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The role of lncRNAs in the
tumor microenvironment and
immunotherapy of melanoma

Wencheng Zhou, Xuewen Xu, Ying Cen and Junjie Chen*

Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu,
Sichuan, China
Melanoma is one of the most lethal tumors with highly aggressive and

metastatic properties. Although immunotherapy and targeted therapy have

certain therapeutic effects in melanoma, a significant proportion of patients still

have drug resistance after treatment. Recent studies have shown that long

noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in

cancer. They can regulate numerous cellular processes, including cell

proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression

and the immune microenvironment. The role of lncRNAs in malignant tumors

has received much attention, whereas the relationship between lncRNAs and

melanoma requires further investigation. Our review summarizes tumor

suppressive and oncogenic lncRNAs closely related to the occurrence and

development of melanoma. We summarize the role of lncRNAs in the immune

microenvironment, immunotherapy and targeted therapy to provide new

targets and therapeutic methods for clinical treatment.
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1 Introduction

The incidence and mortality of melanoma have gradually increased over the past few

decades (1). Currently, multiple therapeutic strategies, including surgical resection,

radiotherapy and chemotherapy, immunotherapy, and biological and targeted therapy,

have significantly improved the therapeutic effect of melanoma and prolonged the

survival time of patients (2). Given a strong metastatic tendency, these treatments

have very limited therapeutic efficacy in patients with advanced melanoma. Moreover,

the occurrence and progression of melanoma have complex relationships with targeted

genes and signaling pathways that influence the proliferation, migration, invasion and

metastasis of tumor cells (3). Therefore, it is important to understand the molecular

mechanism of melanoma progression to complement effective therapeutic strategies.
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LncRNAs play regulatory roles in a variety of tumors and are

widely involved in multiple biological processes, such as

proliferation, migration, invasion, EMT process, cell cycle,

apoptosis and chemoresistance. Compared with benign nevi

and melanocytes, lncRNA-ATB is upregulated in human skin

melanoma tissues and cells. It regulates cell proliferation,

metastasis, cell cycle arrest and apoptosis by regulating miR-

590-5p and YAP1 (4). In addition, lncRNA-XIST promotes the

proliferation and migration of melanoma cells by decreasing the

expression of PI3KRI and AKT and increasing the expression of

Bcl-2 and Bax, which are considered key regulators of oxaliplatin

resistance in melanoma progression (5). Additionally, lncRNA-

LINC00518 could significantly promote the invasion, migration,

proliferation, clonogenicity and metastasis of malignant

melanoma cells and induce radioresistance by regulating the

miR-33a-3p/HIF-1a negative feedback pathway (6). Therefore,

there is an urgent need to find new breakthroughs, such as

specific lncRNAs, to improve melanoma therapeutic effects.

The communication between cancer cells and their

surrounding microenvironment is very important in many

tumors. LncRNA-NEAT1 promoted cell proliferation and

migration by regulating the miR‐495‐3p/E2F3 axis and activated

the EMT process and immune responses through the miR-200b-

3p/SMAD2 pathway in melanoma (7, 8). Moreover, in melanoma

cells with low FOXF1-AS1 expression, the expression of immune-

related genes was downregulated, and the activity of inflammation

and Wnt signaling pathways were also changed (9). Additionally,

the expression of lncRNA-SNHG15 can be modulated by

palbociclib and alleviate temozolomide resistance by regulating

the CDK6/miR-627 pathway and reducing M2 polarization of

glioma-associated microglia, providing evidence for treatment

with temozolomide resistance with the use of CDK6

inhibitors (10).

Immune checkpoint inhibitors, especially anti-PD-1

(programmed death protein 1) antibodies, target the

dysfunctional immune system and induce CD8-positive T cells to

kill tumor cells, completely altering the treatment of various cancers,

including advanced melanoma. In addition, targeted therapy for

melanoma is primarily an appropriate treatment based on BRAF

and NRAS mutational status. However, there are currently no

highly sensitive and specific biomarkers to evaluate the

therapeutic efficacy of immunotherapy and targeted therapy in

patients with advanced melanoma. Therefore, lncRNAs may play

an important role in melanoma immunotherapy and targeted

therapy, serving as new therapeutic targets or drug sensitivity

assessment markers. lncRNA-CRNDE (colon rectal neoplasia

differentially expressed) promoted the cell invasion and apoptosis

of melanoma by targeting CCL18, which was correlated with the

expression of PD-L1 (programmed death ligand 1) and induced

immunosuppression (11). Moreover, lncRNA-SNHG14 is

upregulated in diffuse large B-cell lymphoma, and the SNHG14/

miR-5590-3p/ZEB1 axis can also regulate the PD-1/PD-L1

checkpoint to promote the progression and immune evasion of
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tumor cells, which indicates that targeting SNHG14 may be a

potential target to improve the immunotherapeutic effect in tumors

(12). Thus, it is of great clinical importance to elucidate the

therapeutic effect and molecular mechanism of lncRNAs in

melanoma immunotherapy and targeted therapy.

In this review, we summarized the regulatory mechanisms by

which lncRNAs exert oncogenic and tumor suppressive functions

in tumor progression, particularly in melanoma. Furthermore, we

screened lncRNAs involved in the regulation of the tumor

immune microenvironment, provided relevant evidence for

their efficacy in promoting immunotherapy and targeted

therapy, and discussed their potential therapeutic prospects.
2 Oncogenesis of melanoma

Most of malignant tumors have complex etiologies, poor

treatment effects and short survival times. Their overall

incidence in the world is rising every year and seriously

threatening human health. According to the statistics of cancer

incidence and mortality rate of 38 cancer sites and 185 countries

or regions in the world, it is estimated that there were 19.3 million

new cancer cases and approximately 10 million cancer deaths

around the world in 2020 (13). In recent years, almost 75% of

patients with malignant melanoma have relapsed one year after

treatment, and the 3-year overall survival rate of patients with

advanced malignant melanoma is less than 30% (14). The

incidence and mortality rates of melanoma were 324,635 and

57,043, respectively (15). Therefore, there is an urgent need to find

an effective treatment for advanced melanoma.

