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Melanocortin therapies
to resolve fibroblast-
mediated diseases

Natalya Khodeneva †, Michelle A. Sugimoto †,
Camilla S. A. Davan-Wetton and Trinidad Montero-Melendez*

The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
Stromal cells have emerged as central drivers in multiple and diverse diseases,

and consequently, as potential new cellular targets for the development of novel

therapeutic strategies. In this review we revise the main roles of fibroblasts, not

only as structural cells but also as players and regulators of immune responses.

Important aspects like fibroblast heterogeneity, functional specialization and

cellular plasticity are also discussed as well as the implications that these aspects

may have in disease and in the design of novel therapeutics. An extensive revision

of the actions of fibroblasts on different conditions uncovers the existence of

numerous diseases in which this cell type plays a pathogenic role, either due to

an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'.

In both cases, opportunities for the development of innovative therapeutic

approaches exist. In this regard, here we revise the existing evidence pointing

at the melanocortin pathway as a potential new strategy for the treatment and

management of diseases mediated by aberrantly activated fibroblasts, including

scleroderma or rheumatoid arthritis. This evidence derives from studies involving

models of in vitro primary fibroblasts, in vivomodels of disease as well as ongoing

human clinical trials. Melanocortin drugs, which are pro-resolving mediators,

have shown ability to reduce collagen deposition, activation of myofibroblasts,

reduction of pro-inflammatory mediators and reduced scar formation. Here we

also discuss existing challenges, both in approaching fibroblasts as therapeutic

targets, and in the development of novelmelanocortin drug candidates, that may

help advance the field and deliver new medicines for the management of

diseases with high medical needs.
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1 Introduction

All tissues and organs in our bodies contain fibroblasts, a

type of spindle-shaped cells which produce the connective tissue

that provides structural support to the parenchymal cells (1).

Here, their main role is to secrete the components of the

extracellular matrix (ECM), mostly composed of collagens,

fibronectin, elastin, laminins, proteoglycans and microfibrillar

proteins (2). However, much has progressed since the 19th

century when Virchow, Ziegler and Ramon y Cajal identified

and provided the first clues about the existence and the functions

of these cells (1). Whilst historically fibroblasts were defined by

and studied mostly because of their role in wound healing, we

now know that the structural role is only one of the many

functions that fibroblasts can display, as discussed later.

Although a single name is used to refer to fibroblasts, they

represent a highly heterogeneous population, with different

subtypes identified depending on the specific tissue, their

location within each tissue, pathophysiological status and

cellular origin. This has become evident mostly in recent years

with the advent of single-cell RNA sequencing techniques, which

have helped to unravel the vast heterogeneity and plasticity of

this cell type (3–5). Remarkably, single-cell based techniques

have started to reveal something more important than the

specific markers that define each subpopulation, that is the

functional specialization of the different subtypes and how

they differentially contribute to homeostasis and disease (6–8).

The translational impact of this new breadth of knowledge is also

notable as opportunities for the selective targeting of specific

pathogenic populations, as well as pro-resolving ones, could now

be developed.

Another important conceptual shift in the field of fibroblast

research is the recognition that these cells can be ‘drivers’ of

disease, rather than mere ‘responders’ to the inflammatory or

pathogenic microenvironment. For example, in rheumatoid

arthritis (RA), cartilage and bone destruction are mediated by

fibroblasts that “fail to switch-off”, leading to persistent

activation of immune cells, resulting in chronic inflammation

(9, 10). Thus, it is proposed that strategies targeting the

fibroblasts aimed at promoting pro-resolving mechanisms, i.e.,

the mechanisms that actively lead to the termination of the

inflammatory response (11, 12), could be used for the treatments

of diseases mediated by abnormally activated fibroblasts.

