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Upon infection, the herpes viruses create a cellular environment suitable for

survival, but innate immunity plays a vital role in cellular resistance to viral

infection. The UL13 protein of herpesviruses is conserved among all

herpesviruses and is a serine/threonine protein kinase, which plays a vital role

in escaping innate immunity and promoting viral replication. On the one hand,

it can target various immune signaling pathways in vivo, such as the cGAS-

STING pathway and the NF-kB pathway. On the other hand, it phosphorylates

regulatory many cellular and viral proteins for promoting the lytic cycle. This

paper reviews the research progress of the conserved herpesvirus protein

kinase UL13 in immune escape and viral replication to provide a basis for

elucidating the pathogenic mechanism of herpesviruses, as well as providing

insights into the potential means of immune escape and viral replication of

other herpesviruses that have not yet resolved the function of it.

KEYWORDS

UL13, serine/threonine protein kinase, immune escape, viral replication, cGAS-STING,
NF-kB
Introduction

Herpes virus is a virus of double-stranded DNA that can be divided into three

subfamilies: a-, b-, and g-herpesvirus. For instance, Herpes simplex virus type 1/2

(HSV1/2), Varicella-zoster virus (VZV), Pseudorabies virus (PRV), Epstein-Barr virus

(EBV), Human cytomegalovirus (HCMV), Kaposi’s sarcoma-associated herpesvirus

(KSHV), Murine gamma-herpesvirus 68(MHV-68), Marek’s disease virus (MDV) and

Duck plague virus (DPV) (1–3). Herpes virus infections severely impact the health of
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humans and animals. The host’s innate immune system is the

first line of defense against invading pathogens, it relies on the

mutual recognition of various pathogen recognition receptors

(PRR) and pathogen-associated molecular patterns (PAMP) on

the surface of the pathogenic organism. The interaction between

PRR and PAMP on the surface of pathogenic organisms induces

the production of Type I interferon (IFN-I) and other antiviral

factors, promoting cellular antiviral immunity and activating the

corresponding immune system (4). cyclic GMP-AMP synthase

(cGAS) is a nucleotidyltransferase, as a member of the PRR

family, which is activated by binding viral double-stranded DNA

to induce the production of IFN-ß (5, 6). The nuclear factor

kappa-B (NF-kB) regulates the production of inflammatory and

immune responses to protect the host from pathogens (7, 8).

Similarly, the JAK-STAT signaling pathway, the PKR-eIF2a
signaling pathway, the Sterile alpha motif and HD domain-

containing protein 1 (SAMHD1), and the CD8+ T cell play a

critical role in antiviral response.

The HSV pUL13 and its homologs (e.g., EBV pBGLF4,

HCMV pUL97, KSHV pORF36, MHV-68 pORF36, and VZV

pORF47) are serine/threonine protein kinase belonging to the

conserved herpesvirus protein kinase family (CHPK), which is a

tegument protein of herpes virions (9–11). Their catalytic core

consists of 12 conserved subdomains (12–15) (Table 1), which

can catalyze the transfer of the g-phosphate of a nucleoside

triphosphate to amino acid residues of protein substrates to

affect their function. CHPK from different herpesvirus

subfamilies has considerable amino acid variation, and there is

no consensus phosphorylation sequence for all CHPKs (16–18).

Moreover, the herpesvirus protein kinases have very low

homology with known cell kinases.

With the continuous discovery of UL13 protein kinase

substrates (Table 2), pUL13 has been shown to play an

important role in the physiological activity of the herpes virus.
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For example, VZV pORF47 and KSHV pORF36 are essential for

virus proliferation in T and B cells (19–21); PRV pUL13 affects

IFN- b by inhibiting zinc finger CCHC-type containing protein

3 (ZCCHC3) expression (22); EBV pBGLF4 is a regulator of the

EBV immune genes BCRF1 and BPLF1 (23). Moreover, HSV-2

pUL13 Ser18 was significantly crucial for the HSV-2 capacity of

replication and cell-to-cell spread in U2OS cells (24); the

deletion of pUL13 reduced the size and number of Viral

plaques of DPV (25); CHPK of b and g herpes viruses

promotes DNA virus replication by mimicking cyclin-

dependent kinases1/2 (CDK1/2) phosphorylation of cyclin (26,

27). These suggest that pUL13 plays an essential role in immune

escape and viral replication of herpes viruses.
The role of pUL13 in viral evasion of
innate immunity