The two of the most critical factors in reducing melanoma

mortality are early detection and prompt treatment (16).

Surgical resection is considered the primary treatment for

early-stage melanoma, but it still has the possibility of

metastasis and affects long-term survival outcomes (17). The

US Food and Drug Administration (FDA)-approved treatments

for metastatic melanoma, including immune checkpoint

blocking antibodies (such as anti-CTLA-4 and anti-PD-1),

have an effect on reducing population mortality (18). The anti-

CTLA-4 drugs (including Ipilimumab) and anti-PD-1 drugs

(including Nivolumab and Pembrolizumab) have therapeutic

effects in advanced metastatic melanoma and are used as

adjuvant therapy after surgery (19). In a study of 945 patients

with stage III or IV melanoma, the overall survival after

treatment with Nivoluma and Ipilimumad was 36.9 months

and 19.9 months respectively, while the overall survival of

Nivoluma and Ipilimumad combination was more than 60

months (20). The immune responses induced by anti-CTLA-4

and anti-PD-1 checkpoint blockade are driven by distinct

cellular mechanisms. Anti-PD-1 mainly induces an increase in

specific tumor-infiltrating exhausted-like CD8 T-cell

populations, while anti-CTLA-4 predominantly induces the

expansion of an ICOS+ Th1-like CD4 effector cell subset and
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binds to specific subsets of exhausted-like CD8 T cells (21). PD-1

inhibitors have become an adjuvant treatment for stage III or IV

melanoma patients after surgical resection, and immune

checkpoint therapy may become an extremely effective

treatment in the future (22).

Transcriptome sequencing analysis of tissue samples from

melanoma patients indicated that mutations closely related to

melanoma progression mainly included BRAF mutation, NRAS

mutation and NF1 mutation (23). These three mutations are

found in most skin melanomas (about 94%) and can activate the

downstream Ras/Raf/MEK/ERK axis (MAPK signal pathway)

(24). Among them, BRAF mutation exists in more than 60% of

skin melanomas and promotes the occurrence and development

of tumors (25). ATF-3, a cyclic APM-dependent transcription

factor, is significantly decreased in human metastatic melanoma

cell lines. Overexpression of this gene downregulates the ERK

and AKT signaling pathways, upregulates apoptosis-related

genes, and reduces melanoma metastasis (26). In addition,

silencing MED27 (as a potential melanoma target) leads to a

decrease in iNOS expression by inhibiting the activity of a series

of key proteins in the NF-kB signaling pathway and is

accompanied by the inhibition of melanoma cell proliferation,

induction of apoptosis and regulation of the cell cycle by

changing the activity of the PI3K/AKT, MAPK/ERK and Bax/

Cyto-C/Caspase-dependent apoptotic pathways (27). Moreover,

some genes were found to improve the therapeutic effect of

chemotherapy drugs on metastatic melanoma by regulating

these target genes and signaling pathways. The expression of

SEMA6A protein was higher in melanoma tissues from BRAF-

mut patients than in melanoma tissues from BRAF-wt patients.

In addition, SEMA6A regulates actin cytoskeleton remodeling

through RhoA-dependent activation of YAP in BRAF-mut

melanoma cells. Dabrafenib/trametinib treatment helps

melanoma cells escape from the microenvironment, which

may be a predictor of the effectiveness of dual BRAF/MEK

(mitogen-activated protein kinase kinase) inhibitors in treating

melanoma (28). Thus, the in-depth study of target genes and

signaling pathways can improve the therapeutic effect

in melanoma.
3 LncRNAs in carcinogenesis

More than 90% of transcripts have not been translated into

proteins in the human genome (known as noncoding RNA).

Noncoding RNAs are a class of regulatory molecules that play a

crucial role in regulating gene expression and are closely related

to the progression of multiple diseases, especially different types

of cancer. Both lncRNAs and miRNAs belong to the non-coding

RNA. The difference is that the lncRNAs is longer than 200nt.

They all regulate the expression of target genes. In particular,

they are expected to be combined in the diagnosis and treatment

of melanoma (29). Numerous studies have shown that lncRNAs
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play a key role in the initiation and development of cancer,

participating in biological processes such as tumor cell

proliferation, metastasis, EMT process, stemness, angiogenesis,

chemotherapy resistance, and regulation of the tumor

microenvironment (Figure 1).

LncRNAs can regulate a few target proteins related to tumor

proliferation and metastasis. Hypoxia-induced lncRNA

lncHILAR promotes cell invasion and migration by acting as a

ceRNA for miR-613/206/1-1-3p, thus resulting in the

upregulation of the Notch/CXCR4 axis (30). The expression of

lncRNA-BASP1-AS1 was up-regulated in melanoma tissues.

BASP1-AS1 interacts with YBX1 and recruit it into the

promoter of Notch3 to activate the transcription of multiple

oncogenes, including c-MYC, PCNA and CDK4, and promote

the proliferation, migration and invasion of A375 and SK-MEL-

2 cells (31). LncRNA-MALAT1 knockdown downregulates the

expression of vascular endothelial growth factor A (VEGFA),

enhances the expression of miR-150-5p and changes the

proliferation and migration ability of vascular endothelial cells

(32). Tumor stem cells also promote tumor proliferation and

metastasis. For example, the expression of lncRNA-NR2F1-AS1

is increased in dormant mesenchymal-like stem cells. It mediates

the translation of NR2F1 and inhibits the transcription of

DNp63, thereby reducing the tumorigenicity and enhancing

the dormancy of cancer cells (33). Moreover, overexpression

of lncRNA-KB-1980E6.3 maintains the stemness of cells and

enhances c-Myc mRNA stability by interacting with IGF2BP1,

promoting tumorigenesis in a hypoxic microenvironment (34).

