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evaluating immune infiltration
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Background: Colon cancer (CC) is the second most common gastrointestinal

malignancy. About one in five patients have already developed distant

metastases at the time of initial diagnosis, and up to half of patients develop

distant metastases from initial local disease, which leads to a poor prognosis for

CC patients. Necroptosis plays a key role in promoting tumor growth in

different tumors. The purpose of this study was to construct a prognostic

model composed of necroptosis-related genes (NRGs) in CC.

Methods: The Cancer Genome Atlas was used to obtain information on clinical

features and gene expression. Gene expression differential analysis, weighted

gene co-expression network analysis, univariate Cox regression analysis and

the least absolute shrinkage and selection operator regression algorithm were

utilized to identify prognostic NRGs. Thereafter, a risk scoring model was

established based on the NRGs. Biological processes and pathways were

identified by gene ontology and gene set enrichment analysis (GSEA).

Further, protein-protein interaction and ceRNA networks were constructed

based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk

score on different degrees of immune cell infiltration was evaluated.

Results: CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic

significance and were used to establish a risk scoring model. The time-

dependent receiver operating characteristic curve analysis revealed that the

model could well predict the 1-, 3-, and 5-year overall survival (OS). Further,

GSEA suggested that the NRGs may participate in biological processes, such as

the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified,

and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3

mRNAs, was constructed. Immune infiltration analysis revealed that the low-

risk group had significantly higher immune-related scores than the high-risk

group. A nomogram of the model was constructed based on the risk score,

necroptosis, and the clinicopathological features (age and TNM stage). The
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calibration curves implied that the model was effective at predicting the 1-, 3-,

and 5-year OS of CC.

Conclusion: Our NRG-based prognostic model can assist in the evaluation of

CC prognosis and the identification of therapeutic targets for CC.
KEYWORDS

weighted gene co-expression network analysis (WGCNA), tumor microenvironment,
tumor immune infiltrating cells, copy number variation (CNV), nomogram, calibration
curves, ceRNA networks
1 Introduction

Colon cancer (CC) is a deadly tumor that affects individuals

worldwide. The incidence of CC is increasing, especially in cities

and regions with rapid economic development in the United

States (1). With the popularization of cancer screening and

advancements in treatment-related medical technology, patient

outcomes have improved significantly. But as the onset of CC is

insidious, there’s still a lot patients diagnosed in the advanced

stage, where the condition is severe and difficult to treat, and

palliative care is the only available treatment option (2, 3). Only

few biomarkers are available for the diagnosis and therapy of

CC. Circulating tumor DNA (ctDNA) is a subset of circulating

free DNA (cfDNA) from tumor cells. In many studies, ctDNA

has been found to be of great value in the early diagnosis, efficacy

evaluation, drug resistance monitoring and prognosis prediction

of tumors. Among them, targeted drug therapy guided by

ctDNA is the most important clinical application at present (4,

5). At present, ctDNA as biological markers have been found to

be associated with the prognosis of colon cancer, but they have

not been widely applied in clinic (6–8). Therefore, exploring

potential biomarkers of CC remains the focus of CC-

related research.

Necroptosis is a lytic manner of programmed cell death that

prevents the self-destruction of activated cells that are blocked by

apoptosis. In some degenerative or inflammatory diseases,

necrotizing apoptosis plays a role in destroying infected cells

or damaged cells (9). Unlike apoptosis, the activation of

necroptosis does not depend on caspase kinase activation.

Under caspase inhibition, the binding of death receptor and

ligand can trigger necrotizing apoptosis (10). Necrotizing

apoptosis plays a dual role in tumorigenesis and development,

which can not only enhance cellular immunity (11) and play an

anti-tumor role, but also stimulate the tumor to form an

immunosuppressive microenvironment and promote tumor

progression (12). According to previous studies (13) and
02
owing to the activity of intracellular RIP-1 and MLKL, the

combination of 5-FU and ZVAD (caspase inhibitor) can

promote necroptosis of colorectal cancer (CRC) cells,

highlighting the important value of necroptosis in the study of

tumor drug resistance. However, a prognostic scoring system for

CC based on the tags of genes associated with necroptosis has

not been established.

Recently, high-throughput sequencing and the gene chip

technology have been widely used in the field of life science (14,

15). Bioinformatics is an important tool for analyzing large

volumes of existing biological data. By analyzing the

potentially important core genes or prognostic factors within

the data (16, 17), potential tumor markers or therapeutic targets

can be explored (18). Several previous studies focused on single

genes as diagnostic and prognostic indicators (19, 20). However,

these biomarkers, especially individual gene expression levels

that may be influenced by multiple factors, are insufficient to

accurately and independently predict patient outcomes. As a

result, these markers cannot be used as reliable and independent

prognostic indicators. Therefore, in this study, statistical models

composed of multiple prognostic necroptosis-related markers

were employed to improve the predictive power of CC.

In recent years, the ceRNA hypothesis has attracted

attention and has become one of the hot spots in the study of

RNA interaction. The regulatory mechanisms among mRNA,

miRNA, lncRNA, or circRNA are extremely complex and have

important biological significance. LncRNA or circRNA can

compete with mRNA to bind to miRNA, thereby forming a

complex lncRNA-miRNA-mRNA network or circRNA-

miRNA-mRNA network. However, an imbalance in the

ceRNA regulatory network can lead to the initiation and

progression of tumors (21). To date, the function of most

mRNAs as ceRNAs in the progression and prognosis of CC

has not been thoroughly defined.

In this study, the prognostic risk model of necroptosis-

related genes (NRGs) was established, and the diagnostic and
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predictive significance of the model was evaluated. Thereafter, a

ceRNA network was constructed based on mRNA-miRNA-

lncRNA, and the effects of necroptosis-related risk score on

different degrees of immune cell infiltration were evaluated.

