubated with donor cells. And then, cGAMP@dual-anti-Exos

was generated with these molecules loaded inside. The results

indicated that cGAMP@dual-anti-Exos presented excellent

targeting and anti-tumor effects, since PLGVA peptides could

be cut off by the matrix metalloproteinase enzyme (MMP-2)

inside the TME, and anti-PD-L1 was separated from Exos to

achieve ICB (137). Similarly, Zhou et al. (153) designed and

fabricated exosome-mimetic nanovesicles co-loading CD73

inhibitor (AB680) and PD-L1 antibodies (AB680@EMVs-

aPDL1) to target bladder cancer, and the scheme is presented

in Figure 5B). In this work, macrophage cell line (RAW264.7

cells) was chosen to secret exosome-mimetic nanovesicles and

AB680 was loaded inside by coextrusion method. After that, PD-

L1 antibodies was conjugated to the surface of the exosome-

mimetic nanovesicles for ICB. The results suggested that

AB680@EMVs-aPDL1 was conducive to drive the transition of

CD8+ T-cells into effector cells owing to the existence of CD73

molecules. Moreover, a more efficient antitumor effect to PD-1

inhibition and better tumor regression were presented owing to

a higher CD8+/CD4+ ratio in bladder cancer. In addition, the

toxicity and biosafety in vivo were also evaluated, indicating that

AB680@EMVs-aPDL1 was safe and had low toxicity. This work

also provides a new and useful strategy for bladder

cancer immunotherapy.

CTLA-4, which belongs to the CD28 receptor family, is

overexpressed on the activated T cells and Tregs (10). It interacts

with CD80/CD86 molecules expressed on the APCs and

impedes T-cell activation and downregulates immune

responses (21). Therefore, blocking the interaction between

CTLA-4 and CD80/CD86 molecules on the APCs can activate

T cells and enhance tumor immunotherapeutic efficacy.

Recently, many researchers focus on this therapeutic strategy.

For example, Phung et al. (10) constructed an exosome-based

drug delivery platform (EXO-OVA-mAb) in which Exos were

secreted from DCs and anti-CTLA-4 antibody was modified on

their surface. EXO-OVA-mAb presented stronger ability of
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activating T cells than others and increased the CTLs/Treg ratio

within the tumor site, and this phenomenon may be attributed to

the crucial role of anti-CTLA-4 antibody. Moreover, EXO-OVA-

mAb also increased the level of IFN-g and TNF-a in both serum

and tumors, and thus enhancing cancer therapeutic effect.

CD47 as another immune checkpoint is also overexpressed

on the most tumor cells, and it often interacts with signal
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regulatory protein a (SIRPa) on phagocytic cells, which

activates “don’t eat me signal” of CD47 and leads tumor cells

to escape from immune monitoring (16). Therefore, blocking the

interaction between CD47 and SIRPa can enhance tumor

therapeutic efficacy. Based on this strategy, Koh et al. (155)

designed and developed SIRPa-Exos for interfering CD47-

SIRPa interaction to enhance cancer immunotherapy. In their
A B

C

FIGURE 5

(A) The fabricated scheme of cGAMP@dual-anti-Exos and the process of cancer immunotherapy (Reprinted with the permission from Ref. 137). (B) The
scheme of AB680@EMVs-aPDL1 for bladder cancer therapy (Reprinted with the permission from Ref. 153). (C) The mechanism of cRGD-Exo/siMix for
colorectal cancer immunotherapy in vivo (Reprinted with the permission from Ref. 154). PD-1; Programmed cell death protein 1, PD-L1; Programmed
cell death ligand; MMP-2; Matrix metalloproteinase enzyme; cGAMP; 2’-3’-cyclic guanosine monophosphate–adenosine monophosphate; AB680;
CD73 inhibitor, EMVs; Exosome-mimetic nanovesicles, aPDL1; Monoclonal antibody targeting programmed cell death ligand 1; cRGD-Exo/siMix; a
cyclic RGD peptide (cRGD)-modified exosome delivery system that simultaneously delivered FGL1 and TGFb1 siRNAs.
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work, plasmid DNA encoding SIRPa variant was firstly