Accumulating studies have shown that lncRNAs play an

important role in chemoresistance. lncRNA-MALAT1 increased

drug resistance and promoted tumor cell proliferation by

affecting the expression of cyclin D1, p-PI3K and p-Akt, as

well as regulating the EMT process by targeting ZEB2, YAP,

Vimentin and E-cadherin (35). In addition, lncRNA-H19

delivered by exosomes from carcinoma-associated fibroblasts

(CAFs) can competitively bind miR-141 and activate the

expression of b-catenin protein, thereby promoting the

stemness and chemoresistance (36). LncRNAs change

the therapeutic effects of multiple drugs on cancer. LncRNA-

Hotair regulates the EMT-related signaling pathway by altering

hypoxia-induced oxaliplatin resistance (37). Overexpression of

lncRNA-NORAD affects the EMT process by interacting with

hsa-miR-125a-3p, thus promoting the invasion and migration in

vitro and in vivo (38). Meanwhile, researchers also found that

NORAD regulates the miR-224-3p/metadherin axis to increase

the expression of b-catenin, thereby enhancing the CDDP

resistance in tumor cells (39). In addition, lncRNA-NEAT1

directly targets the expression of many prometastatic genes

and tumor microenvironment-related genes (such as STAT3,

WNT7A and VEGF-A) by interacting with miR-361, while miR-

361 can inhibit tumor proliferation, invasion, stemness and

paclitaxel resistance (40). Moreover, lncRNA-SAMMSON is

highly expressed in doxorubicin-resistant cancer cells, resulting
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in metabolic recombination, reduced production of

mitochondrial ROS, increased mitochondrial replication,

transcription, and translation, and reduced resistance to

chemotherapy (41).

LncRNAs interact with the tumor microenvironment and

affect cancer progression. LncRNA-H19 is considered to be a key

lncRNA in CAFs. It is an important component of the tumor

microenvironment. It can affect proliferation, migration and

glycolysis by regulating miR-675-5p and PFKFB3 (42). Most

importantly, lncRNAs can affect the function of a variety of

immune cells. LncRNA-LINC00301 changes the amount of

regulatory T cells and CD8+ T cells by regulating TGF-b,
promotes cell proliferation, cell migration and invasion,

releases cell cycle arrest, and reduces cell apoptosis in tumor

cells (43). LncRNA-SATB2-AS1 is downregulated in tumor

tissues and suppresses metastasis by regulating the expression

of Th1-type chemokines and the number of immune cells (44).

Recent studies have found that macrophages can also be

regulated by lncRNAs in the tumor microenvironment.

LncRNA-LNMAT1 induces the upregulation of CCL2 and

recruits a large number of macrophages into tumor cells,

which then promotes the secretion of VEGF-C and enhances

tumor metastasis (45). LncRNA-HOMER3-AS1 modulates

proliferation, migration, invasion and apoptosis in tumor cells

and enhances M2 macrophage recruitment by activating the
Frontiers in Immunology 04
Wnt/b-Catenin signaling pathway and CSF-1 expression (46).

Moreover, lncRNA-CRNDE can promote M2 macrophage

polarization and indirectly modulate angiogenesis-related

proteins such as VEGF, VEGFR2, Notch1 and Dll4, which is

consistent with the regulatory mechanism in the tumor immune

microenvironment (47). Taken together, these data indicate that

lncRNAs are involved in carcinogenesis and may become a

potential diagnostic target for malignant tumors.
4 LncRNAs as regulators
in melanoma

4.1 Tumor suppressor lncRNAs
in melanoma

Some lncRNAs have become tumor suppressors because

they can affect the proliferation and metastasis of melanoma

by competitively binding miRNAs and regulating downstream

related signaling pathways, such as the Wnt and Hippo signaling

pathways (Table 1). CASC2 is a lncRNA downregulated in a

variety of cancer types, including endometrial cancer, lung

cancer, gastric cancer and colorectal cancer, which exerts

tumor suppressor effects through various mechanisms, such as

inhibiting the Wnt/b-Catenin signaling pathway (79). Zhang Y
FIGURE 1

The role of lncRNAs in carcinogenesis. Dysregulation of lncRNAs in melanoma cells affects tumor cell proliferation, invasion and migration,
angiogenesis, stemness and chemoresistance by targeting multiple genes and ultimately regulate tumor progression.
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TABLE 1 Upregulated and Downregulated LncRNAs in Melanoma.

lncRNA
Name Expression Functions

Targets and signaling
pathways Role References

ATB Increased
regulate proliferation, metastasis, cell cycle arrest and
apoptosis miR-590-5p; YAP1

Oncogenic
LncRNAs (4)

XIST Increased promote proliferation, migration and oxaliplatin resistance PI3KRI; AKT; Bcl-2; Bax
Oncogenic
LncRNAs (5)

LINC00518 Increased
promote proliferation, invasion, migration, and induce
radioresistance miR-33a-3p; HIF-1a

Oncogenic
LncRNAs (6)

NEAT1 Increased
promote proliferation, migration, EMT process and immune
responses

miR‐495‐3p; E2F3; miR-
200b-3p; SMAD2

Oncogenic
LncRNAs (7, 8)

CRNDE Increased promote invasion and apoptosis CCL18
Oncogenic
LncRNAs (11)

CASC2 Decreased inhibit proliferation, migration and invasion miR-18a-5p; RUNX1

Tumor
suppressor
lncRNA (48)

Linc00961 Decreased restrain proliferation and promote apoptosis miR‐367; PTEN

Tumor
suppressor
lncRNA (49)

HOXA11-
AS Decreased inhibit proliferation, metastasis, apoptosis and EMT process miR-152-3p; ITGA9

Tumor
suppressor
lncRNA (50)

MEG3 Decreased
affect metastasis, apoptosis, cell cycle and enhance the
chemosensitivity to cisplatin and 5-FU

miR-206; SOX4; miR-499-5;
CYLD

Tumor
suppressor
lncRNA (51, 52)

GAS5 Decreased
regulate G1/S cell cycle, apoptosis, reactive oxygen species
and redox balance gelatinases A and B

Tumor
suppressor
lncRNA (53, 54)

NKILA Decreased block tumor growth and metastasis NF-kB

Tumor
suppressor
lncRNA (55)

