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Increasing evidence suggests that epigenetic mechanisms have great potential in

the field of pain. The changes and roles of epigenetics of the spinal cord and dorsal

root ganglia in the chronic pain process may provide broad insights for future pain

management. Pro-inflammatory cytokines and chemokines released by microglia

and astrocytes, as well as blood-derived macrophages, play critical roles in

inducing and maintaining chronic pain, while histone modifications may play an

important role in inflammatory metabolism. This review provides an overview of

neuroinflammation and chronic pain, and we systematically discuss the regulation

of neuroinflammation and histone modifications in the context of chronic pain.

Specifically, we analyzed the role of epigenetics in alleviating or exacerbating

chronic pain by modulating microglia, astrocytes, and the proinflammatory

mediators they release. This review aimed to contribute to the discovery of new

therapeutic targets for chronic pain.
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1 Introduction

Chronic pain includes inflammatory pain and neuropathic pain (NP). Inflammatory pain

refers to peripheral tissue damage and persistent inflammation and neuropathic pain is a

pathological adaptation of the peripheral nervous system (PNS) or central nervous system

(CNS) (1). They are characterized by persistent nociceptive hypersensitivity (2). Chronic pain

symptoms include an excessive increase in pain caused by painful stimuli (hyperalgesia) and

pain caused by stimuli that do not usually cause pain (allodynia) (3). Current analgesics, such

as opioids and nonsteroidal anti-inflammatory drugs (NSAIDS), relieve pain symptoms by

inhibiting neuronal activity. However, their effects are unsatisfactory, and these drugs have

serious toxicity and dose-limiting side effects (4–6). Due to the complexity of the mechanisms

associated with chronic pain, researchers’ incomplete understanding of the mechanism

reduces the therapeutic effect. Previous studies on the pathological mechanisms of chronic

pain mainly focused on the expression of neuronal channels, receptors, and

neurotransmitters (7). More research is needed on the activation of non-neurons and the

expression of pro-inflammatory neuromodulators.
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Neuroinflammation can occur both in the PNS and CNS. Activation

of glial cells and the release and interaction of inflammatory mediators

are emerging as key mechanisms for chronic pain. Local inflammatory

response, including the infiltration of hematogenous immune cells and

induction of various cytokines, can participate in the pathological

response of chronic peripheral nerve injury. Pain can be alleviated by

inhibiting the activation of inflammatory cells and the synthesis or

accumulation of inflammatory factors, or by blocking the interaction

between inflammatory factors and pain receptors in nociceptors.

Inflammation and nerve damage can lead to the hyperexcitability of

neurons. Then, a positive feedback loop between peripheral and central

inflammatory cells, chemokines, and cytokines maintains

neuroinflammation and chronic pain.

Accumulating evidence has shown that molecular changes in

chronic pain are controlled by epigenetic mechanisms. Epigenetic

modifications induce or suppresses gene expression without altering

the DNA sequence, including DNA methylation, post-translational

histone modifications, and expression of microRNAs (miRNAs).

Histone tails are modified by acetylation and methylation. They

regulate chromatin structure and function and gene expression

through post-transcriptional modifications (PTMs) of the N-

terminal histone tails of nucleosomes (8, 9). The histone

acetyltransferase (HAT) family acts on lysine residues, leading to

transcriptional activation. Conversely, the histone deacetylase family

(HDACs) deacetylates histones, leading to transcriptional repression

(10). Different from histone acetylation, histone methylation can lead

to both gene repression and activation of gene transcription because it

can act on different sites of amino acid residues. For example,

methylation of Lys9 or Lys27 that occurs in histone H3 typically

represses gene expression, whereas methylation of H3 Lys4, Lys36, or

Lys79 typically inhibits gene activation (11). Chromatin modification

is not limited to simple DNAmethylation or histone modification; the

activation or suppression of a gene usually involves a large number of

histone co-modifications and DNA methylation.