One of the endogenous pro-resolving pathways that has

extensively been studied at the preclinical and clinical levels, and

indeed has reached approval for use in humans, is the targeting

of the melanocortin pathway (13). This system comprises a

family offive membrane receptors and four endogenous agonists

which, among other functions, have demonstrated anti-

inflammatory and pro-resolving actions in various models of

disease, including arthritis (14–16), gout (17), intestinal

inflammation (18, 19), atherosclerosis (20), uveitis (21),

transplant rejection (22), or neuroinflammation (23) among
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others. Their role in controlling fibroblast activation have also

been studied, and this includes in vitro, in vivo, and clinical

investigations. In this review we collect the existing evidence

supporting the therapeutic potential of melanocortin therapies

to control fibroblast mediated diseases and we analyse the trends

and directions that may help for the successful translation into

the clinics of this new class of drugs.
2 Fibroblasts in health and disease

2.1 ‘Structural side’ of fibroblasts

The structural functions of fibroblasts extend beyond the

passive provision of a scaffold to sustain other cells within an

organ. The components of the matrix secreted by fibroblasts can

directly interact with membrane receptors, like integrins and

syndecans, and initiate intracellular signalling pathways which

play important roles in various processes like organ

morphogenesis, cell migration or mechanotransduction (24,

25). Of note, the contribution of cell-matrix interactions to

homeostasis is the reason why 3D organoid models

incorporating ECM or fibroblasts in their composition provide

a more reliable system than monolayer cultures (26).

Fibroblasts are involved not only in the deposition of ECM

components, but also in their appropriate remodelling through

crosslinking and proteolysis. These actions provide the

fibroblasts a key role in orchestrating the process of wound

healing and repair upon tissue injury (27). Thus, when blood

comes into contact with collagen in the ECM of tissues, it

triggers platelet activation, initiating the clotting cascade.

Other ECM components crucial at this stage are fibrin and

fibronectin, which form a temporary plug to support the wound.

Immune cells, initially neutrophils, are then recruited to clear

dead cells and pathogens. Fibroblasts lead the next phase

characterised by the accumulation and activation of these cells

in the wound bed and the release of large amounts of type III

collagen at first, which is later replaced with stronger type I

collagen. These activated fibroblasts, typically referred as

myofibroblasts due to the expression of alpha-smooth muscle

actin (aSMA), direct the contraction of the deposited ECM

bringing the wound edges together. During the remodelling

phase, which can last from weeks to years, the collagen,

originally released in a disorganised way, is realigned along

tension lines, and crosslinked to achieve the desired tensile

strength. Pathologies that derive from a dysregulated action of

fibroblasts during the wound healing process include chronic

wounds, excessive scarring or fibrotic pathologies (28).

A distinct structural role of this cell type is exemplified by

synovial fibroblasts. Although they also provide structural

support to the synovial tissue that lines the joint capsule, a key

role of synovial fibroblasts is the provision of nutrients to the

avascularised cartilage and lubrication to the joints by the release
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of hyaluronan and lubricin into the synovial fluid allowing the

movements of the joints (29). As discussed later, synovial

fibroblast dysfunction can also drive pathological states in

conditions like rheumatoid arthritis.

In summary, all the actions discussed above can be grouped

into the ‘structural side’ of fibroblasts. However, these cells also

exert direct immune actions by themselves or via the interaction

with immune cells, with important implications in disease.

These actions will be summarised next.
2.2 ‘Immune side’ of fibroblasts

Besides their well characterised structural role, it is now clear

that fibroblasts can directly exert actions typically attributed to

immune cells. For example, dermal fibroblasts have membrane

expression of Toll-like receptors (TLRs), which actively engage

in the body’s defence against invading pathogens and therefore

suggest an innate immune role for fibroblasts (30). Likewise,

cytoplasmic nucleotide-binding oligomerisation domain

containing proteins 1 and 2 (NOD1, NOD2), involved in the

intracellular recognition of bacteria, have been found on dental

pulp fibroblasts (31). Fibroblasts can also sense bacterial

metabolites through the expression of xenobiotic receptors, of

relevance in the gut where this process may modulate their

inflammatory and pro-fibrotic properties (32). Furthermore,

fibroblasts can also release anti-microbial peptides such as

defensins and cathelicidins (33, 34), clearly suggesting that

fibroblasts can elicit direct immune responses against

microorganisms at least in highly colonised tissues like the

skin, oral cavity, intestinal lumen and the eye. Altogether, this

indicates that fibroblast functions may be highly specialised

depending on tissue needs.