constructed and cocultured with HEK293T cells. And then,

engineered Exos with SIRPa proteins were obtained by

ultracentrifuged method. Finally, the anti-tumor effect was

evaluated in mouse model. The results indicated that SIRPa-
Exos presented higher CD47 affinity than control Exos, and

enhanced tumor cell phagocytosis in vitro and in vivo. In

addition, the existence of SIRPa-Exos also improved the

infiltration of CD8+ T cell, suggesting that SIRPa-Exos could

efficiently induce tumor phagocytosis and lead to anti-tumor T

cell response.

In addition, silencing the expression of tumor immune

checkpoint is also another strategy for cancer immunotherapy.

Pei et al. (154) established a cyclic RGD peptide (cRGD)-modified

exosome co-loadedwith siFGL1 and siTGF-b1 (cRGD-Exo/siMix)

for colorectal cancer immunotherapy by ICB, and the scheme is

shown in Figure 5C). cRGD-Exo/siMix can efficiently deliver

siFGL1 to silence the expression of tumor immune checkpoint

ligand FGL1, and T cells were significantly activated.

3.3.3 Exosomes-based
therapeutic cancer vaccines

It is well known that cancer immunotherapy is largely

dependent on the functions of APCs and T cell, because the

cancer immunity cycle must be repeatedly initiated and expanded

to achieve sustained cancer immune response. In viewof this,many

researchers focus on cancer immunotherapy via Exos-based

therapeutic cancer vaccines.

DEXs have been widely used in therapeutic vaccines as an

effective alternative to tumor antigens and have tremendous

potential for cancer immunotherapy due to their features of long

validity period and easily being engineered (156). DEXs express

peptide/MHC-I and peptide/MHC-II complexes (pMHC I and

pMHC II), heat-shock proteins (HSP), costimulatory molecules

(CD80, CD86) and adhesion molecules, and they are involved in

antigen uptake and presentation, and also activation of the

antitumor response in CD4+ and CD8+ T cells (157), and the

interaction mechanism is shown in Figure 6. Research found

that Exos secreted from a-fetoprotein (AFP)-expressing DCs

(DEXAFP) stimulated CD8+ T lymphocytes to express IFN-g and
secrete IL-2, which leaded to the reduced CD25+Foxp3+ Treg,

IL-10 and TGF-b in the tumor microenvironment (158).

DEXAFP elicited potent antigen-specific immune responses and

was proved to be a cell-free vaccine for immunotherapy.

Furthermore, a novel EXO-T vaccine was developed which

converted the exhausted T cells into tumor-specific effector CTL

via the CD40L signaling pathway of CD4+ T cells to stimulate a

more massive CTL anti-tumor response (159). Moreover, HER2-

specific exosome (EXO)-T vaccinewas also developed to trigger the

activation of immune responses and assist in the treatment against

HER2-positive breast cancer (160).

In general, TEXs can also interfere with the immune system

by delivering tumor antigens to DCs. However, because TEXs
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have the dual role of immunosuppressive and immune activating