Overall, the findings of this study provide a theoretical

foundation for further assessments of the diagnosis, treatment,

and molecular mechanism of CC.
2 Materials and methods

2.1 Data download

The Cancer Genome Atlas (TCGA) Genomic Data

Commons (GDC) website (https://portal.gdc.cancer.gov/) was

used to obtain the expression spectrum data for colon cancer

(colon adenocarcinoma, COAD) patients (n = 514), such as the

count, and FPKM and TPM values; and patient clinical data

(n=430), such as gender, age, TMN stage, and survival prognosis.

“Masked somatic mutation” was selected as the somatic

mutation data (n=420) and downloaded. The somatic

mutations were visualized using maftools package (22) in R to

obtain tumor mutation burden (TMB) for per patient.

Additionally, the MSI data in the TCGA-COAD patients’

dataset was obtain the tumor mutation burden (TMB) per

patient. Additionally, the MSI data in TCGA-COAD patient

dataset were obtained from the cBioPortal database (https://

www.cbioportal.org). The baseline information of TCGA-

COAD patients is provided in Table 1.

Gene expression data and the clinical characteristics of

patients of GSE17536 (23) and GSE39582 (24) were

downloaded from the GEO database. The data samples

were obtained from Homo Sapiens. The chip platforms were

grounded in the GPL570 [HG-U133_plus_2] Affymetrix Human
Frontiers in Immunology 03
Genome U133 Plus 2.0 Array. After deleting patients lacking

clinical information, 177 COAD tissue samples were included in

GSE17536, all of which were used in the analysis. GSE39582

included 585 COAD tissue samples. As survival information was

not available for 5 samples, 580 were included in the analysis. R’s

limma package (25) was used to standardize the two data sets

separately. Table S1 shows the information from GEO.
2.2 Calculation of the necroptosis score
based on gene expression matrix

For all samples in the combined dataset and based on 36

necrotizing apoptosis-related genes from previously published

literature (26), the necroptosis score (NPs) of every sample in the

TCGA-COAD dataset was determined using the R package,

GSVA (27), and the ssGSEA method according to the gene

expression matrix of the respective sample.
2.3 Screening of differentially expressed
genes (DEGs)

Using the above method, the NPs of each sample was

obtained, and the optimal cut-off value was selected in

combination with the patient’s survival data. Based on the NPs

score, the NPs group was separated into high and low NPs. To

identify genes associated with NPs, the DEGs between high NPs

and low NPs in TCGA-COAD samples were identified using the

R package, limma (25). The screening threshold of the DEGs was

set to |log2 fold change (FC)|>1 and adjusted P < 0.05. The

results of the difference analysis are presented as a heatmap and

a volcano plot.
2.4 Weighted gene co-expression
network analysis (WGCNA)

WGCNA was implemented using the R package, WGCNA

(28). First, the weighted values of the calculated correlation

coefficients between any two genes were used to generate

connections between genes in the network to assemble a scale-

free network. A hierarchical clustering tree was then established

according to the correlation coefficients. The branches of the

cluster tree highlighted various genetic modules, and various

colors signified different modules. The module saliency was then

calculated. All mRNAs of the sample were input into WGCNA

to measure the associations between the two NPs groups and

different modules. All genes were recorded in their respective

modules. The genes in the respective modules were considered

as modular characteristic genes (MEs). The correlation between

the NPs values and genes was determined based on the

significance of genes. Module membership was determined
TABLE 1 Baseline data table of patients in TCGA-COAD dataset.

Characteristic levels Overall

n 363

status, n (%) Alive 279 (80.9%)

death 66 (19.1%)

Age, n (%) <60 96 (26.4%)

≥60 267 (73.6%)

Gender, n (%) female 177 (48.8%)

male 186 (51.2%)

Stage, n (%) stage I 62 (17.4%)

stage II 145 (40.7%)

stage III 103 (28.9%)

stage IV 46 (12.9%)
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according to the relevance between module genes and DEG

expression profile. The modules of interest were selected using

the MS score, and all genes in these modules were recognized to

have a high correlation with NPs.
2.5 Subtype analysis of patients with CC
based on necroptotic genes

Based on the necroptosis characteristic genes and TCGA-

COAD expre s s ion da ta , the k-means method in

“ConsensusClusterPlus” R package (29) was used to perform

unsupervised cluster analysis to identify the necroptosis

subtypes. The concordant clustering algorithm was used to

discern the cluster number. The analysis was repeated 1000

times to ensure stability of the category. Principal component

analysis (PCA) was conducted for patients with grouped

subtypes to determine the differences between samples.

Survival analysis was implemented after grouping to determine

the influence of various subtypes on prognosis.
2.6 Establishment and testing of the
prognostic risk models based on NPs
characteristic genes

The results of differential expression analysis combined with

WGCNA analysis were used to acquire the NPs-related

characteristic genes. The significantly differentially expressed

NPs-related characteristic genes were involved in the model,

and the prognostic genes were screened using univariate Cox

regression analysis, with a cut-off P value of 0.1. Subsequently,

the selected genes were regularized and dimensionally reduced

using the least absolute shrinkage and selection operator

regression (LASSO) algorithm to further identify prognostic-

related genes. Thereafter, the weighted normalized gene

expression value of the penalty coefficient acquired by

multivariate Cox analysis (STEP method) was used to establish

a risk score formula. Using the median risk score, patients were

divided into high-risk and low-risk groups.

riskScore =o
i
Coefficient (hub genei)*mRNA Expression (hub genei)

The above dataset based on TCGA-COAD served as a

training set, and the internal test was conducted using

the bootstrap method with 1000 re-sampling. Thereafter, the

coefficient based on model variables was used to calculate the

risk score for each sample in test sets, GSE17536 and GSE39582,

using the predict function in the “survival” R package (https://

CRAN.R-project.org/package=survival>). Finally, a time-

dependent receiver operating characteristic (ROC) curve was

plotted. The area under the curve (AUC) was used to reflect the

performance of the model.
Frontiers in Immunology 04
2.7 Analysis of DEGs in the NPs-related
metabolic model

To acquire genes relevant to the NPs model, DEGs between

the high-risk group and low-risk group of TCGA-COAD

patients were analyzed using the R limma package. The

screening threshold of the significantly different DEGs was

defined as |LogFC| > 1 and adj. P value < 0.05. The DEGs

were visualized using volcano maps and heat maps.
2.8 Functional enrichment analysis

GO (30) analysis is an approach adopted for massive

functional enrichment research, including biological processes

(BP), molecular functions (MF), and cellular components (CC).