Fibroblasts can also produce a vast array of pro-

inflammatory mediators including cytokines, chemokines and

growth factors like TNF-a, IL-1b, IL-6, IL-8, CCL-1, CCL-2,
CXCL-5, GM-CSF or G-CSF, leading to the recruitment and

activation of immune cells and contributing to processes like

angiogenesis, fibrogenesis and modulation of apoptosis

resistance. Fibroblasts express histocompatibility leukocyte

antigen DR (HLA-DR) molecules, the activation of which can

contribute to the modulation of T cell phenotypes as well as to

the release of pro-inflammatory cytokines (35). Interestingly, in

addition to pro-inflammatory mediators, fibroblasts also express

receptors and release molecules with anti-inflammatory and

pro-resolving actions like IL-10, resolvins and melanocortin

peptides (see Sections 3 and 4), providing a distinct framework

for the therapeutic targeting of fibroblast-mediated diseases.

Another well-known immune role of fibroblasts is attributed

to those cells found in the lymph nodes, referred to as

fibroblastic reticular cells, which tightly control adaptive

immune cell homeostasis, for example by producing IL-7 to
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support naive T cells (36). This represents another example

denoting fibroblast functional specialization.

The immune role of fibroblasts is also driven by their ability

to interact with immune cells and influence their responses.

Interestingly, this interaction is usually bidirectional, whereby

immune cells also influence fibroblast behaviour (37). For

example, using in vitro cultures, Zhou et al. proposed the

notion of a ‘stable two-cell system’ between macrophages and

fibroblasts, where fibroblasts secrete colony stimulating factor 1

(CSF-1), essential for the survival of macrophages, and in turn

macrophages produce platelet-derived growth factor (PDGF)

that is key in promoting the proliferation and maintenance of

fibroblast populations (38, 39). This fibroblast-macrophage

crosstalk has also been observed in pathological contexts like

fibrosis, where fibroblasts induce the recruitment and activation

of macrophages through CCL-2 and CSF-1, while macrophages

in turn activate fibroblasts by releasing transforming growth

factor beta 1 (TGF-b1) and IL-6 (39). Similarly, fibroblasts and

macrophages co-exist and interact in both the lining and sub-

lining layers of the synovium. While fibroblasts provide support,

nutrients and lubrication as mentioned earlier, the role of tissue-

resident macrophages in the synovium during physiological

conditions is not well known (40). To add further complexity

to the interactions between these two cell types in the synovium,

Alivernini et al demonstrated first, that these interactions and

their consequences may depend on specific subsets of

macrophages, and second, that these interactions can not only

reinforce inflammatory status, but rather the opposite, that is to

promote repair responses in fibroblasts via the release of pro-

resolving lipids like resolvin D1 (7).

An important aspect that emerges from the understanding of

the direct immune actions exerted by fibroblasts and the

immune-stromal crosstalk is the appreciation that targeting

the fibroblast may be as important as targeting the immune

cells. This suggests new therapeutic strategies to control multiple

pathological conditions that, although they display an immune

component, are now known to be driven by abnormally

activated fibroblasts. Examples of these conditions will be

discussed next.
2.3 Fibroblasts are active drivers
of disease

Fibroblasts are no longer considered relatively quiet cells,

resting in tissues producing and releasing matrix components.

Indeed, because of their presence in almost every tissue and

organ in the body, it is not surprising that fibroblasts are now

implicated in multiple and diverse conditions ranging from well-

known diseases like cancer, rheumatoid arthritis or fibrosis, to

poorly understood ones like fibromyalgia, chronic pain or

thyroid eye disease, as we will discuss below (Figure 1). The
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recent acceptance of the fibroblast as an active driver of disease,

and consequently as a therapeutic target, may bring innovative

strategies to treat and manage those conditions.

