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The application basis of
immuno-checkpoint inhibitors
combined with chemotherapy in
cancer treatment

Ming-Yan Shi †, Han-Ge Liu †, Xiao-Hong Chen, Ye Tian,
Zhi-Nan Chen* and Ke Wang*

National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth
Military Medical University, Xi’an, China
Immuno-checkpoint inhibitors (ICIs) bring a promising prospect for patients

with cancers, which restrains the growth of tumor cells by enhancing anti-

tumor activity. Nevertheless, not all patients benefit from the administration of

ICIs monotherapy. The partial response or resistance to ICIs is mainly due to the

complex and heterogenous tumor microenvironment (TME). The combined

therapy is necessary for improving the efficacy of tumor treatment.

Chemotherapy is reported not only to kill tumor cells directly, but also to

stimulate effective anti-tumor immune responses. Several combined therapies

of ICIs and chemotherapeutic agents have been approved for the first-line

treatment of cancers, including PD-1/PD-L1 inhibitors. This review summarizes

the potential mechanisms of the combined therapy of ICIs and

chemotherapeutic agents in inducing immunogenic cell death (ICD) and

reprogramming TME, and elucidates the possible anti-tumor effects of

combined therapy from the perspective of metabolic reprogramming and

microbiome reprogramming.

KEYWORDS

immuno-checkpoint inhibitors, chemotherapy, tumor microenvironment,
immunogenic cell death, anti-tumor activity
Introduction

Malignant tumors, as a type of incurable diseases, have threatened human health

seriously owing to the immunosuppressive tumor microenvironment. The tumor

immunotherapies dramatically make a monumental breakthrough for cancer

treatment and bring significant improvement for patient survival by boosting effective

immune response to eliminate malignant cells (1, 2). Oncolytic virus therapies, cancer

vaccines, cytokine therapies, adoptive cell transfer therapies, and ICIs are included, and

ICIs, which include inhibitors of the programmed cell death protein 1 (PD-1),
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programmed cell death-ligand 1 (PD-L1), and the cytotoxic T

lymphocyte-associated protein 4 (CTLA-4), have been broadly

used in clinical applications and contribute to prolonged survival

for lung cancer patients (2–5).

However, not all patients benefit from immune checkpoint

blockade therapy (6, 7). Based on response to ICIs, three broad

population of patients are identified, which include responders,

those that acquire resistance, and those that never respond (8–

10). Unfortunately, only 20% of NSCLC patients response to

ICIs, which shows a relatively lower clinical effect compared to

other cancers (7). The complex and heterogenous TME is

reported to be involved in the response to ICIs (11, 12). Based

on the status of T cell infiltration, TME is classified as the

immune-inflamed phenotype, the immune-excluded phenotype,

and the immune-desert phenotype (13, 14). The reactivation and

clonal-proliferation of antigen-experienced T cells in the TME

are necessary for an effective anti-tumor response after ICI

administrat ion. Nevertheless , the tumor-associated

macrophages (TAMs), cancer-associated fibroblasts (CAFs),

myeloid-derived suppressor cells (MDSCs), and regulated T

cells (Tregs) in TME have an inhibitory impact on the

infiltration and activation of effector T cells (15). As a result,

ICIs combined with other therapies that activate the immune

effects of TME seems to be a better choice for tumor treatment.

As of December 2021, 4,897 clinical trials are conducted to test

the efficacy of PD-1/PD-L1 inhibitors. Among them, 83% are

ICIs combined with other therapies, such as chemotherapy,

radiotherapy, and other immuno-oncology therapies (16).