effects, there is a concern that TEXs will block antigen processing

and presentation in DCs (161–164). Study showed that TEXs

could be used for vaccine with immunostimulatory effects

because they have the same rejection antigens as tumor cells

(165). Recently, TEXs containing tumor-specific antigens were

extracted from autologous tumor tissue to regulate the Th1

immune response in melanoma, and they blocked tumor growth

and metastasis (166). However, the immune response elicited by

TEXs is relatively weak which results in the unsatisfactory

antitumor effect, so efforts have been made to generate vaccine

systems, such as artificially modified TEXs and TEXs-loaded

DC, with higher immunogenicity, (167). Common strategies for

TEXs modifications include genetic modification (168), external

stimulation of donor cells (169), and incorporation of fusion

proteins (170). CIITA (Class II transactivator) gene was

transduced into B16F1 murine melanoma cell line (B16F1-

CIITA) by genetic engineering, and the secreted Exos (CIITA-

Exo) expressed high level of MHC-II as well as the tumor

antigen TRP2. CIITA-Exo enhanced the splenocyte

proliferation and IL-2 secretion, and induced inflammatory

cytokines (such as TNF-a and IL-12) mRNA production, so

that CIITA-Exo had a more potent anti-tumor immune

response compared to control Exos (168). In addition,

Morishita et al. (9) chose TEXs as tumor antigen carrier to

establish a tumor antigens-adjuvant co-delivery system. In their

work, firstly, murine melanoma B16BL6 tumor cells were

engineered to produce Exos expressing SAV-LA, and then

immunostimulatory CpG DNA was modified on the surface of

Exos by SAV-biotin interaction (CpG-SAV-Exo), and the

scheme is shown in Figure 7A). The results indicated that

CpG-SAV-Exo could efficiently deliver CpG DNA to APC,

showing a high antigens-presenting capacity. Meanwhile,

CpG-SAV-Exo can efficiently activate T cells and present an

excellent antitumor efficacy. Apart from genetic modification, to

enrich Exos with more HSP70, external heat stimulation was

applied to tumor cells, and the HSP70-enriched Exos (HS Exo)

was shown to increase the expression of MHC-II and achieve

higher productions of IgG2a and IFN-g, resulting in strong Th1

immune responses and eliminating cancer cells (169). In

addition, the incorporation of viral fusion proteins (such as

the G protein of vesicular stomatitis virus (VSV-G)) into TEXs

enhances their uptake, induces the maturation of DCs, and

improves immunogenicity (172). Co-expression of antigen

OVA and VSV-G on TEXs induced a specific CTL immune

response in vivo, as exhibited with increased IgG2a antibody

responses and amplification of antigen-specific CD8+ T cells

(170). In addition, another strategy to enhance TEXs vaccine

activity is the application of TEXs-loaded DCs, which is due to

the advantage of efficient antigen processing and MHC I loading

of DCs after co-incubation with TAA-TEXs. Therefore, in vitro

activation and loading of TEXs into DCs initiate an effective

antitumor response, which overcomes the immunosuppressive
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limitations of TEXs alone (165). TEXs-loaded DCs activate T

lymphocytes to develop into antigen-specific CTLs and trigger

specific CTL immune responses with strongly cytotoxicity to

autologous tumor cells (173). In a similar study, DCs that loaded

with Exos from the supernatant of HeLa cells (HeLa-TEXs)

enhanced the proliferation and cytotoxic activity of CTLs,

whereas HeLa-TEXs alone showed no effect (174). Before

TEXs-loaded DCs were developed, DCs were also used to load

tumor lysates, but there is no disputing that TEXs are a better

source of TAA due to the better antigen processing and

presentation (175). In a comparative study, TEXs-loaded DCs

(DC-TEXs) was significantly superior to lysate-loaded DCs in

vaccination efficacy. TEX is more effective than tumor lysates in

inducing an appropriate anti-tumor immune response, avoiding

potentially fatalities in inoculated mice, and providing more

persistent antigen presentation and priority antigen processing

(176). Overall, immunogenic Exos could serve as adjuvants for

therapeutic cancer vaccines in the future.

In addition, a novel strategy for directly activating T cells was

also introduced in recently years. Zhao et al. (171) designed and

developed a microfluidic device to produce antigenic Exos

modified with peptide complex (e.g., gp-100, MART-1, and

MAGE-A3) on demand. They also designed magnetic-
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nanoparticles with functionalized photo-cleavable and peptide

affinity probe for capturing antigenic Exos via a light trigger.