Inhibition of the cGAS/STING pathway

The type I interferon pathway is a significant component of

innate immunity and plays an essential role in the control and

clearance of pathogens. Upon infection, inhibition of interferon

regulatory factor 3 (IRF3) by viral infection is a critical link for

the termination of the type I interferon pathway. Here, IRF3 is

an essential target for pUL13 action during herpes virus

infection because many studies have shown that they can

phosphorylate IRF3 and inhibit IRF3 dimerization, binding to

the positive regulatory domains III-I (PRDIII-I), and interaction

with the CREB-binding protein and P300 protein (CBP/P300)

(28–32). Meanwhile, Lin Lv et al. showed that PRV UL13 relies

on its kinase active sites of Lys49 and Lys387 to target IRF3 and

promote its ubiquitination for degradation by the proteasome

(33) (Figure 1).
TABLE 1 The Protein kinase catalytic subdomain.

Conserved
subdomain

Conserved amino
acid

Function

I Gly-X-Gly-X-X-GLy-X-Va1 Anchor the ATP

II Lys proton transfer

III Glu Stabilizing the interaction between the functional subdomain II Lys and the a and b phosphate groups of
ATP

IV / /

V / /

VIA / Supporting action

VIB Asp,Asn Asn interacts with Asp to stabilize ATP and bind Mg2+ to form a salt bridge

VII Asp, Gly Orientation of ATP

VIII Ala,Pro,Glu Identification of substrate

IX Asp, Gly Hydrogen-bonded with Arg of subdomain VIB to stabilize the catalytic ring.

X / /

XI Arg Stabilization
There are no conserved amino acids among the subdomains IV, V, VIA and X. "/" indicates that there is no Conserved amino acid site in "conserved amino acid" and that the Function is not
clear in "function".
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In addition, pUL13 promotes the ubiquitinated degradation

of immunomodulatory proteins as a necessary action affecting

innate immunity. For example, PRV pUL13 recruits the E3 ligase

RING-finger protein 5 (RNF5) to degrade the stimulator of

interferon genes protein (STING) indirectly and also participates

in ubiquitination degradation of the host protein peroxidase 1

(PRDX1) to inhibit innate immunity (34, 35) (Figure 1).

Tripartite motif (TRIM) proteins play a critical role in the

antiviral host response. Based on E3 ubiquitin ligases RNF5,

TRIM29 and TRIM30a are responsible for the ubiquitination

degradation of STING protein; TRIM18 recruit protein

phosphatase 1A (PPM1A) to dephosphorylate TANK binding

kinase 1 (TBK1) to suppress the innate immune response (36,

37). We believe that the TRIM family members (such as TRIM29

and TRIM18) may be essential partners of herpesvirus pUL13 in

promoting the ubiquitination degradation of host immune

proteins. However, there are no reports about the interaction

between TRIM family members and pUL13.
Inhibition of NF-kB pathway

After virus infection, NF-kB is activated and translocated

into the nucleus, which induces an inflammatory and immune

response to protect the host from the pathogen (38, 39). As a
Frontiers in Immunology 03
vital component of the immune system, which can be regulated

by the ubiquitously expressed transcript (UXT). In 2012, Chang

et al. found that EBV pBGLF4 phosphorylated UXT at the Thr3,

weakening interaction with p65 to inhibit NF-kB activity (40)

(Figure 1). Not only did it reveal the role of the conserved

herpesvirus protein kinases in evading immune clearance by NF-

kB, but it also revealed its essential for promoting the lytic cycle.

Furthermore, short interspersed elements (SINEs) are non-

coding retrotransposons transcribed by RNA polymerase III

(RNA Pol III), which activate antiviral NF-kB signaling

through a mitochondrial antiviral signaling protein (MAVS)-

dependent and independent mechanism pathways (41).