In rheumatoid arthritis, the pathogenic role of fibroblasts is

very well established. While initially activated by their pro-

inflammatory microenvironment, at a certain stage, fibroblasts

acquire an epigenetically imprinted aggressive phenotype

switching from responders to drivers, and hence switching the

disease from acute to chronic (41). Their pathogenic actions

involve the secretion of pro-inflammatory cytokines,

chemoattractants and pro-angiogenic factors, the release of

metalloproteases involved in the degradation of cartilage and

bone and the display of apoptosis-resistant and invasive

behaviour (41, 42). The active role of synovial fibroblasts was

also demonstrated in vivo. Mice that lack an organised synovial

lining layer due to the deficiency of cadherin-11 are indeed

resistant to the development of arthritis, demonstrating a causal

role offibroblasts in the disease (43). Different synovial fibroblast

subpopulations with functional specialization have been

identified within the synovium. Croft et al recently showed

that while FAP+THY1+ cells are mainly mediators of

inflammation, the destruction of joint tissues is mostly

mediated by FAP+THY1- fibroblasts (8). Interestingly, studies

using a mouse model of joint inflammation showed that

fibroblasts can acquire the ability to transmigrate (and transfer

their imprinted aggressiveness) to distant joints, suggesting not
Frontiers in Immunology 04
only a local role in driving tissue destruction but also in the

progression and spreading of the disease to unaffected

joints (44).

The driving role of fibroblasts in cancer is also well studied.

Characterisation of cancer-associated fibroblasts (CAF)

heterogeneity has significantly contributed to understanding the

diverse phenotypes and functions that fibroblasts can assume

during this disease. CAFs display a range of tumour-supporting

functions, including migration, metastasis, angiogenesis,

resistance to chemotherapy and immunosuppression (45, 46).

However, the diverse pro-tumorigenic functions that CAFs can

play do not belong to a unique cell population. For example, work

from Öhlund et al in pancreatic ductal adenocarcinoma

uncovered the co-existence of CAF subtypes bearing either

tissue-remodelling or immunosuppressing features, termed

myofibrotic CAF (myCAF) and inflammatory CAF (iCAF),

respectively (47). The authors also postulate that, besides the

demonstrated pro-tumorigenic role of CAFs, previous attempts at

targeting fibroblasts to treat cancer may have been unsuccessful

because they mainly targeted the myCAF subpopulation while

leaving other subsets unaffected.

The prototype of fibroblast-mediated diseases is

undoubtedly fibrosis. Fibrosis is typically referred to as a

wound that never heals, where the involvement of fibroblasts is

mostly derived from the dysregulation of their 'structural side', in

contrast to the previous examples, where the 'immune side' plays
FIGURE 1

Fibroblast-mediated diseases. Conditions in which a pathogenic driving role for fibroblasts has been reported are represented in this cartoon.
These include numerous diseases with a clear pro-fibrotic component, like fibrosis, Dupuytren's contracture or implant encapsulation, and
conditions in which the immune side of fibroblasts results pathogenic like rheumatoid arthritis or cancer.
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a more prominent role. In fibrosis, the healing process continues

unresolved to the point of causing scarring and impairment of

tissue function. In general, although with exceptions, activated

endothelial cells act as the initial stimulus, causing the

subsequent recruitment of leukocytes which release a host of

pro-fibrotic cytokines like IL-6 and TGF-b1, which act on local

fibroblasts to create a fibrogenic environment, causing the

transition from inactive into aberrantly activated aSMA

expressing myofibroblasts (48). These myofibroblasts have a

significant role in the development of fibrosis, secreting high

levels of ECM proteins, and perpetuating fibroblast activation

through the overexpression of TGF-b1. Moreover, the

myofibroblast population exhibits a higher level of resistance

to apoptosis (49), contributing to the continuous presence of

ECM-producing fibrotic fibroblasts. The eventual organ

dysfunction results from the progressive replacement of

functional parenchymal cells in the affected organ with

disorganised scar tissue. As for rheumatoid arthritis synovial

fibroblasts, stable epigenetic modifications particularly on

fibroblast genes like ACTA2 and THY1 (encoding for aSMA

and CD90, respectively), also contribute to the progression of

fibrosis (50). Fibrosis can manifest in many organ systems, like

skin fibrosis including keloids and hypertrophic scars (51);