Kyoto Encyclopedia of Genes and Genomes (KEGG) (31) is an

extensively used database that stores data regarding genomes,

biological pathways, diseases, and drugs. The ClusterProfiler

package of R (32) was used for GO and KEGG analyses of

significant DEGs. The critical value of FDR less than 0.05

indicated significant difference.

To explore the discrepancies in biological processes among

different subgroups, GSEA was performed according to the gene

expression profiling dataset of COAD patients. The gene set

“c2.cp.v7.2.Symbols. gmt” obtained from the MSigDB (33)

database was used for GSEA. An FDR < 0.25 indicated

statistical significance.
2.9 Identification and correlation analysis
of the tumor immune infiltrating cells

To quantitatively analyze the relative tumor infiltration

degree of various immunocytes in COAD, the ssGSEA

algorithm was employed to differentiate between highly

sensitive and specific phenotypes of various human immune

cells in the tumor microenvironment (TME). The algorithm

revealed 28 gene sets for labeling various tumor-infiltrating

immunocyte types based on a study by Bindea et al. (34). The

gene sets comprised various human immunocyte subtypes, such

as macrophages, mast cells, etc. Enrichment scores obtained

using ssGSEA in R’s GSVA package indicated the degree of

infiltration of various immune cell types in every sample.

Meanwhile, R’s ESTIMATE package (35) was employed to

evaluate the immunological activity of the tumor. ESTIMATE

quantitatively analyzes the immune activity of a tumor sample

according to its gene expression profile to obtain an immune

score per tumor sample. Herein, the discrepancies in immune

infiltration features between the two groups of patients with

COAD were compared.
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2.10 Analysis of copy number
variation (CNV)

To compare the copy number differences between the two

groups of TCGA-COAD patients, the TCGAbiolinks package

(36) of R was used to obtain the Masked Copy Number Segment

information. The downloaded CNV fragments were subjected to

GISTIC 2.0 analysis by GenePattern (https://cloud.genepattern.

org); default parameters were used for the analysis.
2.11 Establishment of the prognostic
model according to the NPs risk score

The predictive power of the NPs risk score in combination

with clinicopathological characteristics on OS based on

univariate and multivariate Cox analysis was used to

demonstrate that the NPs risk score in combination with

clinicopathological features can be used to estimate patient

prognosis. The risk scoring model was then combined with

clinicopathological features to establish a nomogram, and the

accuracy of the model was reflected by the AUC values under the

time-ROC curve. The performance of the rosette was assessed

using a calibration curve that compared the predicted values of

the rosette with the observed actual values. Testing of the model

was carried out using the bootstrap method, and internal re-

sampling was performed 1000 times.
2.12 Establishment of the PPI network
and screening of hub-genes

The STRING (37) online tool was applied to establish the

PPI network. Genes with scores > 0.7, which indicates high

credibility, were selected from the STRING database to construct

the network model visualized using Cytoscape (version3.7.2)

(38). The Maximal Clique Centrality (MCC) of each node was

ca l cu l a t ed us ing the cy toHubba p lug- in (39) in

Cytoscape software.
2.13 Establishment of the
ceRNA network according to
mRNA-miRNA-lncRNA

Information on the miRNA-mRNA interactions was

collected from the miRTarBase database (40). The core

mRNAs acquired from the PPI analysis were used to predict

the miRNAs that might be regulated. The relevant lncRNAs

were further predicted based on evidence from the luciferase

reporter gene assay. The results of ceRNA analysis were

visualized using Cytoscape software. The P values of all
Frontiers in Immunology 05
hypothetical tests were two-sided, and a p value of less than

0.05 was considered to indicate statistical significance.
2.14 Statistical analysis

Data analysis was performed using R software. version 4.0.2.

Independent Student’s t test and Mann–Whitney U test (namely

Wilcoxon rank-sum test) were used to estimate the differences

between two groups of normally distributed and two groups of

non-normally distributed continuous variables, respectively. The

c2 test or Fisher exact test was carried out to determine the

difference between the two groups of categorical variables.

Survival analysis was carried out using R’s survival package.

The Kaplan–Meier survival curve was applied to display survival

differences, and log-rank test was performed to compare the

differences in survival. Univariate and multivariate Cox analyses

were based on the R survival package. LASSO analysis was

carried out using the glmnet R package (41).
3 Results

3.1 Expression and mutation of
necroptotic genes in CC patients

The whole research design was illustrated in Figure 1. First,

36 necroptotic genes were extracted from the RNA-seq data of

TCGA-COAD and their expression differences were compared

between the normal group and tumor group. A total of 30

necroptotic genes were found to be differentially expressed, and

only 6 genes were not differentially expressed. Such results

suggest that necroptosis may play crucial role in COAD

(Figures 2A, B). According to the somatic mutation data of

TCGA-COAD samples, mutation information was obtained for

the 36 necroptotic genes using the maftools package. The

necroptotic genes were not found to mutate significantly in

COAD patients, except TP53, in which the mutation frequency

of TNF, CASP6, and TNFSF10 was less than 1% (Figure 2C). In

addition, the prognostic status of the 36 genes was analyzed.

Only TRAF2, RIPK3, and IPMK genes were found to have

significant prognostic differences, and may thus serve as

potential prognostic markers (Figure S1).
3.2 Calculation of the necroptosis score
and screening of characteristic genes

Based on the above differential necroptosis genes, the NPs of

each COAD patient was obtained using the ssGSEA algorithm to

represent the necroptosis level of the patient. The optimal cut-off

value was determined using prognostic analysis based on the

necroptosis score. Thereafter, TCGA-COAD samples were
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divided into groups with high NPs and low NPs. Survival

analysis revealed that patients with low necrosis apoptosis

scores had worse prognosis than patients with high

necroptosis score (log-rank P < 0.024; Figure 3A).