Meanwhile, the antitumor capability of antigenic Exos was also

evaluated in vitro and in vivo, and the scheme is shown in

Figure 7B). The results indicated that Exos which were modified

with melanoma tumor peptides including gp-100, MART-1 and

MAGE-A3 enhanced the ability of antigen presentation and T

cell activation. This is because MHC-I and tumor peptides can

form MHC-I/peptide binding complex which can be presented

to cytotoxic T cells and thus triggering an immediate response

from the immune system (3, 171). Moreover, conjugating

cytokine-loaded Exos to T cells surfaces is also another

strategy that can enhance adaptive T cell therapy. This

approach is simple and can minimize systemic side effects of

adjuvant drugs (21).

3.3.4 Combination therapy
The development of immunotherapy has yielded remarkable

results in recent years. Currently, various ICIs have been approved

byFDAas singleagents for cancer treatment, however, the response

rate for ICIs is only 10-35% (177–179). The effectiveness of

immunotherapy is directly dependent on the state of the

tumor microenvironment, while TME mostly presents an
FIGURE 6

Interaction of DEXs with immune cells. CTL; cytotoxic T lymphocyte, DCs; Dendritic cells, MFG-E8; milk fat globule EGF factor 8, iCAMs;
intercellular cell adhesion molecules, BAG6; Bcl-2-associated athanogen-6, NKG2D-L; natural killer group 2, member D receptor ligands, Dex;
DC-derived exosomes, MHC; major histocompatibility complex.
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immunosuppressed condition with lack of T-cell infiltration or

dysfunction, poor immunogenicity. Moreover, multiple

mechanisms of drug resistance also contribute to the low

efficiency in immunotherapy (180). Therefore, new alternative
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treatment strategies are being explored, and combination therapy

containing two or three anti-tumor approaches (including

chemotherapy, radiotherapy, photodynamic therapy, targeted

therapy, vaccines, oncolytic viruses, ICB, ACT etc.) to achieve
A

B

FIGURE 7

(A) The scheme of CpG-SAV-exo to deliver APCs (Reprinted with the permission from Ref. 9); (B) The scheme of MHC-I positive exosomes for
activating anti-tumor responses (Reprinted with the permission from Ref. 171). SAV; Streptavidin, SAV-LA; N-terminal secretion signal of
lactadherin (LA) and C1C2 domain of LA.
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higher efficacy is under evaluation (181, 182). Chemotherapeutic

agents [such as anthracyclines, cyclophosphamide, oxaliplatin and

paclitaxel (183)] are highly cytotoxic. However, chemotherapeutic

drugs can trigger immunogenic cell death to act as adjuvants for

immunotherapy by releasing damage-associated molecular

patterns and activating apoptosis which make tumors more

sensitive to immunotherapy (184). TEX-loaded DC vaccine in

combination with chemotherapy could effectively suppress

tumor-infiltrating MDSCs, inhibite tumor cell migration and

promote greater T-cell activation, resulting in a longer survival

time compared to DCs-TEX vaccinated only mice (185). Likewise,

radiotherapy can enhance the antitumor effects of immunotherapy

by increasing tumor antigenicity through multiple approaches.

Radiation has an abscopal effect allowing for systemic tumor

control (186) and can trigger the cGAS/STING pathway and

stimulate innate and adaptive immune responses through DNA

damage and ROS production (187). Short-burst radiation

treatment significantly enhanced the delivery efficiency of PD-

L1siRNA-loaded targeted Exos, altered the immune environment,

sensitized poorly immunogenic glioblastomas to ICB, inhibited

tumor growth, and prolonged the survival of tumor-bearing mice

(188, 189). Otherwise, photodynamic therapy in synergy with

immunotherapy has become a focus of research to overcome the

low efficacy of immunotherapy for primary tumors and tomonitor
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thedrugdelivery status at the target site (190).TEXs loadedwith the