Several clinical trials show that ICIs combined with

chemotherapy have a better clinical effect compared to ICIs

monotherapy (17–19). For example, pembrolizumab, a

humanized monoclonal antibody against PD-1, plus platinum-

based chemotherapy significantly improved overall survival rates

of NSCLC patients with a PD-L1 ≥ 50% and negative for

genomic alterations in the EGFR and ALK genes, compared

with pembrolizumab monotherapy (19). Meanwhile, ICIs

combined with chemotherapy also prolong the NSCLC patient

survival, compared with chemotherapy (20–23), which have

been approved for the first-line treatment in advanced NSCLC

patients (24).
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In this review, we summarize the synergetic effects of

chemotherapy with ICI therapy in tumor treatment from the

perspective of inducing ICD, remodeling TME, metabolic

reprogramming, and microbiome reprogramming (Figure 1).

In addition, further researches need to be conducted to explore

the novel mechanisms of above-mentioned therapy in cancers,

which may provide a sol id foundat ion for future

clinical applications.
Inducing immunogenic cell death

Several studies have shown that chemotherapeutic agents

have the ability of inducing ICD in animal experiments,

including anthracyclines, cyclophosphamide, oxaliplatin,

pemetrexed, and pacl i taxe l (25–30) . For example ,

anthracyclines, including doxorubicin, idarubicin and

mitoxantrone, are identified as ICD inducers in the mouse

models of colorectal cancer (27), and cyclophosphamide can

also induce ICD as shown in glioma mouse models (30). In

addition, single-agent pemetrexed or docetaxel can induce ICD

in 16 NSCLC patients, with increasing plasma concentration of

soluble calreticulin (31). ICD is a form of regulated cell death,

which act ivates an adapt ive immune response in

immunocompetent hosts (32, 33). The hallmarks of ICD

include the exposure and release of numerous damage-

associated molecular patterns (DAMPs), the phosphorylation

of eukaryotic translation initiation factor 2 subunit-a (eIF2a),
and the activation of type I IFN signaling and autophagy.

Among them, DAMPs play a vital role in stimulating adaptive

immune response, which contain increasing extracellular ATP,

surface-exposed calreticulin, and released high mobility group

box protein 1 (HMGB1) (34, 35). Increasing extracellular ATP,

which provides a ‘find me’ signal, attracts antigen-presenting

cells through binding with the purinergic receptors (36, 37) and

stimulates dendritic cell (DC) maturation (38–41). Moreover,

ATP triggers the formation of the NOD-like receptor family,

pyrin domain containing-3 protein (NLRP3)-dependent

caspase-1 activation complex (42), which promotes the

secretion of IL-1b and IL-18 (43), to stimulate adaptive
FIGURE 1

Chemotherapeutic agents enhance the anti-tumor activity of ICIs through several mechanisms, including inducing immunogenic cell death,
changing the proportion and activity of immune cells in TME, immune cell metabolic reprogramming, and microbiome reprogramming.
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immune response (44). In addition, the P2X7 receptor (P2X7R),