Subsequently, 766 DEGs were acquired through rigorous

analysis, including 380 significantly upregulated and 386

downregulated genes, respectively (Figures 3B, C). A gene co-

expression network was also established to identify biologically

significant gene modules through WGCNA and further identify

genes closely related to COAD necroptosis. In this study, 4

modules (except grey module) were obtained for subsequent

analysis (Figures 3D, E). As shown in Figure 3F, we integrated

the difference analysis results with the MEturquoise, MEblue,

and MEbrown modules to obtain a total of 209 necrotizing

apoptotic characteristic genes.
3.3 Identification of necroptotic subtypes

Based on the above genes with necroptosis characteristics,

consistent clustering was employed to cluster LIHC samples.

Here, K=2 was selected and two subgroups, subgroup 1 and

subgroup 2, were obtained (Figure S2A). Dimension reduction

analysis was conducted via PCA and the PCA results of the two
Frontiers in Immunology 06
groups were plotted. Based on the results, the degree of

differentiation between the two groups was not obvious, which

may be due to the insignificant clustering gene characteristics,

resulting in insignificant grouping differences (Figure S2B). The

prognostic characteristics of subgroup 1 and subgroup 2 was

subsequently analyzed using the KM curve; however, no distinct

difference in prognosis was found between the two groups,

suggesting that clustering subtypes based on all necroptotic

characteristic genes could not distinguish differences in the

prognosis of patients (Figure S2C). However, when the

expression distributions of characteristic genes of type 1 and

type 2 were compared, necroptotic characteristic genes were

found to be significantly differentiated in the two subtypes,

suggesting that the classification is of guiding significance for

assessing the mechanism of necroptosis, but not suitable for

identifying clinical prognostic markers (Figure S2D).
3.4 Construction and evaluation of risk
models related to necroptosis

Based on the necroptosis characteristic genes, a necroptosis-

related risk score system was constructed to quantitatively

evaluate the prognostic information of each COAD patient by
FIGURE 1

The flow chart.
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risk score. First, univariate Cox regression analysis revealed that

23 genes met the screening criteria (P < 0.05). Dimension

reduction was analyzed using LASSO (Figure 4A). When 5

variables were present, the most stable model was obtained.

Multivariate Cox regression analysis revealed that Calbindin 1

(CALB1), Carbohydrate sulfotransferases (CHST13), and solute

carrier family 4 member 4 (SLC4A4) were independent

prognostic factors (Figure 4B). Multivariate Cox analysis was

also carried out to obtain the model coefficients of important

characteristic genes. Thereafter, the gene expression was
Frontiers in Immunology 07
multiplied and summed with its coefficients to construct a risk

score. The final risk score (necroptosis risk score related to

prognosis) was calculated for each sample. In terms of the risk

score and gene expression values of patients, a heat map of the

risk factors was plotted to show the distribution of the risk score

(Figure 4C). The time-dependent ROC curve analysis revealed

AUC values of 0.684, 0.657, and 0.710 for the 1-, 3-, and 5-year

OS, respectively, which indicated that risk score was an ideal

predictor of OS in COAD patients (Figure 4D). For the external

dataset test, the GSE39582 and GSE17536 datasets were
A C

B

FIGURE 2

Differential expression and mutation information of necroptotic genes in TCGA-COAD datasets. (A, B) Necroptotic genes were compared
between the normal and tumor groups in TCGA-COAD dataset using the Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Mutation
information of the necroptotic genes in TCGA-COAD. "ns" represents "no significance".
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employed. After data normalization, the model was tested. For

GSE39582, the ROC curve revealed AUC values of 0.682, 0.623,

and 0.708 for the 1-, 3-, and 5-year OS, respectively. For

GSE17536, the AUC values were 0.665, 0.712, and 0.758 for

the 1-, 3-, and 5-year OS, respectively, indicating that the model

had been well tested in external datasets (Figure S3).
3.5 Analysis of DEGs and functional
enrichment in patients with high-
and low-risk necroptosis score

To determine the role of the necroptosis-related risk model

on the evolution of COAD samples, TCGA-COAD patients were

divided into high-risk group and low-risk group based on the

expression median value of the COAD patient risk model score
Frontiers in Immunology 08
in TCGA dataset. Subsequently, the DEGs in the two groups of

patients were identified. Overall, 317 genes were significantly

differentially expressed in COAD patients, among which 185

and 132 genes were significant ly upregulated and

downregulated, respectively (Figures 5A, B).

Functional enrichment analysis was performed using 317

genes identified as significantly DEGs. The GO analysis results

revealed that the significant DEGs were related to GO:0044421

extracellular region part, GO:0005576 extracellular region,

GO:0042588 zymogen granule, GO:0071752 secretory dimeric

IgA immunoglobulin complex, and other functions (Figure 5C).

KEGG functional analysis suggested that significant DEGs

mainly had an impact on nitrogen metabolism, bile secretion,

and rheumatoid arthritis, and other pathways (Figure 4D). Many

pathways were found to be related to immunity, such as the

chemokine signaling pathway, WNT signaling pathway, etc.
A B C

D E

F

FIGURE 3

Screening of genes associated with necroptosis. (A) Survival analysis results revealed marked difference in survival status between groups with
high and low necrotizing apoptosis scores (log-rank P =0.024); (B, C) Volcano maps and heat maps revealing DEG expression among COAD
samples in the groups with high and low necrotizing apoptosis. (D) Quality control result selected by WGCNA softpower as 4. (E) Set of genes
associated with the necroptosis phenotype analyzed and screened using WGCNA. The heat map demonstrated the correlation and significant
difference between different gene modules and necroptosis score, where the P values are shown in parentheses. (F) Intersection of DEGs and
genes in the significant module of WGCNA.
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Detailed GO and KEGG results are presented in Tables S2

and S3.