photosensitizer Ce6 have been used as vehicles for photoacoustic-

guided photodynamic therapy and as tumor antigens to stimulate

the immune system to activate anti-tumor responses (191), and the

scheme is illustrated in Figure 8A. The lack of tumor infiltration in

ICB can also be addressed by oncolytic viruses, which provide a

critical switch for the immune system. Oncolytic viruses invade

tumor cells and replicate extensively inside, leading to tumor cell

lysis (194), and on the other hand recruiting TILs into the damaged

tumor, initiating the release of tumor antigens and pro-

inflammatory cytokines and promoting the activation of the

immune system (195). The scheme is shown in Figure 8B, and it

was demonstrated that VSVD51 oncolytic viruses loaded with

artificial amiRNA-4, when co-targeted with Exos carrying

amiRNA-4 and PD-L1 shRNA cargoes, upregulated PD-L1

expression, sensitized tumors to CTLA4 and PD-1 immune

checkpoint inhibition, enhanced death of tumor cells, and

prolonged overall survival in mice (192). Chimeric antigen

receptor T (CAR T) cell therapy has achieved remarkable results

in hematologic malignancies, but the results in solid tumors have

been less than satisfactory. TDC-Exo, a DC-secreted exosome

stimulated by tumor antigen carrying MHC-antigen complexes

and CD86, was developed as the “CAR” portion of CAR-T,

activating T cells and cooperating with anti-CD3 and anti-EGFR
A
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FIGURE 8

(A) Schematic diagram of photoacoustic imaging-guided combined photodynamic and immunotherapy for Ce6-R-Exo treatment (Reprinted with the
permission from Ref. 191) (B) Schematic illustration of VSVD51-amiR-4-shPD-L1 exerting enhanced T cell-mediated cancer cell death (Reprinted with
the permission from Ref. 192) (C) The above diagram is a schematic view of the construction of the engineered tDC-Exo (Exo-OVA-aCD3/aEGFR)
with anti-CD3 and anti-EGFR antibodies. The bottom diagram shows the simulated CAR-T treatment process (Reprinted with the permission from
Ref. 193). R-Exo; re-assembled exosome, Ce6-R-Exo; chlorin e6-loaded R-Exo, IMT; immunotherapy, PDT; photodynamic therapy, PA;
photoacoustic, VSVD51-amiR-4-shPD-L1; VSVD51 oncolytic viruses- artificial microRNA-4- shPD-L1, MVB; multivesicular bodies, SEVs; small
extracellular vesicles, DC; dendritic cells, tDC-Exo;tumor antigen-stimulated dendritic cell-derived exosomes, aEGFR; anti-epidermal growth factor
receptors antibodies, OVA; ovalbumin, CAR; chimeric antigen receptor, TCR; T cell receptor, MHC; major histocompatibility complex.
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and immune checkpoint inhibitory antibodies anti-PD-L1, further

enhancing the efficacy of the CAR-T cell therapymimetic platform

for solid tumor treatment (193). The scheme is demonstrated

in Figure 8C.

4 Clinical translation and challenges
of Exos as DDSs

Currently, several cancers therapeutic strategies-based Exos

DDSs have undergone clinic trials, and the relevant data which

was obtained from https://clinicaltrials.gov/ are present in

Table 3. As shown in Table 3, only few of Exos-based DDSs

for cancer therapy have entered into clinical trials. Moreover, all

of them are in the early clinical stage, suggesting that they still

face many challenges.

Firstly, the stable mass production of Exos is the primary

challenge. As is known to all, the selection and culture of donor

cells are one of significantly important factors. In recent years,

mesenchymal stromal cells and cardiac progenitor cells have

been proved to provide stable Exos production during scale-up

culture. Moreover, cell culture technologies have also been

improved and up to 20,000 L of cells can also be cultured via

stainless-steel bioreactors. In spite of this, the clinical translation

of Exos is still difficult. The main reason is that the scaling-up

process is relatively expensive. Furthermore, the conditions of

cell culture also need to be meticulous, because improper

operation may cause cell contamination, which can result in

cell subtypes and variation. Therefore, strictly controlling and

maintaining the genetic stability of donor cells are difficult.

Secondly, the isolation and purification of Exos are another

challenge. Currently, the extraction technologies including

ultracentrifugation, tangential flow fractionation, exclusion

chromatography and commercial extraction kits have been

extensively employed to isolate Exos. Of which, tangential flow

fractionation is often used in the mass production of Exos in the

clinical trials.However, the purity ofExos obtainedby this separation

method is low, thereby limiting its application. Although high purity

of Exos can be obtained by ultracentrifugation, its features of low

throughput and high cost limit the mass production of Exos.