is expressed on various immune cells, and its expression

sensitizes cells to enhanced ambient ATP concentrations,

which modulates energy metabolism and T cell growth and

differentiation (45). The exposure of calreticulin from

endoplasmic reticulum to cell surface depends on the rapid

phosphorylation of eIF2a and ERp57 (46), and provides an ‘eat

me’ signal to promote phagocytosis by DCs, provoking the

adaptive immune response (27, 47). However, mutant

calreticulin with loss of the KDEL sequence is secreted to

extracellular space, and may inhibit the phagocytosis of dying

cancer cells by DCs through saturating binding sites on DCs

(48). Moreover, the interaction between calreticulin and toll-like

receptor 4 (TLR4) expressed on tumor cell surface promotes the

secretion of TNFa and CCL19, which facilitates the migration

and maturation of DCs, to limit the tumor progression in vivo

(49). HMGB1, released from dying cancer cells, binds with TLR4

expressed on DCs to strengthen the antigen-presenting activity

of DCs through activating the PI3K/AKT/mTOR signaling

pathway, and promotes anti-tumor immune response of T

cells (50, 51). Different HMGB1 isoforms exert different effects

on immune response, and the reduced form is responsible for

the activation of DCs (52). In addition, the administration of

carboplatin, cisplatin, and gemcitabine increases the PD-L1

expression on tumor cells, and shows a better efficacy when

combining with ICIs in NSCLCmouse models (53–55), in which

the role of cisplatin has been validated in human NSCLC tumor

samples (56). Moreover, cisplatin increases the expression level

of MHC class I antigen on tumor cells, and subsequently

augment CTL-mediated attack to tumor cells (57, 58). In

summary, chemotherapy-induced ICD promotes the cross-

presentation of tumor antigen to CD8+ cytotoxic T

lymphocytes (CTLs), which limits tumor progression effectively.
Changing the proportion and
activity of immune cells in TME

Chemotherapeutic agents have been validated that they can

interact directly with immune cells to stimulate anticancer

immunity through several mechanisms, which changes the

infiltration and activity of immune cells in TME, including the

depletion of immunosuppressive cells, the activation of immune

effector cells, and promoting the proliferation of immune cells.

Tumor-infiltrating Tregs promote tumor progression by

inhibiting endogenous cytotoxic T cell responses (59), and it

has been reported that some chemotherapy drugs can decrease

the amount of Tregs (60–63). For example, the frequencies of

intra-tumoral Tregs decreases significantly after the

pretreatment of paclitaxel and cisplatin in a murine lung

carcinoma model (64). Paclitaxel selectively decreases the size

of Treg population in peripheral blood of patients with NSCLC,

which may promote the upregulation of CD95 on Tregs, leading
Frontiers in Immunology 03
to cell apoptosis (65). Moreover, cyclophosphamide also

decreases the amount of intra-tumoral Tregs in NSCLC mouse

model (66), which is also identified in patients with recurrent

prostate cancer (67). In addition, the amount of MDSCs, another

immunosuppressive cell that helps tumor cells evade immune

destruction (68, 69), is decreased after the administration of

docetaxel, gemcitabine and 5-fluorouracil in mouse experiments

(70–73). As shown in mouse models of melanoma (B16F10),

gemcitabine significantly reduces the immunosuppressive state

by decreasing the size of MDSCs and Tregs (70). Moreover, the

number of circulating MDSCs in patients with pancreatic cancer

decreases after the administration of gemcitabine, which

provides precise clinical evidence (74), which is also validated

in glioblastoma patients (75). The combination of gemcitabine

and cisplatin reduce the amount of Tregs and regulatory B cells

in in nasopharyngeal carcinoma patients (76). In addition,

cyc lophosphamide p lus gemci tab ine combina t ion

chemotherapy reduces the immunosuppressive state through

decreasing the number of Tregs and MDSCs, enhancing anti-

tumor immune response in colon carcinoma-bearing mice (63).

In summary, the use of chemotherapeutic agents impairs the

immunosuppressive role of TME by reducing the number of

immunosuppressive cells , which enhances the anti-

tumor activity.

In addition, several animal studies have validated that some

chemotherapeutic agents, including platinum drugs and

docetaxel, have the ability to promote the infiltration of CD8+

T cells, enhancing their anti-tumor effects (53, 60, 77–79). It has

been reported that the administration of cisplatin and docetaxel

increases intra-tumoral CD8+ T cell infiltration in a phase I/II

study of neoadjuvant chemotherapy for resectable NSCLC (80).

The increasing CD8+ T cell infiltration contributes to enhancing

the anti-tumor activity and limits the tumor progression (81).