Many studies have demonstrated that histone modifications can

affect the generation and maintenance of chronic pain (12–15). The

link between histone modification-induced inflammatory cells and

cytokine production inhibition and pain has been reported in various

disease models (16, 17). How does the inheritance of histone

modifications alleviate pain by suppressing inflammation? In this

review, we describe the changes in inflammatory cells and cytokines

observed after inflammatory and neurological injury, which are

modulated by histone modifications. Despite the increasing

importance of epigenetics in the field of pain, discoveries in this

area are still limited, and more research is needed to elucidate the

molecular pathways behind the pain. We believe that histone

modification during inflammation may provide a new therapeutic

approach for treatment-resistant chronic pain.
2 Microglia and astrocytes: “Relay
station” for epigenetic treatment of
chronic pain

The role of neuroinflammation in chronic pain state is widely

recognized. Microglia and astrocytes in the CNS, and satellite glia in
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the dorsal root and trigeminal ganglia are involved in chronic pain

(18). Microglia and astrocytes, particularly microglia, are discussed in

this review. Activation of microglia and astrocytes in the spinal cord

and dorsal root ganglion (DRG)leads to the production of

proinflammatory cytokines/chemokines, resulting in an

inflammatory cascade (19). Activated microglia have both pro-

inflammatory (M1) and anti-inflammatory (M2) functions. M1

microglia express pro-inflammatory molecules, whereas M2

microgl ia expressed anti- inflammation molecules (20).

Neuroinflammation is a defense response, and anti-inflammatory

cytokines and proinflammatory factors regulate these pain states.

Epigenetic modifications of pro-inflammatory and anti-inflammatory

factors have increased our understanding of the mechanisms

underlying pain. Microglia and astrocytes have close connections to

neurons and communicate with them in a bidirectional manner.

Upon activation, microglia and astrocytes regulate the interaction

between the nervous system and the immune system by secreting

soluble mediators, including chemokines (21). This inflammatory

response eventually lowers the triggering thresholds of A-s- and C-

fiber nociceptors, leading to chronic pain (22). Numerous studies

have shown that microglia and astrocytes play key roles in the

development of neuropathic and acute inflammatory pain (23–26).

As promoters of chronic pain, non-neuronal immune cells may

provide therapeutic ideas for future treatment (27).

Inflammatory mediators are involved in the production and

maintenance of many forms of pain, and their importance is well-

established. Chemokines are expressed in astrocytes and microglia in

the spinal cord in the NP model (28). Moreover, studies have shown

that the CX3CL1/CX3CR1 signaling pathway can regulate neuron-

microglia interactions in the spinal cord, thus mediating the

development of neuropathic pain (28, 29). Histone acetylation,

deacetylation, and methylation have been shown to modulate chronic

pain through inflammatory mediators (14, 30–32). Histone acetylation

regulates chemokine expression in the CNS and peripheral tissues (29,

33, 34). Histone modifications, including phosphorylation, acetylation,

and methylation, can occur in specific regions of the promoters of the

proinflammatory cytokines tumor necrosis factor-a (TNF-a) and IL-

1b and the anti-inflammatory cytokine IL-10 (35–37). Histone

modifications reduce inflammation by decreasing the expression of

some pro-inflammatory mediators, including IL-1b and TNF-a, and
increasing the production of anti-inflammatory factors, including IL-10

(38, 39). IL-10 overexpression can reduce the expression of pro-

inflammatory factor TNF-a in microglia, thereby alleviating

inflammatory pain (40). On the contrary, IL-1b, IL-6, and TNF-a are

involved in the activation of microglia and astrocytes (41, 42), leading

to peripheral nerve injury or chronic pain caused by inflammatory

responses (43–45). HDAC inhibitors have been shown to improve

symptoms in several animal models of inflammatory diseases (46, 47).