Currently, there is no standard procedures for large-scale Exos

separation. Therefore, it is urgent to develop an advanced

technique with high efficiency, high quality and low cost to

separate Exos for DDSs.
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Furthermore, the surface modification of Exos is also one of

important factors because it affects the targeting functions and

biological effects of DDSs. In general, two methods including

chemical modification and genetic engineering can be used for

the surface modification of Exos. Genetic engineering is highly

effective for surface modification by fusing the gene sequence of

targeting protein with exosomal membrane protein. However,

this approach is limited to genetically encoded targeting motifs.

Chemical modification often affects the structure and function of

Exos, and thus limiting their application. Meanwhile, there is no

standard strategies for loading drugs. Recently, many drug-

loading strategies including incubation, electroporation,

ultrasound, and cell engineering techniques have been applied.

They all have their limitations to some extent. For instance,

incubation is the simplest drug-loading method. It does not

require special equipment, and the structure of Exos is rarely

damaged. However, low drug-loading efficiency was presented in

this loading method. Although ultrasound and electroporation

can improve drug-loading efficiency, the membrane of exosome

maybe damaged and aggregation of Exos may be caused by these

methods. Meanwhile, the operation of cell engineering

techniques is too complicated though it is considered as well-

established operating strategy.

In addition to these limitations mentioned above, the storage

conditions of purified Exos also play critical role in clinical

translation of Exos. An increasing number of researches

suggested that Exos derived from different sources require

different storage conditions, because the storage temperature

and storage solution (e.g., saline, PBS, cell culture media, etc.) all

affected the particle size and protein content of Exos. Therefore,

further researches should take the influences of storge conditions

into consideration for Exos as drug delivery carriers.
5 Conclusions

In this review, some relevant knowledges including the

biogenesis and composition of Exos, the source of Exos for

DDSs, drug-loading strategies, cancer immunotherapy

strategies, and their clinical translation and challenges were

discussed. Exos are mainly divided into immune cell-derived

and tumor cell-derived Exos. They can inherit the properties of

donor cells and participate in the innate and adaptive immune
TABLE 3 The current clinical trials of Exos as drug delivery vehicles.

DDSs Exos source Disease NTC number Clinic phase

Curcumin Exos Plant Colon cancer NCT01294072 Phase 1

A vaccination with tumor antigen-loaded Exos Dendritic cell Non-small cell lung cancer NCT01159288 Phase 2

Exos with KRAS G12D siRNA (iExos) Mesenchymal stromal cells Pancreatic cancer NCT03608631 Phase 1

The data is obtained from https://clinicaltrials.gov/.
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responses, thus promoting extensive applications of immune

cells-derived Exos as drug delivery carrier. Meanwhile, various

drug-loading strategies of Exos-based DDSs including

incubation, physical loading techniques (e.g., electroporation,

ultrasound and extrusion), and cell engineering techniques have

been designed and developed. In addition, Exos-based cancer

immunotherapy strategies (e.g., tuning of ITME, ICB, cancer

vaccines, etc.) have been extensively applied, they all presented

excellent therapeutic effects.

To our delight, nowadays, several cancers immunotherapeutic

strategies-based Exos DDSs have undergone clinic trials. In spite of

this, they still face many challenges including their stable mass

production, their isolation and purification, their surface

modification, and their storage conditions. Therefore, cell culture

technologies should be further improved and related bioreactors

should also be designed and developed to scale up the Exos

production in the future. In addition, it is urgent to develop an

advanced technique with high efficiency, high quality and low cost

to separate and purify Exos which can be used in DDSs. Meanwhile,

the storage conditions of purified Exos from different cell sources

should be further explored. Overall, although Exos as drug delivery

vesicles still exist some challenges, they provide an excellent

platform for cancer immunotherapy.
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