Meanwhile, further studies explaining the mechanisms that

platinum drugs increase the infiltration of CD8+ T cells have

been conducted. For example, oxaliplatin enhances the secretion

of CXCL9, CXCL10, and CXCL11 from tumor cells, which

attracts CD8+ effector T cells through interacting with CXCR3

(82, 83), and subsequently promotes T cell infiltration in tumor

tissues. In addition, neoadjuvant chemotherapy increases the

infiltration of tissue resident memory T cells (TRMs) in

resectable NSCLC patients, which will provide long-term anti-

tumor immune response (84). TRMs express high levels of

inhibitory receptors, such as PD-1 and Tim-3, and it has been

validated that TRMs show a significant expansion and

enhancing cytotoxic capacity after the administration of PD-1

inhibitors (85–88). Moreover, cisplatin can increase the

infiltration of CD8+ T cells via activating cGAS-STING

signaling in K-ras-driven tumor cells (77), and enhance the

killing effects of CD8+ T cells through Fas/Fas ligand

interactions in NSCLC mouse model (89), which may provide

an inflammatory environment to enhance the anti-tumor

activity of ICIs.
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Chemotherapeutic agents also increase the infiltration of

APCs in tumor tissues, such as DCs and macrophages, and

enhances the anti-tumor immune response. Anthracycline-

based chemotherapy increases the intra-tumoral infiltration of

DCs in fibrosarcoma and breast cancer mouse models (90, 91). A

prospective study suggests that the responsiveness of DCs

recovers after anthracycline-based neoadjuvant chemotherapy

in breast cancer patients (92). Except for above mentioned ATP

signaling, CCL2/CCR2 axis may also be required for the

intratumoral recruitment of DCs (90). In addition, platinum

(IV) complexes increase the infiltration of M1 macrophages by

decreasing the expression of CD47 in lung cancer mouse model,

which is overexpressed on tumor cells and limits the antigen-

presenting activity of APCs (93, 94). DCs play a vital role in

maintaining CD8+ T cell function within tumors, and promote

ICIs mediated anti-tumor immunity (95, 96). Furthermore, DCs

may license PD-1 blockade via CD28 costimulation (97), and

conventional DCs express genes correlated with CXCL9, which

is related to PD-1 inhibitor response (98–100). In summary,

chemotherapy-induced APCs increase in tumor tissues may

contribute to ICI-enhanced anti-tumor activity.
Immune cell metabolic
reprogramming

As a crucial hallmark of cancer, metabolism reprogramming

provides a favorable immunosuppressive microenvironment for

the tumor progression (101–103). Chemotherapy usually

influences patients’ nutritional status, and the serum of

patients with lung cancer is accompanied by metabolic

alterations, including glycolysis and lipid metabolism,

phosphatidylcholine biosynthesis as well as amino acid

metabolism (104). What’s more, metabolic reprogramming is

closely involved in the activation and of T cells. For example, the

activation of T cells needs higher levels of glycolysis and

mitochondrial respiration (105). Thus, chemotherapy may

influence the immune effects of T cells through metabolic

processes. Pemetrexed has been validated to increase

mitochondrial function of T cells in colon cancer mouse

model, which is necessary for the activation of T cells (26,

106). Nevertheless, there is little researches about the influence

of other chemotherapeutic agents on metabolic reprogramming

of immune cells, and further metabolomics study is necessary to

explore this influence in preclinical and clinical studies.
Microbiome reprogramming

Gut microbiome is a complex ecosystem that regulates the

interaction of the human and their environment, which has a

potential impact on anti-tumor immune responses through
Frontiers in Immunology 04
various mechanisms (107), and is closely correlated with the

efficacy of ICIs in cancer treatment (108–110). Chemotherapy

has been validated to change the proportion of gut microbiome.

Th e abundan c e o f t h e F i rm i cu t e s phy l um and

Enterobacteriaceae increase after the administration of

pemetrexed in the patient-lung-derived tumor xenograft

mouse models (111). The selected species of Gram-positive

bacteria are induced into the secondary lymphoid organs by

cyclophosphamide, and stimulates the memory Th1 immune

responses, which promotes the anti-tumor immune response

(112). Therefore, the microbiome reprogramming induced by

chemotherapy may provoke the anti-tumor effects of ICIs.