Based on the results of expression analysis, we continued

GSEA and summarized the related results of the pathway

database based on C2. KEGG pathway results and GSEA

results revealed distinct differences in the activity of the JAK-

STAT signaling pathway, WNT signaling pathway, fructose and

mannose metabolism, primary immunodeficiency, and nitrogen

metabolism (Figure 5). The detailed results of GSEA and the

metabolism-related pathways are provided in Table S4. These
Frontiers in Immunology 09
findings coincide with those obtained from the KEGG database,

and suggest the activation and inhibition characteristics of the

high- and low-risk groups.
3.6 Protein interaction and regulatory
network analysis

In terms of the DEGs in the high- and low- risk groups, we

aimed to identify the hub gene that played a key role, and its
A C

B D

FIGURE 4

Prognostic model and model test based on necroptotic characteristic genes. (A) LASSO regression analysis; the number of variables
corresponding to the optimal l value is 5. (B) Three genes identified as independent prognostic factors through multivariate Cox stepwise
regression analysis. *P < 0.05. (C) Risk score distribution and survival status of COAD patients; (D) TimeROC curve of TCGA-COAD (training set).
Internal validation was performed using the Bootstrap method, with 1000 iterations.
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potential molecular interaction mechanism. First, the STRING

database was used to analyze the protein interaction mechanism.

As shown in Figure 6A, after screening with a confidence of

0.700, the number of PPI nodes (protein) was 233. Further, 81

edges were identified, with an average connection degree of

0.695 for each node. The enrichment statistic P value of the

whole PPI network was less than 1.0e-16.

The interacting proteins were further identified as hub genes

using the cytoHubba plugin in Cytoscape. After the calculations,

MUC5AC, MUC5B, WNT16, WIF1, and other interacting

proteins that had the top 8 scores were found (Figure 6B).
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Subsequently, miRNA molecules and lncRNAs that potentially

regulate these hub genes were analyzed using miRTarBase

database. Finally, a ceRNA regulatory network was established

using Cytoscape (Figure 6C).
3.7 Differential expression analysis of
immunocyte infiltration

The influence of necroptosis-associated risk scores in

patients with TCGA-COAD on their holistic immune
A C

B D

E

FIGURE 5

DEG analysis and functional enrichment analysis based on the necroptosis-related risk model. (A, B) Volcano map and heat map revealing DEG
expression between the high- and low- risk groups in TCGA-COAD dataset. (C) GO analysis revealed that the differential genes were correlated
with GO:0044421 extracellular region part, GO:0005576 extracellular region, GO:0042588 zymogen granule, GO:0071752 secretory dimeric
IgA immunoglobulin complex, and other functions. (D) KEGG results revealed that these DEGs participated in nitrogen metabolism, bile
secretion, rheumatoid arthritis, and other pathways. (E) GSEA results suggested that the KEGG results were similar to those of differential gene
enrichment, and the main enrichment pathways were the WNT pathway, JAK-STAT pathway, immune-related pathway, etc.
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characteristics and varying degrees of immunocyte infiltration

was analyzed. Patients in the high-risk group were found to have

significantly lower immune-related scores (P < 0.001); however,

no distinct difference was found in the matrix score (Figures 7A,

B). ssGSEA was used to appraise the changes and effects of

immunological characteristics of COAD tissues during

pathogenesis. Through ssGSEA, the relative enrichment scores

of 28 different subtypes of immunocytes in the high- and low-

risk groups of COAD patients was obtained. Heat maps were

generated to illustrate their expression in different patients

(Figure 7C). Based on the results, the expression abundance of

immunocytes in the low-risk group was lower than that in the

high-risk group. The correlation analysis results revealed that

most immune cell infiltration levels were positively correlated

(Figure 7D). Differential analysis also revealed distinctions in the

infiltration levels of various immune cells between COAD

samples in the high and low necrotizing apoptosis-related risk

groups. Only effector memory CD8+ T cells, immature dendritic

(iDC) cells, and other cells were not found to significantly differ

between the groups (Figure 7E). A distinct difference was found
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between the HLA family expression levels and the various

immunological targets of the high- and low-risk groups.

Further, the immunoactive genes were almost all elevated in

the low-risk group (Figures 7F, G).
3.8 Effects of the necroptosis-related
risk score on genomic changes in
COAD samples

The influence of the necroptosis-related risk score on

changes in genetic variation levels, including single nucleotide

polymorphism and CNV, in COAD patients was evaluated. The

analysis of single-nucleotide mutations in common tumor-

driven genes revealed that the high mutation levels were

similar or close between patients with high and low scores in

the necroptosis-related model (Figure 8A). Based on assessments

of the frequency of CNV changes, CNV was found to be widely

present in high- and low-risk samples. However, no distinct

discrepancy in CNV was found between the two groups
A

B C

FIGURE 6

PPI and regulatory network analysis. (A) PPI regulation network, detailed display of the network node information, connection line information,
and the composition of the different sub-network information. (B) Hub gene regulation network based on cytoHubba calculation. (C) CeRNA
regulatory network predicted using the miRTarBase database. Blue represents miRNA; green represents LncRNA; and Brown represents mRNA.
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(Figures 8B, C). When TMB and MSI were compared between

the two patient groups, no distinct discrepancy in TMB and MSI

was found between the high and low risk groups. This result

suggests that changes at the genomic level were not significant in

the two groups (Figures 8D, E).

Based on the significant role of immunotherapy in tumors,

the TIDE algorithm was employed to calculate the sensitivity of

patients in the high- and low-risk groups to immunotherapy.