CPS1-IT1 Decreased control EMT and angiogenesis BRG1; Cyr61

Tumor
suppressor
lncRNA (56)

LINC-PINT Decreased inhibit proliferation and metastasis
BANCR; PCNA; CDK1;
CCNA2; AURKA

Tumor
suppressor
lncRNA (57, 58)

H19 Increased
affect proliferation, invasion, migration, apoptosis, G0 / G1
phase arrest and sensitivity to cisplatin

PI3K/AKT signaling pathway;
NF-kB signaling pathway

Oncogenic
LncRNAs (59, 60)

MIAT Increased promote proliferation, migration and invasion
TCF12; NFAT5; PI3K/AKT
signaling pathway

Oncogenic
LncRNAs (61, 62)

PVT1 Increased promote proliferation and metastasis EZH2; miR-200c
Oncogenic
LncRNAs (63, 64)

MALAT1 Increased regulate proliferation, migration, invasion and cell apoptosis
miR-34a; c-Myc/Met; miR-
23a

Oncogenic
LncRNAs (65, 66)

UCA1 Increased
regulate proliferation, invasion, migration, metastasis and cell
cycle arrest miR-507

Oncogenic
LncRNAs (67)

Gm31932 Increased affect cell cycle arrest and melanoma differentiation miR-344d-3-5p; Prc1; Nuf2
Oncogenic
LncRNAs (68)

SRA Increased promote EMT progression and distal metastasis
p38; CCL21; b-catenin; N-
cadherin

Oncogenic
LncRNAs (69)

(Continued)
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et al. found that the overexpression of CASC2 in melanoma cells

inhibited cell proliferation, migration and invasion by regulating

miR-18a-5p and its target gene RUNX1 (48). LncRNA-

linc00961 is also downregulated in cutaneous melanoma

tissues compared to benign nevi. It restrains proliferation and

promotes apoptosis in melanoma cells by regulating the miR‐

367/PTEN axis (49). As reduced lncRNA-HOXA11-AS

expression regulates the miR-152-3p/ITGA9 axis and inhibits

the proliferation, metastasis, apoptosis and EMT of melanoma

cells, it can be used as a biomarker for the diagnosis and

treatment of cutaneous melanoma (50).

In addition to exerting tumor suppressor functions,

lncRNAs also play a crucial role in influencing drug sensitivity

via ceRNA regulation. LncRNA-MEG3 affects the differentiation

of cancer stem cells and the metastasis of melanoma by

inhibiting miR-206 and SOX4. MEG3 also regulates the

expression of miR-499-5 and CYLD. Thus, it affects

proliferation, invasion, migration, apoptosis and cell cycle

processes and enhances the chemosensitivity of melanoma

cells to cisplatin and 5-FU treatment (51, 52). When the

expression of lncRNA-TINCR is decreased in metastatic

melanoma, its downregulation promotes the expression level

of proliferation-, migration- and invasion-related marker genes

and increases its resistance to drugs such as BRAF and MEK

inhibitors in melanoma progression (80). In addition, TINCR

regulates the expression of LATS1 (a target of miR-424-5p) to

activate the Hippo signaling pathway and to inhibit the

activity of Yes-1-related transcriptional regulators, thus playing

a tumor suppressor role in the development of cutaneous

melanoma (81).

Tumor suppression-associated lncRNAs suppress

melanoma progression through multiple mechanisms, such as

the regulation of downstream target proteins and affecting other
Frontiers in Immunology 06
long noncoding RNAs. LncRNA-GAS5 plays an antitumor role

by regulating gelatinases A and B in melanoma metastasis and

promotes the proliferation of melanoma cells by regulating the

G1/S cell cycle, apoptosis, reactive oxygen species and redox

balance (53, 54). LncRNA-NKILA plays a role in preventing

tumor growth and inhibiting metastasis in melanoma, breast

cancer and other types of solid tumors, while the expression of

NKILA is enhanced by the nuclear factor NF-kB (55). Recent

studies have found that lncRNA-CPS1-IT1 is recognized as a

tumor suppressor factor in several cancers, including melanoma.

The competitive binding of CPS1-IT1 to BRG1 inhibits the

expression of Cyr61 (an angiogenic factor involved in tumor

metastasis) and works together to control the EMT and

angiogenesis of melanoma cells (56). Moreover, the expression

of lncRNA p53-induced transcript (LINC-PINT) was decreased

in melanoma tissues compared to adjacent tissues, while LINC-

PINT overexpression downregulated the expression of lncRNA-

BANCR in melanoma cells to regulate cell proliferation (57).

Additionally, LINC-PINT inhibits the growth and metastasis of

melanoma by regulating the epigenetics of target genes,

including PCNA, CDK1, CCNA2 and AURKA (58).
4.2 Oncogenic LncRNAs in melanoma

The other lncRNAs may serve as oncogenic lncRNAs

because they regulate a variety of signaling pathways related to

melanoma progression. LncRNA-H19 was upregulated in

melanoma tissues compared to adjacent normal tissues.

Furthermore, its expression in metastatic melanoma tissues

was higher than that in orthotopic tumor tissues (59).

Knockdown of H19 affects melanoma cell growth, invasion,

migration, apoptosis, G0/G1 phase arrest and sensitivity to
TABLE 1 Continued

lncRNA
Name Expression Functions

Targets and signaling
pathways Role References

LHFPL3-
AS1 Increased encourage the stemness Bcl-2

Oncogenic
LncRNAs (70)

MIR205HG Increased promote the angiogenesis miR-299-3p; VEGFA
Oncogenic
LncRNAs (71)

PURPL Increased inhibit autophagy and reduce cell death
mTOR; ULK1; AMPK
signaling pathway

Oncogenic
LncRNAs (72)

TUG1 Increased
promote the proliferation and metastasis, inhibit apoptosis
and improve the chemosensitivity to cisplatin and 5-FU

miR-29c-3p; RGS1; Bcl-2;
MMP-9; cyclin D1

Oncogenic
LncRNAs (73, 74)

orilncl Increased promote cell proliferation MAPK signaling pathway
Oncogenic
LncRNAs (75)