However, MHV-68 infection can sustainably induce

transcription of SINE ncRNA, which is explained by Xiaonan

Dong et al.: Inducing phosphorylation degradation of the RelA/

p65 subunit of NF-kB in the pre-MHV-68 infection period to

blunt the NF-kB transcription response, it is associated with

IKKb kinase (42). In 2020, Aaron M Schaller et al. reported that

CHPKs-mediated chromatin modification changes contribute to

activating B2 SINEs during MHV68 infection; hijacking uses B2

SINE RNA signal to activate IKKb kinase and phosphorylates

transcription initiation factor Rta to promote viral replication

(43) (Figure 1). Much more interesting is that the activated SINE

ncRNA can directly interact with RNA pol II to participate in the

transcriptional suppression of genes (44, 45). By and large, the

B2 SINEs seem to do more harm than good for viral replication.

Nevertheless, the herpes virus pUL13 chose it, demonstrating

that B2 SINEs have many potential mechanisms to be developed

in the life cycle of herpes viruses.
Inhibition of the JAK/STAT
signaling pathway

JAK/STAT acts as an inflammatory signaling pathway for

stress and has immunomodulatory effects, receiving multiple

cytokine signals from cells, such as IFN-a and IFN-g (46, 47). In
2017, Yuka Sato et al. reported that pUL13 could phosphorylate

the associated constitutive transcription factor SP1 (SP1) to

induce suppressor of cytokine signaling 3(SOCS3) production,

which regulates the JAK/STAT signaling pathway negatively

(48) (Figure 2). That is SP1 can combine with GC-rich regions of

the SOCS3 promoter to facilitate transcription and translation of

SOCS3 (49, 50), and then curb the JAK/STAT signal pathway

(51–53). Moreover, the phosphorylation of Sp1 by pUL13 could

specifically induce the transcription of the immediate-early and

early genes expression of the herpes virus (54–57), which reveals

the importance of pUL13 for transcriptional regulation of

herpesvirus genes.

SOCS3 plays a significant role in modulating the outcome of

infections and autoimmune diseases. And many viruses, such as

HSV- 1, EBV, and VZV (58–61), can activate the expression of

SOCS3 because of the close relationship between SOCS3 and
TABLE 2 The substrates of herpes virus UL13 protein kinase.

Protein Substrates

Cellular proteins Viral proteins

UL13 STING BRMF1/4

IRF-3 EBNA-LP

PRDX1 PP65

UXT U69

SAMDH1 UL41

PKR UL44

Rb UL49

CKIIb ICP22

EF-1d ICP0

H2AX gE/gI

H2B US3

LaminA/C IE62/IE63

RNA pol II VP13/14

AKT K-bZIP

JNK BZLF1

p60 EBNA2

HADC1/2 EA-D

Tip60 ORF9

LANA ORF36
UL13: represents the conserved herpesvirus protein kinase of all herpesviruses, such as
EBV BGLF4 and KSHV ORF36.
pUL13, dependent or independent of its kinase activity, regulates Cellular and Viral
proteins that affect innate immunity and the cell cycle to promote viral replication.
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JAK kinase with STAT signaling factors (62–65). It was

suggested that SOCS3 is induced that not only inhibits the

antiviral response of the JAK-STAT signal pathway but also

maintains immune homeostasis in the body under pathological

conditions and physiological conditions (66), such as the

expression of SOCS3 inhibits several NF-kB-regulated
proapoptotic pathways to protect b-cells from IL- 1 b-
mediated apoptosis (67). Perhaps this is more important for

the production of SOCS3 induced by pUL13 during

herpesvirus infection.
Effect on PKR-eIF2a-mediated
antiviral effects

Protein kinase R (PKR) in host cells exerts antiviral effects by

inhibiting viral mRNA translation and inducing apoptosis.