The TIDE score in the low-risk group was higher than that in the

high-risk group, suggesting that the immunotherapy response of

the high-risk group might be better than that of the low-risk

group (Figure 8F).
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3.9 Establishment of a prognostic model
according to the necroptosis-related
risk score

To further probe the clinical value of necroptosis-related risk

score, the clinical characteristics related to the high-risk and low-

risk groups, such as the discrepancy in age and TNM stage, were

analyzed. Notably, no distinct discrepancy was found in the age

of patients in the high-risk group (Figure 9A). For gender, the

proportion of women in the high-risk group increased

(Figure 9B). In terms of stage, a significantly higher

proportion of advanced patients was identified in the high-risk
A B E

C

F

D G

FIGURE 7

Correlation between necrosis risk scores and the infiltrates of different immunocytes (A, B) Immune score and stromal score between the low-
and high- risk groups; (C) Heat map showing the invasion degrees of 28 different immune cells in TCGA and GEO database; (D) Association
heat map showing the association between various levels of immunocyte infiltration. (E) Differential analysis of 28 different immunocyte
infiltration levels between the two groups; (F) Analysis of differences in the expression of multiple members of the HLA family between the high-
and low-risk related subgroups; (G) Differential expression analysis of multiple immunotherapy-related targets between the high- and low-risk
related groups. *P < 0.05, **P < 0.01, ***P < 0.001. "ns" represents "no significance".
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A

B C

D E F

FIGURE 8

Impact of necroptosis-related risk grouping on genetic variation and immunotherapy in COAD samples. (A) Mutation map of common
tumorigenic driver genes in patients in the high- and low-risk groups. Mutation information per gene per sample is presented as a waterfall plot,
and different colors represent different types of mutation. The subsection above the legend shows the sudden change load; (B, C) Changes in
the copy number levels of different genes in the high-risk and low-risk groups, where genes with significant copy number increase in red and
genes with significant copy number deletions in blue; (D, E) Comparison of the difference in MSI level and TMB level between patients in the
high- and low-risk groups, respectively; (F) Discrepancy between the high-risk and low-risk groups based on the tide score calculated from the
tide database. ***P < 0.001. "ns" represents "no significance".
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group (Figure 9C). Subsequently, based on the risk scores

associated with necroptosis and clinicopathologic features (age

and TNM stage), we established a prognostic model for COAD

patients (Figure 9D) and analyzed the model via 1000

resampling using the bootstrap method. Based on timeROC,

the AUC values were 0.798, 0.772, and 0.741 for 1-, 3-, and 5-

years, respectively (Figure 9E). Calibration curves were

generated to present the consistency of the model. A good

consistency was found between the model’s estimated 1-, 3-,

and 5 - y e a r OS and the a c t u a l ob s e r v ed OS o f

patients (Figure 9F).
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4 Discussion

In recent years, the incidence of CC among young people has

gradually increased (42). Necroptosis has different functions in

diverse tumors, including promoting tumor progression in lung

cancer, pancreatic cancer, and glioblastoma (43–45), or

inhibiting tumor growth in gastric cancer (GC), head and neck

squamous cell carcinoma, melanoma and CRC (46–49).

Necroptosis also has a two-way effect of promoting cancer and

suppressing cancer in breast cancer (50, 51). As a result, we

cannot appraise the prognosis of CC according to the expression
A B C

D E

F

FIGURE 9

Performance of the necroptosis risk scores in the prediction of prognosis for patients with COAD. (A-C) Superimposed histogram showing the
proportion of age, sex, and stage in patients in the high- and low-risk groups. The effect of age was similar in both groups, with an increased
proportion of women in the high-risk group and significantly more advanced patients in the high-risk group. (D) Nomogram of the model.
(E) Time-dependent ROC curve of the clinical prediction model based on risk score. (F) For the calibration curve of the nomogram, the
bootstrap method was adopted, and resampling was performed 1000 times. The abscissa is the survival predicted by the nomogram, and the
ordinate is the actual observed survival. The calibration plot revealed that the bias-corrected line for 1-, 3-, and 5- years OS was close to the
ideal line, indicating good consistency between the predicted value and the actual value.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1085038
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1085038
of individual necrosis regulators alone. Targeting NRGs is

regarded as one of the effective methods for reducing tumor

chemotherapy resistance, opening up a new approach for cancer

treatment (52). A prior study revealed the construction of a

prognostic model of lncRNA associated with GC necroptosis to

differentiate hot and cold tumors of gastric carcinoma, to

ultimately predict prognosis and the effectiveness of

immunotherapy (53). Nevertheless, the theory of necroptosis

in CC remains indistinct. In this study, prognostic risk models

based on NPs characteristic genes was constructed to predict

prognosis and immunotherapy, and systematically analyze the

correlation between immune cell infiltration, immune

checkpoints, and CC.

A total of 30 necroptotic genes were found to be differentially

expressed. Thereafter, an analysis of DEGs revealed 766 DEGs in

the high NPs group and low NPs group. A gene co-expression

network was also established to identify biologically significant

gene modules through WGCNA. Finally, a total of 209

necrotizing apoptotic characteristic genes were identified. The

results of univariate Cox regression analysis, LASSO, and

multivariate Cox regression analysis revealed that CALB1,

CHST13, and SLC4A4 are independent prognostic marks. The

final risk score was then calculated for each sample.

CALB1 is a vitamin D-dependent calcium-binding protein

with six EF hands on the long arm of chromosome 8 at position

21.3 (54). CALB1, a component of Calbindin, has been

confirmed to restrain tumor cell apoptosis. A prior study

suggested that CALB1 may exert carcinogenic effects in

ovarian cancer by inhibiting the p53 pathway (55). CALB1 is

overexpressed in nonsmall cell lung cancer (NSCLC) tissues, and

has a significant connection with lymph node metastasis and

prediction of worse survival (56). In osteosarcoma, the

downregulation of CALB1 gene expression resulted in reduced

cell proliferation and cell clonal formation (57). In this study,

CALB1 was verified to be an independent risk factor for

prognosis. Further, its expression was found to increase,

indicating poor prognosis of patients. Previous studies did not

directly explain the relationship between CALB1 and CC.

However, this study provides ideas for future diagnosis and

treatment using CALB1 as an oncogene.

Chondroitin sulfate (CS) is a glycosaminoglycans (GAGs)

that participates in multiple biological processes and exerts

crucial function in the interaction among stromal tumor cells

(58). CHST13 gene is located on chromosome 3q21.3. A prior

study suggested that CHST13 may serve as a negative regulator

of HCC cell invasion and chemotherapy sensitivity by

modulating Mitogen-Activated Protein Kinase (MAPK)

activity (59). The mRNA expression of CHST13 was found to

be significantly higher in in ovarian cancer specimens than in

non-malignant tumor specimens (60). The results of this study

indicate that CALB1 is an independent prognostic marker that

plays the role of an oncogenic gene in the occurrence and

development of CC. Thus, CALB1 could serve as an original
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biomarker for the diagnosis and prognosis evaluation of CC.