SAMMSON Increased promote tumor growth and tolerant to vemurafenib CARF; p53
Oncogenic
LncRNAs (76, 77)

MIRAT Increased affect drug resistance
IQGAP1; MAPK signaling
pathway

Oncogenic
LncRNAs (78)
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cisplatin (60). Functionally, downregulation of H19 mediates the

inhibition of the PI3K/AKT signaling pathway and NF-kB
signaling pathway, thereby inhibiting the progression of

melanoma (82). LncRNA-BANCR (BRAF-activated long

noncoding RNA) participates in the occurrence and

development of melanoma by reducing the interaction with

miR-204 and activating the Notch2 signaling pathway and

promotes its expression in melanoma tissues and cell lines

(83). The overexpression of lncRNA-MIAT obviously

promotes the proliferation, migration and invasion of

melanoma cells by regulating the PI3K/AKT signaling pathway

and can also strengthen the interaction between TCF12 and the

NFAT5 promoter region to promote the progression of

melanoma (61, 62).

In oncogenic lncRNAs promoting melanoma development,

microRNAs play a regulatory role. Accumulating studies have

shown that lncRNA-PVT1 (named plasmacytoma variant

translocation 1) is upregulated in melanoma tissues compared

to adjacent normal tissues, and PVT1 levels are significantly

higher in the serum of melanoma patients than in healthy

individuals (63). In terms of molecular regulation, PVT1

promotes the occurrence and metastasis of melanoma by

regulating the expression of EZH2 and miR−200c (64). The

level of lncRNA-MALAT1 in melanoma was significantly higher

than that in paired adjacent normal tissues, which affects the

expression of c-Myc/Met by regulating a competing endogenous

RNA of miR-34a and regulates cell proliferation, migration,

invasion and cell apoptosis by miR-23a (65, 66). Additionally,

the expression of lncRNA-UCA1 was upregulated in melanoma

tissues compared to normal tissues, while the downregulation of

UCA1 was controlled by direct binding with miR-507, resulting in

cell proliferation, invasion, migration, metastasis and cell cycle

arrest inhibition (67). Moreover, integrative transcriptome

analysis demonstrated that lncRNA-Gm31932 has definite

effects on cell cycle arrest and melanoma differentiation through

the miR-344d-3-5p/Prc1 (and Nuf2) axis (68). LncRNA-

HnRNPK (heterogeneous nuclear ribonucleoprotein K) acts as a

ceRNA for miR-147a and regulates LINC00263, thus accelerating

malignant capabilities by targeting CAPN2 (84).

LncRNAs affect the occurrence and development of

melanoma by regulating a variety of biological processes, such

as stemness, angiogenesis, autophagy and drug resistance. SRA,

known as the steroid receptor RNA activator, is a lncRNA

encoding the conserved protein SRAP. Its expression is

upregulated in melanoma tissues compared to normal tissues.

In melanoma cells, the deletion of SRA induces the activation of

p38 and inhibits EMT process and distal metastasis by increasing

the expression of CCL21 and reducing the expression of b-catenin
and N-cadherin (69). Moreover, lncRNA-LHFPL3-AS1 was

screened out by analyzing differentially expressed genes between

stem cells and nonstem cells in melanoma, which encouraged the

stemness of melanoma stem cells by inhibiting the degradation of

Bcl-2 (70). The expression levels of lncRNA-MIR205HG were
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significantly upregulated in melanoma tissues and cells compared

to normal skin tissues and cells. In addition, MIR205HG directly

binds to miR-299-3p, and miR-299-3p then interacts with the

3’UTR of VEGFA mRNA to promote angiogenesis in melanoma

(71). The direct interaction of lncRNA-PURPL (p53 upregulated

regulator of p53 levels) with mTOR and ULK1 promotes the

phosphorylation of ULK1 at Ser757 to inhibit autophagy and

reduce cell death, while the inhibition of PURPL induces

autophagy and inhibits melanoma progression by regulating the

AMPK signaling pathway and leading to the phosphorylation of

ULK1 at Ser555 and Ser317 (72). In addition, it was recently

reported that the expression of lncRNA-TUG1 was negatively

correlated with prognosis in patients with gastrointestinal tumors,

urinary system tumors and gynecological tumors, independent of

overall survival in patients with head and neck tumors or

melanoma (85). However, knockdown of TUG1 inhibited the

growth and metastasis of melanoma cells by regulating miR-29c-

3p and its target gene RGS1, as well as inducing apoptosis (73).

Moreover, inhibition of TUG1 expression can downregulate Bcl-2,

MMP-9 and cyclin D1 protein, reduce the growth of tumors in

melanoma and improve the chemosensitivity of A375 cells to

cisplatin and 5-FU (74).
5 LncRNAs in the immune
microenvironment

Immune-related lncRNAs can predict the prognosis of

multiple tumors. They have the potential to become

therapeutic targets for multiple tumors, including melanoma.

Recently, researchers have analyzed the expression data of

melanoma in the TCGA database and established a prediction

model between immune-related lncRNAs and the survival status

of melanoma (86, 87). The analysis in TCGA database indicated

that 6 differentially expressed m7G-related lncRNAs have been

identified, and a prognostic model was constructed for

predicting the tumor growth, metastasis and survival status of

patients (88). Another study found that a number of glycolysis-

correlated lncRNAs show pivotal clinical effects by oncogenic

pathways such as EMT and immune-related regulation (89).

Based on next-generation sequencing technology, Yang et al.

constructed a new immune-related lncRNA model and clarified

that the high-risk group with low survival and low PD-L1

expression was associated with plasma B cell, monocyte, M2

macrophage, and neutrophil levels (90). The testis-specific

lncRNA-RFPL3S was significantly downregulated in testicular

germ cell tumors and correlated with the infiltration of immune

cells such as T cells, B cells, NK cells and Th cells to predict the

effect of immunotherapy (91). LncRNA-HSD11B1-AS1 was

highly expressed in melanoma cells and promoted tumor

proliferation, migration and invasion by targeting IL-2/STAT-

5 and IL-6/JAK/STAT-3 signaling pathways. At the same time,

immune invasion analysis showed that HSD11B1-AS1 affected
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the activation of T cells, Th cells, dendritic cells and B cells (92).