Many data indicate PKR promotes NF-kB activation (68–73),

promotes mRNA stability of IFN-b (74), and is involved in the

tumor suppressor function of p53 protein (75–77). When
Frontiers in Immunology 04
dsRNA binds to the Conserved double-stranded RNA binding

motif (dsRBMs) of PKR, it is activated by autophosphorylation

at Thr446 (78). Next, it phosphorylates Ser 51 of eukaryotic

initiation factor 2a (eIF2a) and inhibits the translation initiation

activity of mRNAs which encode antiviral factors and mediate

stress responses (79, 80). In the PKR-eIF2a pathway, PKR

inhibition and eIF2a dephosphorylation must be used to

achieve massive replication of the virus, so the virus has

evolved a variety of strategies in regulating the PKR-eIF2a

pathway: controlling dsRNA masking and degradation (81–

84), PKR degradation (85), inhibiting PKR dimerization and

autophosphorylation (86–89), dephosphorylation of eIF2a (90–

92), and PKR desensitization (93, 94). In 2020, Rosamaria

Pennisi et al. demonstrated that HSV-1 pUL13 inhibits the

phosphorylation of cellular PKR. Although the specific

pathway by which pUL13 inhibits PKR phosphorylation

cannot be demonstrated (95) (Figure 2). These suggest that

pUL13 inhibition of PKR can not only evade innate immunity

and prevent PKR-mediated apoptosis but also use eIF2a to

promote viral mRNA translation.
FIGURE 1

pUL13 inhibits the cGAS-STING signaling pathway and the NF-kB signaling pathway. pUL13 can inhibit the dimerization, nuclear translocation,
CBP binding, and binding to IFN-b promoter elements of interferon regulatory factor 3 (IRF3); meanwhile, it can ubiquitinally degrade stimulator
of interferon genes (STING), IRF-3, and peroxidase 1 (PRDX1) to inhibit the production of IFN-b. pUL13 indirectly inhibits the NF-kB pathway by
regulating ubiquitously expressed transcript (UXT), Protein kinase R (PKR), and B2 SINE ncRNA.
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Especially, PKR is one of four kinases that integrate stress

responses. It regulates the protein homeostasis of the cell to

maintain the body’s homeostasis; conversely, its abnormal

activation can cause severe damage to the body, such as

systemic lupus erythematosus (96, 97). Based on these results,

whether the molecular mechanism of pUL13 inhibition of PKR

can inspire treating diseases associated with abnormal activation

of PKR remains to be further studied.
Effect on CD8+ T cells mediated
antiviral effects

Compared with pICP47 and pUS3 recognizing the main

histocompatibility complex (MHC I) that are distributed on the

cell surface and presentation of antigen peptides to T cells to

exert cellular immune clearance regulation, the effect of pUL13

on it is not apparent (98–101). However, HSV- 1 pUL13
Frontiers in Immunology 05
triggered viral encephalitis in mice by downregulating CXCL-9

and inhibiting the infiltration of CD8+ T cell molecules at the

site of infection (102) (Figure 2). The author also points out that

the HSV-1 pUL13- mediated immune evasion mechanism might

be specific to the CNS. Maybe it associated with CXCL-9/10 and

CD8+ T cells inhibiting the reactivation of HSV within nerve

cells, further suggesting the role of pUL13 in the latent

reactivation of the herpes virus (103–106). Although the

molecular mechanisms underlying the downregulation of

CXCL-9 by pUL13 are unclear, it is suggested that inhibition

of pUL13 has a potential effect in treating encephalitis of the

central nervous system caused by HSV-1 infection (107–110).
Inhibition of SAMHD1

SAMHD1 is an antiviral host limiting factor (111–116), and

the virus has adopted a variety of strategies to inhibit its dNTP
FIGURE 2

pUL13 inhibits PKR, CD8+ T cells, and the JAK-STAT signaling pathway to evade innate immunity. pUL13 inhibits PKR phosphorylation to evade
innate immunity and promotes viral protein translation with eukaryotic initiation factor 2a (eIF2a); pUL13 phosphorylates the associated
constitutive transcription factor SP1 (SP1), which induces suppressor of cytokine signaling 3 (SOCS3) expression to inhibit the JAK-STAT
signaling pathway; and pUL13 can down-regulate the C-X-C motif chemokine ligand 9 (CXCL9) signaling molecules to prevent cd8+ T cell
molecules from clustering at the site of infection.
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enzyme activity, such as HIV-2 and SIV virus-encoded Vpx