However, the influence of chemotherapy on local microbiome

needs to be investigated further, and the impacts of

chemotherapy on ICI administration are required to be

validated in clinical researches from the perspective of

microbiome reprogramming.
ICIs combined with chemotherapy
in various cancers

Considering the limitations of ICIs monotherapy in

controlling tumor progression, a large amount of studies are

devoted to the safety and effectiveness of ICIs combined with

standard-of-care chemotherapies. ICIs combined with

chemotherapy has been approved for the treatment of certain

cancer types by FDA, and more than 600 ongoing clinical trials

are devoted to exploring or optimizing for various oncological

indications. In patients with NSCLC, pembrolizumab plus a

platinum and pemetrexed provides a better prognosis compared

to pembrolizumab monotherapy (113), owing to the immune

activation of these chemotherapy drugs. Similar effects are also

observed in patients with untreated locally incurable recurrent

or metastatic head and neck squamous cell carcinoma treated

with pembrolizumab plus a platinum and 5-fluorouracil (114,

115). In addition, atezolizumab plus carboplatin and nab-

paclitaxel prolongs the overall survival and progression-free

survival in patients with advanced non-squamous NSCLC

(116). Neoadjuvant carboplatin and paclitaxel chemotherapy

increases the amount of central memory CD8+ T cell in

peripheral blood of patients with advanced serous ovarian

cancer, enhancing antigen processing and presentation (117).

However, the further studies are needed to investigate the

corresponding mechanisms of neoadjuvant carboplatin and

paclitaxel chemotherapy in inhibiting NSCLC progression.

Although ICIs combined with chemotherapy significantly

prolongs the survival of patients with tumors, it is necessary

for us to evaluate the toxicity of the combination therapies. ICIs

combined with chemotherapy may cause hematological,

gastrointestinal, and renal toxicity, and contribute to

hypothyroidism, hyperthyroidism, pneumonitis, hepatitis,
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severe skin reactions, colitis, and infusion reactions (118–121).

However, the current understanding of adverse reactions of

combined therapies is incomplete, and it is necessary to

describe the preferable adverse reactions of different

combinations, which is beneficial for balancing the safety and

efficiency of the corresponding treatment.
Discussion

ICIs have made great contributions to the survival of

patients with cancers. However, the low response rate of

patients to ICIs prompts us to explore the possibility of ICIs

combination with other therapies. As a routine therapy,

chemotherapy attracts much attention because of its immune

stimulation activity, and ICIs combination with chemotherapy

achieves great effects in clinical trials. FDA has approved several

combination therapies for the treatment of advanced NSCLC in

the first-line setting (122). To clarify the mechanism how

chemotherapy promotes curative effect of ICIs is beneficial for

the application of the combination therapies. As mentioned

above, chemotherapeutic agents-induced ICD and their

immune stimulation activity are considered as the main

mechanism of combination therapy. However, the impacts of

chemotherapy are so complex that chemotherapy may influence

ICI-mediated anti-tumor responses through various routes.

With the development of sequencing technology, the

landscape of immune cells within tumor tissues has been

gradually revealed, and more and more cellular components

have been recognized. For example, B cells represent a vital

component of infiltrating immune cells in a variety of solid

tumors, and play a dual role in modulating anti-tumor immune

response (123). Chemotherapy reduces the amount of

adenosine-producing B cells, which may reduce potential

immunosuppression in TME (124). However, there is little

research about the influence of chemotherapy on B cell

subpopulations and their activity.

Moreover, cancer-associated fibroblasts (CAFs) account for

more than 50% of stroma cells in TME, and various CAF

populations have been identified based on the results of single-

cell sequencing analyses, including the cancer-associated

myofibroblasts (myCAFs), inflammatory-like CAFs (iCAFs),

and the antigen-presenting CAFs (apCAFs) (125). CAFs are

involved in regulating tumor immune response and the efficacy

of immunotherapy through several routes (126). For example,

CAFs increase the ratio of FoxP3+ (Tregs) and CD8+ tumor-

infiltrating lymphocytes via IL-6 in TME, and IL-6 blockade

enhances the immunotherapy efficacy in esophageal cancer

models (127). Several studies have reported that CAFs protect

tumor cells from apoptosis induced by chemotherapy, while

insulin-like growth factors secreted by CAFs enhanced the anti-

tumor effects of osimertinib in mice model (125, 128). Moreover,

CAFs can activate the NLRP3 inflammasome through sensing
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DAMPs in breast cancer, which leads to a pro-inflammatory