And the overexpression of lncRNA-LINC02249 is associated

with a shorter survival time in melanoma patients, and affects

the immune infiltration of dendritic cells, Treg cells and

macrophages (93). LncRNA-SNHG16 regulates mitochondrial

function, cell metabolism and the immune infiltration of Th cells

and NK cells by competitively binding with let-7b-5p and

targeting TUB4A (94). Moreover, lncRNAs in immune cells

also play important roles in the occurrence and development of

cancer. Transcriptome sequencing analysis of lncRNAs in

immune cells showed that the lncRNA expression profiles of T

cells and monocytes differed between normal human and

melanoma patients. These results provide new possibilities for

the regulatory mechanisms of different immune cells, helping to

accelerate the immunotherapy of specific cell types in melanoma

(95) (Figure 2).

A multiomic integrative assessment including lncRNAs was

performed to identify key molecular characteristics for the

transcriptomic status of melanoma cells, which was

significantly correlated with the therapeutic efficacy of

checkpoint inhibitors and adoptive T cells (96). The detection

of lncRNA-HOTAIR in the serum and intratumoral

lymphocytes of metastatic patients suggested that it was

involved in the regulation of the tumor microenvironment and

could be used for the treatment of malignant melanoma (97).

LncRNA-SNHG16 isolated from exosomes of tumor cells can

increase the expression of CD73 in gd1 Treg cells by regulating

the TGF-b1/Smad5 signaling pathway (98). LncRNA-CRNDE-h
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is also abundant in tumor exosomes and participates in tumor

progression by mediating ubiquitination and degradation of

RORgt, promoting Th17-cell differentiation and affecting the

activity of the IL-17 promoter (99). Single-cell sequencing

analysis has identified noncoding IL-4 RNA (IL4nc), which

can promote the production of IL-4 protein in Th2 cells by

posttranscriptional regulation (100).

M2 macrophages can stimulate IL-8 secretion and promote

the STAT3 signaling pathway in tumor progression.

Subsequently, STAT3 binds to the lncRNA-MALAT1

promoter region and transcriptionally activates MALAT1

expression, inhibiting cell proliferation, invasion and

tumorigenesis (101). Overexpression of lncRNA-linc00514

promotes the phosphorylation of the transcription factor

STAT3, activates the Notch signaling pathway, facilitates the

secretion of IL-4 and IL-6, and finally induces M2 polarization of

macrophages (102). Furthermore, lncRNAs, including SNHG12,

PACERR and HITT, function as key regulators of tumor-

associated macrophages, regulating tumor cell proliferation,

invasion and migration by altering the number of M2-

polarized cells and contributing to immune escape (103–105).

LncRNA-MIR155HG regulates the infiltration of macrophages

and the balance of M1/M2 macrophages in tumor

microenvironment to affect cell cycle and apoptosis as well as

promoting melanoma progression (106). And lncRNA-NEAT1

derived from exosomes can inhibit miR-374, promote the

expression of LGR4 and induce the recruitment of M2

macrophages to accelerate melanoma (107).
FIGURE 2

lncRNAs act as modulators in the tumor microenvironment. lncRNAs affect the occurrence and development of tumors through regulating the
activity of immune cells, including CD8+ T cells, regulatory T cells (Tregs), T helper cells (Th cells), macrophages, myeloid-derived suppressor
cells (MDSCs) and neutrophils. * refers to melanoma associated lncRNAs.
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Neutrophils are also involved in the immunomodulatory

process of lncRNA in tumors. While lncRNA-BACE1-AS is an

immune-related factor in the tumorigenesis of melamona, its

expression levels are negatively correlated with the neutrophil

content (108). Neutrophil extracellular traps (NETs) generated

in the tumor microenvironment promote the EMT process and

metastasis by promoting the expression of lncRNA-MIR503HG

and activating the downstream NF-kB/NLRP3 signaling

pathway (109). Therefore, lncRNAs play an important role in

the regulation of the immune microenvironment, thus affecting

tumor progression.

Myeloid-derived suppressor cells (MDSCs) are precursors of

dendritic cells, macrophages and granulocytes, which can inhibit

the immune response of tumors and facilitate the formation of

the tumor microenvironment. LncRNA-MALAT1 resulted in a

significant reduction in MDSC numbers and decreased

peripheral blood mononuclear cells in patients with malignant

tumors (110). LncRNA-LncOVM maintains the stability of

PPIP5K2 by inhibiting ubiquitination degradation and

promoting the secretion of complement C5, thus allowing

complement C5 to attract MDSC infiltration in the tumor

microenvironment and promote tumor metastasis (111).

Recent studies have found that lncRNAs also play a role in

regulating the development and function of polymorphonuclear

bone marrow-derived suppressor cells (PMN-MDSCs). For

example, lncRNA-AK036396 is highly expressed in PMN-

MDSCs, and its downregulation can weaken the stability of

Fcnb protein through the ubiquitin−proteasome pathway,

thereby affecting the maturation and immunosuppressive

function of PMN-MDSCs in tumors (112). Although the

interaction between lncRNAs and immune cells (include T

cells, macrophages, neutrophils) has been reported in several

studies, the interaction between lncRNAs and MDSCs is still

unclear. The function and mechamism of lncRNAs in regulating

the immune microenvironment in melanoma still needs

further research.
6 LncRNAs as potential
therapeutic targets

6.1 Immunotherapy

The use of immune checkpoint inhibitors to enhance the T-

cell immune response holds great promise in tumor

immunotherapy. However, the effect of immune checkpoint

inhibition in patients with solid tumors is very limited, and

the mechanism and efficacy of this treatment of solid tumors

remain unclear. Computational analysis indicated that lncRNAs

play an important role in evaluating the tumor immunotherapy

response, and their binding to specific immune checkpoint
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factors can serve as biomarkers of the immune checkpoint

inhibitor response (113). Therefore, it is necessary to elucidate

the mechanism of action of lncRNAs and explore new combined

strategies for immunotherapy.