proteins, to induce SAMHD1 degradation and promote self-

replication (117–120); Ribonucleotide reductase (RNR) (121)

and thymidine kinase (TK) (122, 123) encoded by DNA viruses

can antagonize SAMHD1’s dNTP enzyme activity, providing the

necessary substrate for viral DNA polymerase; The intracellular

CyclinA2/CDK1/CDK2 complex regulates phosphorylation of

SAMHD1 Thr592 (124), and phosphorylation of Thr592 has

been shown to reduce SAMHD1 antiviral activity (125), echoing

IFN-I-induced dephosphorylation of SAMHD1 Thr592 (126). It

has been also reported that pUL13 of the b and g herpes virus
participates in phosphorylation of SAMHD1 T592, inhibiting

the dNTP enzyme activity of SAMHD1 from ensuring adequate

intracellular levels of dNTPs for viral replication (127,

128) (Figure 3).

SAMHD1 can inhibit the excessive immune and

inflammatory response, possibly proving why VZV and KSHV

proliferate in lymphocytes requiring pORF47 and pORF36

(129). However, whether and how pUL13 can phosphorylate

SMADH1 to coordinate the immune and inflammatory

response remains to be studied.

It is revealed here that pUL13 plays an essential role in

inhibiting various antiviral factors from escaping innate

immunity. Additionally, pUL13 also plays an important role in

viral replication, latent infection, and other critical

physiological activities.
The role of pUL13 in promoting
viral replication

pUL13 phosphorylates H2AX to promote
viral replication

DNA-damage response (DDR) is a mechanism by which

cells protect themselves through DNA damage repair and

apoptosis to resist DNA damage induced by various factors

(130, 131). Micah A. Luftig has discussed the interrelationship

between viruses and DDR, noting that DNA viruses require

DDR activation for replication (132). The research shows that

the viral infection process acts on the different nodes of the DNA

damage response pathway. For example, HSV-1 infections

activate ataxia telangiectasia mutated (ATM) kinase activity

but inhibit the role of ataxia telangiectasia- and Rad3-related

protein (ATR); EBV virus infection activates upstream

regulators of the DDR pathway in the DDR pathway-histone

acetyltransferase TIP60 (133–135).

H2A histone family member X (H2AX) is a substrate of

ATM, ATR, and DNA-dependent protein kinase catalytic

subunits in phosphatidylinositol 3-kinase-like protein kinase
Frontiers in Immunology 06
family (PIKKs) (136–140); it is also a substrate for pUL13

(141, 142). In H2AX knockdown cells, the replication capacity

of MHV-68 and KSHV are significantly abating (143, 144), and

the date of EBV pBGLF4, PRV pUL13 what suggesting that

pUL13 phosphorylate H2AX to activate DDR for viral

repl icat ion (145, 146) . St i l l , VZV pORF47 cannot

phosphorylate H2AX and indicates the difference in the

members of the CHPKs (147). An attractive hypothesis is that

replication of viral DNA requires or is enhanced by the cellular

DNA damage machinery (133, 148–150) (Figure 4). Generally,

more evidence is needed to support whether pUL13 of the

herpes virus plays a vital role in this matter.
pUL13 phosphorylates EF-1б to promote
viral replication

Herpesvirus pUL13 can promote host cell synthesis of

proteins, such as the KSHV pORF36 mimicking cellular

protein S6 kinase (S6KB1) to promote cell proliferation (151).

Similarly, as a substrate of pUL13, the translation extension

factor -1б (EF-1б) exists in two forms in the normal state of

hypophosphorylation and hyperphosphorylation, involved in

the process of mRNA translation into peptide chain extension.