Data show that HDAC can be continuously expressed in mouse

microglia and astrocytes, and its inhibition inhibits the

neuroinflammatory response (48). Monocyte chemotactic protein-3

(MCP-3), also known as CCL7, increases after sciatic nerve ligation.

MCP-3 is regulated by IL-6. Intrathecal administration of IL-6

decreased Lys27 H3 trimethylation at the McP-3 gene promoter,

resulting in increased MCP-3 expression (1). Furthermore, MCP-3

expression is increased in astrocytes but not in microglia or neurons.

Hence, we discuss the histone modification regulation of cytokines or
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1087648
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.1087648
chemokines through glial cells that regulate the production and

maintenance of chronic pain. In recent years, numerous studies have

focused on this issue. Epigenetic regulation of the activation of

inflammatory cells and the expression of inflammatory mediators

may be a future target for the prevention and treatment of pain.
3 Histone acetylation and methylation
regulate chronic pain through neuro-
inflammation in spinal systems

Histone acetylation primarily relies on two key enzymes, HATs and

HDACs. A dynamic balance exists between HATs and HDACs to

maintain stable gene expression. Nerve injury or neuroinflammatory

infiltration can lead to the upregulation of histone acetylase or histone

deacetylase, leading to pain. Here, we discuss the dual role and

underlying mechanism of histone acetylation in the development of

chronic pain. HATs reduce the electrostatic interactions between

histones and DNA, thus making chromosome transcription easier.

The role of HDACs is to suppress gene transcription. The molecular

mechanism, in summary, involves the removal of acetyl groups, which

increases the positive charge of histone tails, thereby increasing the

affinity of DNA binding, leading to chromosome densification and

inhibiting transcription (49, 50). Histone acetylation and deacetylation

are processes of dynamic equilibrium, and when these enzymes are

activated or inhibited, they lead to many diseases, including

neurological dysfunction. We briefly discuss the role and possible

mechanisms of histone acetylation, histone deacetylation, and histone

methylation in chronic pain through neuroinflammation.
3.1 Histone acetylation promotes pain

Histone hypoacetylation decreases the response to nerve injury.

Correspondingly, histone hyperacetylation increases the response to

nerve injury, and blocking histone acetylation is effective in relieving

pain (34, 49, 51). A total of 11 HDAC proteins are divided into three

categories: Category I includes HDACs 1, 2, 3, and 8; Category IIa

includes HDACs 4, 5, 7, and 9; Category IIb includes HDACs 6 and

10; Category IV includes HDAC 11 (52). CX3CL1 is involved in

paclitaxel-induced neuropathic pain (PINP), and blocking CX3CL1

significantly inhibits microglial activation and mechanical allodynia.

Inhibition of the nuclear factor-kB (NF-kB) pathway significantly

inhibits H4 acetylation in the CX3CL1 promoter region and inhibits

CX3CL1 upregulation, thereby alleviating pain. NF-kB can also be co-

expressed with specific microglial markers; therefore, microglia may

play an important role in neuropathy of pain (53). Zhang et al.

demonstrated that inflammatory pain and NP resulted in increased

histone acetylation levels in the brainstem nucleus raphe magnus

(NRM) in a time-dependent manner (54). JNJ-26481585, a new pan-

HDAC inhibitor, induces mechanical hypersensitivity in mice. In

addition, IL-1 b expression in mouse macrophage RAW 264.7 was

increased after JNJ-26481585 treatment in vitro (55). Histone

acetylation can not only upregulate the pain state through

inflammatory factors but also through signaling pathways in glial

cells. In one study, paclitaxel-induced neuropathic pain (PINP)
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increased the activity of the kB subunit P65 and its binding to the

IRF8 promoter region. These effects lead to the hyperacetylation of

histone H3 in the IRF8 promoter region, which promotes paclitaxel-

induced allodynia pain and IRF8 transcription and expression in the

rat dorsal horn (19). Previous studies have shown that overexpression

of IRF8 can enhance cytokines in microglia, and knockdown of IRF8

can attenuate mechanical allodynia caused by nerve injury (56).