LncRNAs transcribed from PD-L1 gene sites also affect the

effectiveness of tumor immunotherapy. PD-L1-lnc, a long

noncoding RNA subtype produced by alternative splicing of

PD-L1 mRNA, can promote the progression of tumor cells by

enhancing the transcriptional activity of c-Myc in human lung

adenocarcinoma. Its depletion coupled to PD-L1 blockade may

be used for tumor suppression (114). LncRNA-INCR1

(interferon-stimulated noncoding RNA 1) also transcribed

from the PD-L1 locus promotes the expression of PD-L1,

JAK2, and several IFNg-related genes, which can regulate the

sensitivity of tumor cells to cytotoxic T-cell-mediated killing and

affect the therapeutic effect of CAR T-cell therapy (115).

As a monoclonal therapy, PD-1 has been used in the

treatment of multiple tumors, including melanoma, and can

predict the survival of patients. Recent studies have described

the characteristics of tumor infiltrating immune-related lncRNAs

(Ti-lncRNAs) and have found a better efficacy of anti-PD-1

treatment in melanoma patients with a low Ti-lncRNA score

(116). WGCNA indicated that 15 lncRNAs, such as NARF-AS1

and LINC01126, were identified to predict the prognosis of

melanoma patients treated with anti-PD-1 (117). By regulating

the expression of miR-33a-5p and miR-330b-5p, lncRNA-

LINC01140 promotes c-Myc expression, suppresses cisplatin-

induced apoptosis and promotes cell proliferation and

metastasis. In addition, this lncRNA directly decreased the

expression of miR-377-3p and miR-155-5p, resulting in

increased PD-L1 expression. Knockdown of lncRNA-

LINC01140 in combination with CIK treatment can inhibit the

expression of PD-L1 in severe combined immunodeficiency mice

and has the potential to become a more effective target for tumor

growth inhibition (118). Additionally, Q Hu et al. found that the

level of lncRNA-LINK-A was elevated and that the antigen

peptide-loading complex was downregulated in triple-negative

breast cancer patients with PD-1 blockade tolerance, which may

provide a basis for the development of new combined

immunotherapies and effective early prevention strategies (119).

In addition, lncRNA-SNHG29 inhibits PD-L1 expression under

treatment with simvastatin (considered a novel inhibitor of PD-

L1) by mediating YAP activation and promoting the antitumor

immune process, which clarifies the therapeutic implications of

SNHG29 in an antitumor immune response (120). In the

cytoplasm, lncRNA-IFITM4P directly binds to SASH1 and

phosphorylates TAK1 (Thr187) to increase the phosphorylation

of NF-kB (ser536), thus inducing the expression of PD-L1,

inhibiting the activation of the immune system and increasing

the immune escape of tumor cells. IFITM4P enhances the

interaction of KDM5A with the PTEN promoter, resulting in
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reduced transcription of PTEN and upregulated PD-L1

expression, thus activating the therapeutic sensitivity of PD-1 in

the nucleus of tumor cells (121). LncRNA-NORAD reduces the

expression of miR-199a-5p in exosomes by inhibiting the

expression of pri-miR-199a1, and pri-miR 199a1 suppresses

the ATR/Chk1 pathway by targeting EEPD1, enabling cells to

better respond to radiotherapy. At the same time, inhibiting the

expression of NORAD can reduce the ubiquitination of PD-L1,

thereby increasing sensitivity to radiation and anti-PD-1 therapy

in amouse model (122). Thus, lncRNAs are involved in PD-1/PD-

L1-related immunotherapy and may become a target of

combined therapy.

The method of editing lncRNAs in T cells has the potential

to become a new antitumor immunotherapy. Recent studies

have found that knockdown of lncRNA-NKILA in cytotoxic T

lymphocytes regulates the sensitivity of T cells to activation-

induced cell death by reducing the expression of NF-kB, thereby
effectively inhibiting the growth of patient-derived xenografts

from breast cancer in mice (123). Melanoma-overexpressed

antigen 1 (MELOE-1), which is encoded by a long noncoding

RNA in tumor cells and can specifically improve the tumor

antigen of MELOE-1 through thapsigargin drug stimulation,

enhances the ability of T cells to recognize melanoma cells (124).

Additionally, exosome-related therapy can inhibit tumor

progression by regulating the immune system of the organism.

M1 macrophage-derived exosomal lncRNA-HOTTIP and M2

macrophage-derived exosomal lncRNA-AFAP1-AS1 affect

tumor metastasis by modulating the miR-26a/ATF2 axis and

miR-19a/b-3p/TLR5/NF-kB signaling pathway, respectively,

which provides a potential strategy for tumor immunotherapy

(125, 126). In summary, targeting tumors with immune

checkpoint inhibitors (especially anti- PD-1/PD-L1) combined
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tumor therapy.
6.2 Targeted therapy

Approximately 66% of malignant melanomas have BRAF

(B-RAF proto-oncogene) mutations, which lead to an increase in

constitutive BRAF kinase activity and the MEK-ERK1/2

pathway and are necessary for proliferation, invasion and

survival in melanoma cells (127). Recent studies have found

that lncRNAs are associated with BRAF mutation and the

growth of melanoma cells (Figure 3). LncRNA-ZEB1-AS1 is

upregulated in melanoma cells and is related to the mutations of

BRAF and RAS family genes, which can affect the invasion and

migration of melanoma by activating the expression of ZEB1

(128). Moreover, a p53-induced long intergenic noncoding RNA

(named LINC-PINT) affects the proliferation, migration and

invasion of melanoma by interacting with the BRAF-activated

noncoding RNA/MAPK pathway (129). Additionally, lncRNA-

orilncl (the genetic target of RAS) was upregulated in BRAF

mutant melanoma and promoted tumor cell proliferation and

growth by regulating the RAS-RAF-MEK-ERK signaling

pathway (75).