However, no prior study has revealed that CHST13 can serve as

a high-risk independent prognostic factor for OS. Accordingly,

the present study is an important supplement to this field.

Homo sapiens solute vector family Member 4 (SLC4A4) is a

member of the solute vector family which encodes an

electrogenic Na+/HCO3− cotransporter (61). A previous study

showed that SLC4A4 is increasingly expressed in prostate cancer

tissues and cell lines. Further, the SLC4A4 expression level in

cancer tissues was significantly associated with the degree of

disease progression. SLC4A4 promotes prostate cancer

progression through the Akt-mediated signaling pathway (62).

Mir-222-3p expression was increased in PTC, while that of

SLC4A4 was low. SLC4A4 could reverse the promoting

function of Mir-222-3p on the proliferation, invasion, and

migration of PTC cells (63). SLC4A4 had a lower expression

in CRC than normal tissue, indicating that SLC4A4 was

associated with poor prognosis (64). This study revealed that

SLC4A4 may be an individual prognostic factor for CC patients

and may exert a protective function in the tumorigenesis and

progression of CC, which aligned well with the proposals from

existing studies.

TCGA-COAD samples were divided into high- and low-risk

groups based on the median expression value of the COAD

patient risk model score in TCGA dataset. DEG analysis and

functional enrichment analysis were then performed. The main

enrichment pathways included the WNT pathway, JAK-STAT

pathway, primary immunodeficiency pathway, chemokine

pathway, fructose and mannose metabolism, nitrogen

metabolism, etc.

The abnormal WNT signaling pathway is highly relevant to

tumorigenesis and progression of multiple tumors, including CC

(65–67). A previous study confirmed that activation of Wnt/b-
catenin signaling contributes to the aberrant expression of

several oncogenes that regulate the dedifferentiation phenotype

and EMT in CC cells (68). Another study demonstrated that

RBBP4 activates the Wnt/b-catenin pathway to accelerate the

progression of CC (69). Based on this analysis, the WNT

signaling pathway was identified to be significantly

differentially enriched in the high-risk group phenotype.

The JAK/STAT pathway plays an increasingly vital role in

regulating immune function, cell proliferation, differentiation,

and death (70–72). Fibroblast growth factor receptor was

reported to mediate PD-L1 expression in CC by activating the

JAK2/STAT3 signaling pathway (73). Notably, activation of the

JAKs structure promotes phosphorylation of the STAT family

(74). The STAT3 signaling pathway is in close contact with the

construction of a tumorigenic inflammatory microenvironment

(75). The proliferation and viability of macrophages were

reported to be enhanced by STAT3 activation, the immune

tolerance of CC cells, and inhibition of extracellular matrix

remodeling, thereby playing tumor-promoting roles (76).

Based on this analysis, the JAK/STAT signaling pathway was
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identified to be significantly differentially enriched in the low-

risk group phenotype. Consistent with the results of this study,

necroptosis may promote tumor progression by inhibiting the

JAK/STAT pathway.

A systematic review of all cases of clinically diagnosed

primary immunodeficiency and early-onset gastrointestinal

(GI) cancer in three publicly available databases (MEDLINE,

SCOPUS, and EMBASE) was previously conducted. Based on

the results, primary immunodeficiency may be linked with

potential risk factors for GI tumor. Adenocarcinomas of the

stomach and colon were identified as the most common GI

tumor (77). A previous literature revealed the involvement of

chemokine (CC theme) ligand 7 (CCL7) in the progression

of CRC (78). Another literature revealed the ectopic expression

of the novel chemokine, CXCL17, in primary CC. The

expression of CXCL17 might inform the prognosis of CC

patients as CXCL17 enhances angiogenesis and attracts

immune cells (79).

Based on the differential genes in the high and low risk

groups, we opted to identify the key hub genes and their

underlying molecular interaction mechanisms. These hub

genes were MUC5AC, MUC5B, WNT16, WNT11, WIF1,

SFRP5, B3GNT6, and GALNT12.

Mucin is a type of high molecular weight glycoprotein that is

mainly involved in protecting epithelial cells of different organs

from physical, chemical, and pathogenic damage (80). Mucin

has abnormal expression in many malignant tumors, which is

correlated with the proliferation, migration, invasion, adhesion

and metastasis of tumor cells (81, 82). Changes in mucin

expression have been reported to have a high correlation with

the occurrence of CRC (81). Normally, expression of the secreted

mucin, MUC5AC, is restricted to the stomach, lung, ear,

conjunctiva, nasopharynx, and gallbladder. Several studies

revealed that secreted MUC5AC is overexpressed in pancreatic

cancer, lung cancer, and breast cancer (83–85). In fact, the

secreted mucin, MUC5AC, was not identified in normal

colonic mucosa, but was present in benign and malignant

colon (80, 86). Prior literature confirmed that MUC5AC

across the membrane protein, CD44, mediated the initiation

and progression of CC, and provided resistance to

chemotherapy in CRC through the b-catenin/p53/p21
signaling pathways (87). Secreted MUC5B mucin is generally

not expressed in normal adult gastrointestinal mucosa, but has

been proven to be differentially overexpressed in some subtypes

of GC and CRC (88–90).

Numerous studies proved that over-activation of the Wnt

signaling pathway is the main culprit in the onset of most human

malignant tumors (91, 92). The Wnt signaling pathway plays a

crucial role in multiple biological processes, such as

embryogenesis and tissue homeostasis, exerting significant

functions in the tumorigenesis and progression of CRC (93). A

previous study found one or more mutations downstream in the

Wnt signaling pathway, especially adenomatous polyposis coli
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(APC), in more than 90% of patients with CRC (94). WNT16 is

one of the most impressive members of the WNT pathway (95,

96). TheWnt signaling pathway consists of canonical signals and

noncanonical signals. Transmembrane proteins and their

receptors mediate canonical Wnt signaling. Atypical Wnt

signaling involves two pathways: the Wnt/Ca2+ pathway and

the Wnt/c-jun N-terminal kinase (JNK)(planar cell polarity)

pathway (97, 98). Wnt11 exerts its role via the noncanonical

WNT pathway (97). Studies have confirmed that Wnt11 has a

vital effect in the regulation of CRC cell proliferation, migration,

and invasion (99, 100).