EF-1б is mainly present in the hyperphosphorylated form in

HSV-1-infected cells. Because HSV-1 pUL13, HCMV pUL97,

EBV pBGLF4, and intracellular cycle-dependent kinase cdc2 are

involved in EF-1б’s hyperphosphorylation and work together on

its Ser 133 (152–154). It shows that UL13 can synthesize its viral

protein using EF-1б.
pUL13 works with SUMO proteins to
promote viral replication

Small Ubiquitin-related Modifier (SUMO) is a post-

translational modifier protein. The SUMO system is essential

in herpes virus replication, such as KSHV replication and

transcription activator (K-Rta) and HSV-1 ICP0 degrade

SUMO-modified promyelocytic leukemia-nuclear bodies

(PML-NBs) (155, 156), inhibition of the NF-kB signaling

pathway (157) and participation in degradation of IRF-3 and

IRF-7 (158–160). KSHV basic region-leucine zipper (K-bZIP) is

a potent transcriptional repressor that binds directly to K-Rta

and attenuates K-Rta-mediated trans-activation activity, relying

on SUMO modifications to regulate viral and host gene

expression (161, 162). Studies have shown that KSHV ORF36

phosphorylates Thr111 of K-bZIP and inhibits the SUMO level

of bZIP, causing a decrease in transcriptional inhibition activity

(163) (Figure 5), and appears to cooperate with K-Rta inhibition

of K-bZIP to promote viral transcriptional expression (164);
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Also involved in the phosphorylation of the cell chromatin

remodeling molecule KAP-1 inhibits SUMO level and thus

inhibits chromosomal remodeling capacity (165). It is also

reflected in the EBV pBGLF4 negatively regulating SUMO-

modified Zta to promote the establishment of viral latency

(166, 167). It suggests that although the protein kinase of the

g-herpes virus cannot be modified by SUMO, i ts

phosphorylation and SUMO can cooperate to promote

viral replication.
pUL13 promotes viral replication in
conjunction with ICP22 and VP22

The interaction between herpesvirus protein kinase and viral

proteins to promote its replication is a complex network, such as

the interaction of KSHV pORF36 and pORF45 (168), HSV-1
Frontiers in Immunology 07
pUL13 and pUL41 (169). As early as 1993, Purves reported that

pUL13 phosphorylation modulated ICP22 to stabilize to

increase transcription of specific subpopulations of viral RNA

and accumulate corresponding viral proteins (170).

Subsequently, it was found that ICP22 and pUL13 were jointly

involved in phosphorylation of RNA Pol II, mediating the

degradation of cyclins A and B1 and activating cdc2, in which

activated cdc2 and viral DNA synthesis factor pUL42 formed a

complex to recruit topoisomerase II to promote the expression

of advanced genes (171–179), indicating that ICP22 and pUL13

were necessary for early gene expression of herpes virus.

In HSV-1-infected cells, UL13 protein kinase promotes the

dissociation of VP22 from virions and phosphorylate VP22 (169,

180). VP22 released into cells can interact with Template-

activating factor I (TAF-1) proteins and histone H4 (Histone

H4), inhibit the assembly of nucleosomes on DNA and H4

histone acetylation and participate in chromatin recombination,
FIGURE 3

pUL13 phosphorylated the antiviral factor SAMDH1 Thr592 to promote viral replication. Inhibiting the dNTP enzyme activity of the sterile alpha
motif and HD domain-containing protein 1 (SAMHD1) from ensuring adequate intracellular levels of dNTPs for viral replication.
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cell cycle control, and gene regulation (181, 182). The expression

of VP22 can also inhibit cGAS activity and affect natural

immunity (183). It can be seen that pUL13 can promote viral

replication by regulating the ICP22 and VP22 proteins

and collaborating.