Although BRAF inhibitors have made great progress in the

treatment of melanoma, the generation of drug resistance in

tumor cells limits their efficacy. The experiment identified 11

lncRNA loci that induce resistance to BRAF inhibitors through

genome-scale CRISPR activation screening and characterization

(130). The expression of lncRNA-RMEL3 is significantly

increased in BRAF V600E mutant melanoma cells and can be

regulated by BRAF and MEK inhibitors. And its expression can
FIGURE 3

Multiple lncRNAs regulate resistance to BRAF inhibitors in melanoma. The dysregulation of lncRNAs targets the MAPK and p53 signaling pathway
by regulating downstream target proteins in BRAF or RAS mutant melanoma cells, thus affecting the resistance of melanoma to BRAF inhibitors.
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promote colony formation in melanoma cells and the growth of

subcutaneous xenografts in mice by inducing protein levels of

p21, p27, pAKT and cyclin B1 (131). LncRNA-SAMMSON is a

target of the transcription factor Sox10 and can interact with p32

to strengthen its role in targeting mitochondria and promoting

cancer progression (132). The overexpression of SAMMSON

made melanoma cells tolerant to the cytotoxicity induced by

vemurafenib (functioning as an inhibitor of mutant BRAF

kinase) by modulating the CARF/p53 axis (76, 77).

Additionally, the intergenic lncRNA-U73166 changes the

proliferation, migration and invasion abilities of melanoma

cells and is also related to vemurafenib chemotherapy

resistance (133). In addition, the expression level of lncRNA-

TSLNC8 is downregulated in BRAF inhibitor-resistant

melanoma cells, and its low expression attenuates the toxicity

response of tumor cells to PLX4720 (a type of BRAF inhibitor).

Mechanistically, TSLNC8 activates the MAPK signaling

pathway by regulating the accumulation of PP1a in the

cytoplasm and promotes the sensitivity of tumor cells to

PLX4720, which enables melanoma patients to benefit from

the combined treatment of PLX4720 and TSLNC8 (134).

MIRAT, a novel cytoplasmic intergenic lncRNA, is

upregulated in NRAS mutant melanoma and regulates the

MEK scaffold protein IQGAP1 and MAPK signaling pathways

to influence the drug resistance of tumor cells (78). Thus, it has

the prospect to better explore the mechanism of drug resistance

and improve the response to BRAF inhibitors.

Regulating the expression of lncRNAs by common drugs or

oligonucleotides may be a potential way to inhibit the occurrence

and development of melanoma. Researchers found that lncRNA-

SLNCR interacts with AR and regulates the combination of AR-

and EGR1-specific genomic sites, which cooperate with growth-

related downstream regulatory genes to promote the proliferation

of melanoma (135). Taking advantage of oligonucleotides binding

to the AR N-terminal domain or AR RNA motif to block the

interaction between SLNCR and AR represents a feasible

therapeutic strategy in the process of melanoma (136). In

addition, lncRNA-ZCCHC4 inhibits DNA damage-induced

apoptosis by interacting with lncRNA-AL133467.2, and

knockdown of this gene can enhance chemosensitivity to DDA

in hepatocellular carcinoma cells, which is a potential target to

improve the chemotherapeutic effect (137). Additionally, the

lncRNA-POU3F3 expression level was elevated in dacarbazine-

resistant melanoma cells, and knockdown of POU3F3 restored the

sensitivity of cells to dacarbazine by secreting miR-650 and

upregulating the expression of MGMT protein (138). Another

novel therapeutic strategy, reprogramming abnormal lncRNA-

ANRIL in gene clusters at chromosome 9p21, can significantly

reduce the ability of tumor growth and metastasis (139).
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Therefore, targeting lncRNAs is a feasible way to inhibit the

progression of melanoma.
7 Conclusion

Melanoma is one of the most rapidly progressing tumors

with strong metastatic potential. Although a large number of

genes involved in the tumor process have been found in

melanoma, the specific molecular targets for their occurrence

and development still need further research. Accumulating

studies have found that lncRNAs play a key role in biological

processes, including tumor proliferation, migration, invasion,

cell cycle, apoptosis, stemness, EMT and chemoresistance. Based

on the role of lncRNAs in melanoma, it can be used as a

biomarker or a therapeutic target for the early diagnosis,

prognosis and treatment of melanoma patients. Because

lncRNAs can be secreted into the body fluids, the early

diagnosis and speculated prognosis of melanoma can be

performed painless by the lncRNAs analysis in the body fluids,

compared with the invasive biohistopathological biopsies. For

treatment, if the tumor suppressor lncRNA is downregulated, we

might return it to normal function or even overexpression.

Conversely, if the oncogenic lncRNA is upregulated in

melanoma, we may suppress the oncogenic lncRNA. ASOs

(antisense oligonucleotides), RNAi(RNA interference) and

CRISPR(clustered regularly interspaced short palindromic

repeats) are the main methods of downregulating lncRNAs.

However, because the molecular mechanism of many lncRNAs

is unclear and the interaction with functional partners, including

proteins, is still uncertain, the development of lncRNA therapy is

limited to a certain extent and needs further research.

Immunotherapy (such as immune checkpoint inhibitors)

and targeted therapies (such as BRAF inhibitors) can exert

certain therapeutic effects, but their effectiveness is usually

limited by drug resistance. Reassuringly, a few lncRNAs can

influence the therapeutic effect of immune checkpoint inhibitors

in melanoma, and it is a feasible method to target tumors in

combination with immune checkpoint inhibitors and lncRNA

regulators. Furthermore, lncRNAs also play a regulatory role in

alleviating the drug resistance caused by the use of BRAF

inhibitors. Moreover, it is effective to eliminate the point

mutation of the binding site between lncRNA and protein or

use oligonucleotides to block the invasion of melanoma, which

indicates that targeting lncRNA and its protein complexes has

therapeutic prospects in melanoma. However, it is still unclear

whether other novel lncRNAs are involved in immunotherapy

and targeted therapy and whether they can be applied to clinical

treatment. Therefore, elucidating the mechanism of lncRNAs in
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immunotherapy and targeted therapy and applying it to improve

the effectiveness of drug therapy remain to be studied.
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