Microglia are macrophage-like cells that reside in the central nervous

system (57). Histone modificationmodulates pain through inflammatory

intervention by microglia, similarly, acetylation regulation interferes with

pain states by affecting the expression of several molecules in the

chemokine system of peripheral tissue, and these chemokines can act

on macrophages in peripheral tissues to affect pain (34). The C-X-C

chemokine ligand type 2 [macrophage inflammatory protein 2 (MIP-2)]/

C-X-C chemokine receptor type 2 (CXCR2) axis targets neutrophils and

macrophages in the injured sciatic nerve (SCN) and plays an important

role in neuropathic pain. High expression of these proteins is controlled

by the hyperacetylation of histone H3 in neutrophils and macrophage

nuclei in the SCN. HAT inhibitors can inhibit the upregulation of MIP-2

and CXCR2, thereby preventing NP (34). CCL2 and CCL3 are

upregulated in macrophage immune cells in the injured SCN through

lysine 9-acetylated histone H3 (H3K9Ac) and lysine 4-trimethylated H3

[H3K4me (3)]. Similarly, histone acetyltransferase inhibitors can inhibit

the upregulation of CCLs and CCRs. These chemokine cascades are

amplified and can be involved in chronic inflammation, causing pain

after nerve injury (58).
3.2 Histone deacetylation promotes pain

Microglia may be involved in neuropathy of chronic pain.

Treadmill running has been suggested to activate the increase in

acetylated histone H3K9 in microglia, thereby promoting the

production of the anti-inflammatory factor IL-10, downregulating

pro-inflammatory cytokines, and ultimately improving pain (39).

D-hydroxybutyric acid (DBHB) is an HDAC inhibitor that

enhances histone acetylation after spinal cord injury (SCI) in mice.

DBHB can inhibit the activation of microglia and astrocyte, reduce

the expression of proinflammatory factors, improve inflammatory

response, and play a protective role after SCI injury (59). Similarly,

HDAC inhibitors have been demonstrated to increase the acetylation

of the GAD65 promoter, and global histone hyperacetylation

counterbalances the inflammatory pain effect. GAD65 is used for

GABA synthesis in synaptic vesicles, The downregulation of GAD65

activity leads to impaired synaptic inhibition of GABA and increased

neuronal excitability, thereby promoting the occurrence of pain (60).

Chronic constriction injury (CCI) can cause mechanical allodynia,

hyperalgesia, and increased TNF-a levels. Oral administration of

sodium butyrate, an HDAC inhibitor, significantly attenuates the pro-

inflammatory cytokine TNF-a and reduces injury-related pain

behaviors (61). The regulation of inflammatory factors through

histone modifications is a future direction of research. Activation of

JNK-c-Jun signaling was also accompanied by an increase in HDAC1

expression. A novel selective HDACI, LG325, blocked the stimulation

of c-Jun phosphorylation. Double immunostaining showed that

p-JNK co-localized with p-C-Jun and HDAC1 in astrocytes in the
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spinal dorsal horn (62). The JNK signaling pathway is important for

the induction and maintenance of chronic pain (63). Similarly,

HDAC2, another subtype of HDAC, is expressed in astrocytes and

elevated in neuropathic pain (64), and HDAC2 mRNA is found in

cortical microglia (65). In contrast, HDAC2 was shown to be

unexpressed in both microglia and astrocytes in the adult mouse

brain without neuropathic pain (66). These results suggest that

HDAC may inhibit the expression of pain related genes in

astrocytes. Cell-specific expression in the CNS may be responsible

for this phenomenon. Attenuating pain by reducing the production of

pro-inflammatory factors may be a good target in the future. Whether

HDAC can be used as a target for the treatment of chronic pain

through glial cells still needs to be studied.

HATs and HDACs seem to have different effects on chronic pain.