signaling (129). The influence of chemotherapy on diverse CAFs

and their association with the immunotherapy efficacy has not

been explored comprehensively, and further researches

are needed.

Except for the influence of chemotherapeutic agents on

novel cellular components in TME, chemotherapy-induced

microbiome reprogramming also contributes to the

combination of ICIs and chemotherapy. Although the impacts

of chemotherapy on gut microbiome have been explained partly

in animal experiments, the overall landscape of gut microbiome

reprogramming after treating with different chemotherapeutic

agents needs to be described in more preclinical and clinical

researches. Beyond that, the influence of chemotherapy on local

microbiome also needs to be investigated further, and the

impacts of chemotherapy on ICI administration are required

to be validated in clinical researches from the perspective of

microbiome reprogramming.

In addition, the administration approaches of ICIs

combination with chemotherapy are necessary to be improved.

Firstly, a proper combination therapy can maximize the clinical

benefit and minimize the adverse drug reactions. As mentioned

above, different chemotherapy drugs stimulate effective anti-

tumor immune responses through different mechanisms, and

cancer patients may reap more benefits with appropriate

combination therapies after evaluating the tumor conditions,

including PD-L1 expression level, immune cell infiltration, and

tumor mutation burden. However, there is little clinical trials

about comparing the effectiveness of combination therapies of

different chemotherapeutic drugs and ICIs. Secondly,

chemotherapeutic regimens and ICIs are administrated

simultaneously in most clinical trials. Nevertheless, it has

reported that the sequence of administrating chemotherapeutic

agents and ICIs has an impact on the efficiency of the combined

therapies in several animal experiments. The administration of

anti‐CTLA‐4 antibody after injecting cyclophosphamide

significantly inhibits the tumor progression in the CT26 colon

carcinoma model, while the reverse administration sequence

leads to the apoptosis of anti-tumor CD8+ T cells (130). Apart

from this, the time interval from chemotherapy to

immunotherapy may also influence the response to ICIs. In

the long rest period group, the frequency of the Th1 subset and

PD-1 + CD8+ T cells are significantly higher than that in the

short rest period group, which provides a novel perspective for

the application of combination therapies (131). However, there

is no more research about appropriate sequence and proper time

interval, and it needs more researches to study the influence of

time interval on anti-tumor effects. Lastly, proper dose may be

the most important respect to effectively stimulate the maximum

anti-tumor immune response and minimize adverse reactions.

For example, low dose cisplatin and oxaliplatin increase the

number of circulating CD4+ and CD8+ T cells, while high dose

regimens decrease the size of lymphocyte in a mouse model of
frontiersin.org
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colon cancer (132). Metronomic low dose cyclophosphamide

enhance anti-tumor immune response by selectively reducing

the amount of Treg cells in tumor patients (133), while high dose

cyclophosphamide completely eradicates the hemopoietic cell

(134). In addition, a novel administration mode called medium-

dose intermittent chemotherapy provokes a striking response

depending on the activation of a sustaining anti-tumor immune

response (66, 135). Therefore, appropriate dosage for combined

therapies is necessary to be investigated in further studies.

In summary, ICIs combination with chemotherapy has

shown a better anti-tumor response and provides a more

beneficial survival, compared to ICIs monotherapy. This

benefit is supported by a strong cancer biology rationale,

which induce a better immune response. Hence, the evaluation

of the panoramic dynamic immune landscape of TME will be

helpful to understand tumor pathogenesis and provide novel

approaches for cancer treatment.
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