pulmonary fibrosis, caused by exposure to pollutants like

asbestos, chemotherapy agents or bacterial and viral infections

(52–54); liver fibrosis, associated with alcoholism, fatty liver

disease or viral infection (55); cardiac fibrosis upon myocardial

infarct (56); intestinal fibrosis, associated with inflammatory

bowel disease (57); dystrophic epidermolysis bullosa caused by

a mutation in the collagen VII gene (58), or myelofibrosis, which

may be caused by mutations in the gene encoding for Janus

kinase 2, JAK2, and affects the bone marrow (59). In other cases,

the aetiology is not known, like for example in idiopathic

pulmonary fibrosis (60), affecting mainly the elderly, or in

systemic sclerosis, which presents with an autoimmune

component and affects the skin as well as internal organs (61,

62). Notably, life expectancy is dramatically lowered in patients

affected with fibrotic diseases, while almost no treatments

currently exist.

Chronic wounds are also wounds that fail to heal, but unlike

fibrosis, where fibroblasts get 'stuck' in a perpetual proliferative and

collagen deposition phase (i.e. remodelling), chronic wounds are

characterised by the failure to progress beyond the initial phases of

wound healing of haemostasis and inflammation. A deficiency

rather than an excess of fibroblast activity is involved, and may be

attributed to their decreased proliferative, migratory and contractile

capacity (63). Interestingly, a better understanding of the signals

that drive the excessive remodeling in fibrosis may help to inform

on novel strategies to activate this phase in chronic wounds (64).

Ageing and cellular senescence in fibroblasts might also contribute

to chronic wounds, by a mechanism proposed to be telomere

independent in both chronic venous leg ulcers, typically associated

with age (65), and in diabetic ulcers, in which senescence is believed
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to be induced by sustained hyperglycemia (66). Although senescent

cells appear naturally and promote wound healing in physiological

conditions (67), it is believed that their accumulation in chronic

wounds due to the inefficiency of the immune system and

subsequent persistent release of proinflammatory mediators [e.g.

IL-6, IL-8, CCL8, MIF, etc (68)] may turn these cells pathogenic in

this context (69).

Linked with senescence is also the involvement of fibroblasts

in ageing. Cell division causes the gradual shortening of

chromosomal ends, named telomeres, triggering cellular

senescence when a critical point is reached. This protective

endogenous anti-cancer mechanism prevents the spreading of

DNA-damaged cells (70–72). Senescent fibroblasts present with

reduced collagen deposition, increased proteolytic activity and

reduced proliferation. During ageing these cells accumulate in

tissues, likely due to the inefficiency of the aged immune system

to detect and clear them (73), and they release pro-inflammatory

mediators that cause tissue damage and alter tissue homeostasis

and function (74). This un-resolved senescence program (72),

i.e., not culminating in clearance, is believed to be responsible for

the damaging effects of senescent cells. However, senescence in

fibroblasts can also enhance and accelerate wound healing and

reduce fibrosis (67, 75–78). The different outcomes of fibroblast

senescence are highly dependent on multiple contextual aspects

(72) such as age, specific tissue, immune system contribution,

and very likely but largely unexplored, the specific fibroblast

subpopulations involved.