There are many factors responsible for this difference, such as different

doses and cell types, which lead to different effects of HDAC inhibitors.

TSA, as a broad-spectrum HDAC inhibitor, has different pro-

inflammatory and anti-inflammatory effects on macrophages within a

certain concentration range (67). Furthermore, with respect to

intrathecal injection, oral administration is not as effective as local

injection, and there are more unknown influencing factors (68–70).

Histone modification is a complex process. Most importantly, histone

acetylases or deacetylases do not increase or decrease NP alone but act

as acetyl agents to affect chronic pain by increasing or decreasing the

expression of specific genes. Acetylation can bind to promoters of

different genes, leading to acetylation or deacetylation of genes, and the

product of gene expression determines whether chronic pain is

aggravated or alleviated. Therefore, understanding the acetylation or

deacetylation of corresponding gene promoters caused by histone

acetylases or deacetylases can provide new guidance for the treatment

of chronic pain. We should focus on specific HDACs and HATs in the

future, hoping to treat pain by targeting different cells or even different

genetic targets using highly specific inhibitors.

Although histone acetylation and deacetylation are effective in

alleviating chronic pain symptoms, they have major limitations. First,

most inhibitors act both centrally and peripherally, raising concerns

regarding drug toxicity. Second, many of these compounds require

long-term, high-dose treatment that increases side effects and reduces

patient compliance. These factors should be considered when using

these compounds in the context of pain. Histone acetylation is not

only involved in HATs and HDACs but may also involve other

epigenetic forms. Its complex and highly cell-specific nature suggests

that we still have a long way to go (71). Therefore, we cannot simply

assume that histone acetylation and deacetylation affect gene

transcription alone. This is also what we discussed above: HDAC

can have two interactive ways on chronic pain.
3.3 Histone methylation regulates pain

Histone methyltransferases and demethylases are also altered in

inflammation-mediated neuropathic pain. G9a, a histone H3K9

dimethyl transferase, catalyzes H3K9 dimethylation (H3K9me2),

which is associated with gene silencing (72). Inhibition of G9a can

reverse Mu opioid receptor (MOR, encoded by Oprm1)
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downregulation in the DRG induced by spinal nerve ligation (SNL)

and enhances the effect of morphine on pain hypersensitivity induced

by nerve injury (73). Enhancer of zeste homolog 2 (EZH2) leads to

gene silencing by catalyzing di-methylation and tri-methylation of

histone H3 on lysine 27 (H3K27Me2/3) and has been demonstrated

to be expressed in microglia (74). As an EZH2 inhibitor, EPZ-6438

controls important inflammatory gene targets by regulating the

promoter levels of interferon regulators and transcriptional

activators. Therefore, EPZ-6438 may be an effective treatment for

neuroinflammatory diseases associated with microglial activation

(75). After partial sciatic nerve ligation (PSL), the number of

microglia expressing EZH2 increased significantly in the spinal cord

of rats (37). Activation of microglia leads to increased overall levels of

EZH2 and tri-methylated H3K27 in the L4 and L5 spinal dorsal horn,

and excessive production of TNF-a and IL-b in the spinal dorsal horn

contributes to NP. Intrathecal injection of an EZH2 inhibitor can

relieve chronic pain (37). MCP-3 (CCL7) expression increased in IL-6

sensitive astrocytes after CCI in mice. This was due to the reduced

H3K27 trimethylation of the MCP-3 promoter. Increased MCP-3

expression activates spinal microglia expressing CCR2, thereby

inducing central sensitization. The CCR2 receptor expressed in

spinal cord neurons and microglia may be induced by MCP3,

thereby enhancing neuronal sensitivity (76).

Granulocyte macrophage colony-stimulating factor (GM-CSF) is a

key pro-inflammatory cytokine. In mouse models of arthritis and

inflammatory pain, GM-CSF up-regulated IRF4 expression by

enhancing JMJD3 (histone H3K27 demethylase) activity (77, 78).