pUL13 is involved in multiple processes of herpes virus

replication, including gene replication, transcription, and

translation of viruses (184); pUL13 in herpesvirus can destroy

LaminA/C to promote capsid exodus from the nucleus (185–

187); assembly, maturation, and release of virions (188). It is

meaningful to construct pUL13 protein interaction networks to

understand better the function of UL13 protein kinases in the life

cycle of the herpes virus.
The role of pUL13 in latent infection

Induction and escape of herpesvirus genomic silencing is a

biological marker of the herpes virus. Many reports suggest that
Frontiers in Immunology 08
pUL13 may play an essential role in the latent infection of the

herpes virus. Firstly, Jolien Van Cleemput’s study found that

pUL13 may be indirectly involved in the latent infection

reactivation of a herpesvirus by phosphorylating other cortical

proteins (189); Secondly, in g herpes virus, EBV pBGLF4 and

KSHV pORF36 are closely associated with latent infection-

related proteins as such Rta, Zta, the latency-associated

nuclear antigen (LANA), and TAT interacting protein 60 kD

(TIP60) (190–195); Lastly, MHV-68 pORF36 inhibits the

antiviral effects of bone marrow-specific STAT1 expression

and promotes the establishment of latent infection of MHV-68

in spleen B cells (196). In addition, herpesvirus CHPKs can also

use CD8+ T cells and many host proteins (UXT, H2AX, small

ubiquitin-related modification regulatory proteins) to promote

the establishment of latent infections (197–199). Although the

complex mechanism of establishment and reactivation of herpes

virus latent infection is unknown, UL13 protein kinase will be an

essential breakthrough for the follow-up study of latent infection

of herpes virus.
FIGURE 4

pUL13 phosphorylates H2AX to promote viral replication. The conserved herpesvirus Protein kinase pUL13 regulates DNA damage marker H2A histone
family member X (H2AX), and pUL13-mediated H2AX phosphorylation plays a pivotal role in efficient virus replication and progeny production.
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Summary and prospect

pUL13 acts as a serine/threonine kinase encoded by the

herpes virus. It is retained in the continuous natural screening of

the virus and plays a vital role in the physiological activity of the

herpes virus.

In terms of immune escape, to evade innate immune defense

line and persist in host cells, pUL13 and its homologs directly or

indirectly play a role in signaling pathways, which acts on

different immunoregulatory proteins and many antiviral

factors. Then pUL13 use varieties transcription factors and

translation factors in host cells to assist the lytic cycle, such as

EF-1б, H2AX, SP1, embodied in lacking pUL13 will lead to the

weakening of the replication ability and virulence of the virus. At

the same time, herpesvirus can use pUL13 to assist in the

establishment and reactivation of its latent infection.

pUL13 can phosphorylate many protein targets and

participate in the activation and inhibition of related protein

functions. It is similar to a switch in the life cycle of the herpes

virus. It is committed to building a systematic protein
Frontiers in Immunology frontiersin.o09
interaction network diagram of pUL13, which is conducive to

unveiling pUL13 in the life cycle of the herpes virus.

Herpesvirus pUL13 is an important target for developing

anti-herpesvirus drugs. With the initial clinical application of

GCV (200), followed by the anti-herpesvirus trials of

compounds such as Maribavir (201), K252A (202), ISIS 1082

(203, 204), and 17-DMAG (205), as well as the continuous

innovation of UL13 gene deletion vaccine (206, 207) and

immunotherapy (208–210). However, given that low

homology among different CHPK members complicates the

development of compounds targeting an entire group, further

development of more broad-spectrum, efficient and safe

herpesvirus protein kinase inhibitors for the treatment of

herpesvirus is needed.

pUL13 undertakes a variety of functions in the life cycle of

herpes virus, and exploring the mechanism of action of pUL13

can not only solve the problem of infection, transmission, and

immune escape mechanism of herpes virus but also provide a

theoretical basis for the research and development of clinical

drugs for the anti-herpes virus.
FIGURE 5

pUL13 works with SUMO proteins to promote viral replication. Gammaherpesvirus protein kinase pORF36 interacts with histone deacetylase 1
and 2 (HADC1/2) and prevents the association of these HDACs with the viral promoter driving expression of KSHV replication and transcription
activator (K-Rta). pORF36 phosphorylates Thr111 of KSHV basic region-leucine zipper (K-bZIP) and inhibits the SUMO level of K-bZIP to
repress the transcriptional inhibition activity.
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