Wnt inhibitory factor 1 (WIF1) can interact with the Wnt

protein to inhibit the canonical and non-canonical Wnt

pathways to exert tumor inhibitory effect. WIF1 silenced by

methylat ion has been found to part ic ipate in CC

progression (101).

Secreted frizzled-related protein 5 (SFRP5) is a new type of

adipocytokine, belonging to the SFRP family. Plasma SFRP5

levels were found to be distinctly decreased in obese patients and

patients with diabetes, coronary artery disease, and other related

diseases (102, 103). SFRP5 is underexpressed in moderate tumor

tissues including lung cancer, ovarian cancer, GC, and breast

cancer tissues, and is associated with poor prognosis (104–107).

GALNT12 has been revealed to be a strong candidate for CRC

susceptibility (108).

The B3GNT protein family is differentially expressed in

multiple cancers, such as GI cancer, pancreatic carcinoma, and

prostate cancer (109–111). The expression of B3GNT was found

to be significantly decreased in GC and CRC (112). Although the

8 hub genes are relevant to tumorigenesis and progression,

relevant studies on CRC are insufficient.

Based on increasing evidence, the ceRNA regulatory

network plays a key role in the progression of various

common cancers (113, 114). Shang et al. (115) found that the

tumor-derived exosome, circPACRGL, acts as a sponge molecule

of miR-142-3p/miR-506-3p, promoting the propagation,

diversion, invasion, and adhesion of CC cells and N1 to N2

neutrophil differentiation. Wu et al. (116) showed that the

LNC473-MIR574/miR15B-APAF1 IRES signaling axis could

manipulate the propagation and apoptosis of CRC cells to

influence the initiation and progression of CRC. In this study,

a ceRNA regulatory network was constructed with 1 lncRNA, 5

miRNAs, and 3 mRNAs, revealing the potential regulatory

mechanism of lncRNA-miRNA-mRNA in CC, and indicating

the direction for further exploration of the pathogenesis of CC.

The immune microenvironment of CC and immunotherapy

for CC patients should be explored. Immune cells in the TME

perform vital functions in tumor progression (117). Based on

prior studies, immune checkpoint inhibitors (ICIs) have great

potential in immunotherapy of CC (118).

Immunocheckpoint inhibitor therapy of CC is in the “MSI

era” because microsatellite instability (MSI) or mismatch repair

gene status (MMR) is the best predictor of efficacy. Based onMSI
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status, CC patients can be divided into two groups according to

the efficacy of immunotherapy: “advantaged population” –MSI-

H/dMMR type (MSI-H type for short); “Invalid population” –

MSS/pMMR type cancer (MSS type cancer for short) (119).

However, only about 5% of metastatic colorectal cancer (mCRC)

is MSI-H, and about 95% is MSS type (120). How to turn “cold

tumor” into “hot tumor” effective for immunotherapy has been a

hot research direction. EYNOTE 016 Phase II clinical trial

results showed that the objective response rate (ORR) of MSI-

H mCRC patients was 40%, while the ORR of MSS mCRC

patients was 0 (121). Immunotherapy has enriched the

treatment modalities of multiple malignancies, including

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and

inhibitor of programmed death-1 (P D-1)/programmed cell

death ligand 1(PD-L1). In patients with MSS mCRC, single-

agent immunotherapy has failed, and multiple clinical trials of

immunotherapy in combination with other therapies are being

actively explored, including combination immunotherapy and

immunotherapy combined with targeted therapy, radiotherapy,

oncolytic virus, bisspecific antibodies, etc. Pd-1/PD-L1

inhibitors in combination with other immunotherapies may

play a synergistic role in enhancing the antitumor effect. In a

Phase II trial, durvalumab, a PD-L 1 inhibitor, combined with

CTLA-4 inhibitor tremelimumab in refractory mCRC patients

(92% pMMR/MSS) showed significant benefits in overall

survival (OS) (122). In addition, in 2019, 24 patients with

pMMR/MSS colon cancer who had failed standard treatment

were included in the REGONIVO study. The ORR reached

33.3% after treatment with regorafenib combined with

navulizumab, which significantly improved progression free

survival (PFS) and OS (123).

In this study, the low-risk group was found to have higher

levels of infiltration of multiple immunocytes, several HLA

family members, and multiple immunotherapy targets. In

addition, based on the significant role of immunotherapy in

tumors, the TIDE algorithm was used to assess the sensitivity of

both groups to immunotherapy. The TIDE score was lower in

the high-risk group than the low-risk group, suggesting that the

immunotherapy response of the high-risk group might be better

than that of the low-risk group.

To further enhance the prediction accuracy of the model, a

nomogram model based on the risk score prognostic model and

clinical indicators (including age and pathological stage), which

markedly improved the precision of the model, was established.

The time-dependent ROC curve suggested that the risk score

had favorable predictive performance for the OS of COAD

patients. Calibration curves revealed a good consistency

between the model’s estimated 1-, 3-, and 5-year OS and the

actual observed OS of patients.
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This study had some limitations. First , c l inical

information and basic experimental verification are lacking.

Further, the reliability of the results is dependent on the

accuracy of TCGA dataset. In the future, the results of this

study should first be verified through clinical trials and basic

experiments. Prospective studies are also needed as

retrospective studies may be subject to bias. Finally, clinical

follow-up data are lacking to prove the accuracy of our

prognostic model.

In this study, a prognostic risk model based on NRGs was

established, and the diagnostic and predictive significance of the

risk model was evaluated. The results of this study will help to

reveal the pathogenesis of CRC, enabling the development of

new diagnostic ideas, and facilitate the search for new

therapeutic targets and prognostic molecular markers.
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