IRF4 regulates the formation of CCL17 and then mediates the

proinflammatory and analgesic effects of GM-CSF. After SCI, JMJD3

expression is upregulated and MMP-3 and MMP-9 gene expressions

are regulated. In addition, inhibition of JMJD3 inhibited the expression

of matrix metalloprotease-3 (MMP-3) and MMP-9 genes and

significantly reduced the permeability of the blood-spinal cord barrier

(BSCB) (79). Subsequently, increased JMJD3 expression in the cauda

equina of rats with lumbar spinal stenosis-induced chronic NP was

demonstrated. JMJD3 infiltrates cauda equina macrophages after

injury, mediates neuroinflammation, and increases the permeability

of the blood-nerve barrier (80). We summarize the key studies focusing

on the links between histone modification with chronic pain in Table 1.

These results suggest a potential therapeutic approach for the treatment

of inflammatory pain and NP.
4 Conclusions and future studies

It is clear that we are at this initial stage, where there is no consensus

in the literature and some contradictory findings have been described. In

the field of pain, the contributions of genetic and epigenetic mechanisms

have been widely recognized. We believe that the epigenetic mechanism

of chronic pain will be further explored in the future and there is great

potential for the epigenetic intervention of inflammatory system genes to

improve pain. Currently, our discussion of rodent models, which poses a

challenge for clinical transformation, is still in the preclinical stage.

Further studies on epigenetics and neuroinflammation are needed to

find preclinical transformational management of neuropathic pain.
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Epigenetic mechanisms controlling chronic pain may offer a wide range

of potential therapeutic targets. As a potential targeted intervention,

epigenetic inheritance may improve the symptoms of chronic pain by

suppressing inflammation, preventing injury sensitization.
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TABLE 1 Roles of histone modification in chronic in rodent models.

Pain model Positive Type of
histone modi-

fication

Alteration
after
injury

Molecular effect
(Positive control ↑

and negative
control ↓)

Inhibition (-) or activa-
tion (+) to histone

modification

Nociceptive
behavior response

to inhibitors

Ref.

PINP Microglial Acetylation of H4 Increased CX3CL1 (↑) NF-kB inhibitor (-) Relieve (53)

JNJ-26481585
(HDAC
inhibitors)
induced

Macrophage Acetylation Increased NF-kB and IL-b(↑) gabapentin (-) Relieve (55)

PINP Microglial Acetylation of H3 Increased NF-kB (↑) MDA7 (-) Relieve (19)

NP Neutrophils
and
macrophage

Acetylation of H3 Increased CXCR2(↑) HAT inhibitor (-) Relieve (34)

NP Macrophage Acetylation of H3
and trimethylation
of H3

Increased CCL2 and CCL3(↑) HAT inhibitor (-) Relieve (58)

NP Microglial Acetylation of H3 Decreased / treadmill running (+) Relieve (39)

Spinal cord injury Microglial
and glial

Acetylation of H3 Decreased NLRP3 inflammasome
(↑)

DBHB (+) Relieve (59)

NP Sciatic nerve Acetylation Decreased TNF-a (↑) HDAC inhibitor (+) Relieve (61)

NP Astrocytes Acetylation Decreased c-Jun (↑) HDAC inhibitor (+) Relieve (62)

NP DRG Dimethylation of
H3

Increased MOR (↑) Histone methyltransferase
inhibitor (-)

Relieve (73)

NP Microglia Trimethylation of
H3

Increased TNF-a, IL-1b, and
MCP-1(↑)

Histone methyltransferase
inhibitor (-)

Relieve (37)

NP Microglia
and
astrocytes

Trimethylation of
H3

Decreased IL-6 (↓) MCP-3 antibody (-) Relieve (76)

↑ means positive control to molecular, ↓ means negative control to molecular. (+) means activation to histone modification, (-) means Inhibition to histone modification.
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