The fascia is a thin layer of connective tissue composed

mostly of collagen, present beneath the skin and surrounding

organs, vessels or muscles, in which the predominant cell type is

the fibroblast. Not surprisingly, fascia fibroblasts also drive the

development of various diseases. For example, nodular fasciitis is

a benign tumour tissue driven by aSMA expressing

myofibroblasts, caused by gene rearrangements involving the

gene ubiquitin-specific protease 6, USP6 (79, 80). A condition

known as Dupuytren's contracture develops in the fascia of the

palms. Fibroblast activation leads to the formation of palmar

nodules which turn into fibrotic cords that extend into the digits,

causing their permanent flexion and deformities with

consequent impairment of hand function (81). Surgery

adhesions are fibrotic scars mediated by tissue-resident

fibroblasts of the fascia, which develop in 50-90% of

abdominal operations, representing a major health burden (82,

83). These fibroblasts are characterised by increased expression

of aSMA and vimentin, and increased collagen deposition. It

was demonstrated in animal models that treatment with anti-

TGF-b1 blocking antibodies prevents the formation of

abdominal adhesions, highlighting the prominent driving role

of fibroblasts in this condition (84). Inflammation of the fascia is

also involved in the pathogenesis of fibromyalgia, a very

debilitating condition causing widespread pain, tiredness and

disability. It has been hypothesised that fibroblasts in the fascia

surrounding muscles are the source of pro-inflammatory
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mediators causing inflammation of the fascia (85). It was then

proposed that inflammation of the fascia is the source of the

peripheral nociceptive input that leads to central sensitization.

Strategies targeting hyperactivated fibroblasts may offer novel

opportunities to manage fibromyalgia.

Other conditions associated with debilitating pain in which

fibroblasts contribute include chronic pain, in which fibroblasts

are responsible for releasing proalgesic mediators and sustaining

inflammatory responses (86), or carpal tunnel syndrome, a

peripheral neuropathy characterised by fibrosis occurring in

the subsynovial connective tissue in the carpal tunnel, with

fibroblast hyperplasia, disorganised collagen deposition and

increased expression of TGF-b1 pathway components (87).

Therapies using typical antifibrotic strategies like targeting this

profibrotic pathway have shown promising preliminary results

in this syndrome (88, 89). Fibroblasts also contribute to the

pathogenesis of frozen shoulder (90), and chronic

tendinopathy (91).

The role of fibroblasts in the oral cavity is also well studied.

The loss rather than the lack of resident periodontal ligament

fibroblasts is a feature of periodontal disease (92). On the other

hand, another type of fibroblast termed pulp fibroblasts, residing

in the soft inner tissue inside a tooth, is responsible for the

recognition of pathogens and initiation of the inflammatory

response in a condition called pulpitis (31). Another interesting

example is represented by the role of orbital fibroblasts in the

pathogenesis of a condition called Grave's ophthalmopathy,

associated with a form of autoimmune hyperthyroidism.

Excessive immune and pro-fibrotic activity of these fibroblasts

may be mediated by autoantibodies against the thyroid

stimulating hormone receptor (TSH-R), which are expressed

in orbital fibroblasts (93). Endometriosis is also associated with a

dysregulation of endometrial mesenchymal fibroblasts (94),

leading to endometrial tissue growth outside the uterus that

can result in infertility.

Fibrotic encapsulation of silicone implants used in aesthetic

or reconstructive medicine (e.g., mammoplasty, rhinoplasty)

represents another important medical need. Implantation of a

foreign body causes an inflammatory response followed by the

release of TGF-b1 and activation of myofibroblasts, which

deposit large amounts of collagen and cause contraction of the

tissues, leading to implant deformities and pain (95, 96).

However, this area is recently attracting more attention with

the development of wearable medical devices like continuous

glucose monitoring systems (CGM). It was recently reported

that strategies to reduce fibrotic encapsulation of CGM

electrodes may improve their sensitivity and provide a more

accurate measurement of glucose levels (97).

The list of conditions where fibroblasts actively contribute to

pathogenesis seems endless. Other examples include cystic

fibrosis, where high levels of TGF-b1 and myofibroblasts are

present (98), alopecia areata where, on the contrary, a deficiency

of dermal papillae fibroblasts' functions is observed (99), and
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amyotrophic lateral sclerosis characterised by abnormal

perivascular fibroblast activity preceding the onset of the

disease (100).

Collectively, the above review of diseases driven by

fibroblasts emphasizes an existing large clinical need.

Fibroblasts can drive diseases all over the body (Figure 1), for

many of which no therapies are currently available. However,

multiple strategies to target the fibroblast from different angles

are being developed, as discussed next.
2.4 Fibroblasts as therapeutic targets

Fibroblasts do more than secreting matrix. They proliferate,

they migrate and invade tissues, they contract, they induce and

enhance inflammation, they communicate to other cells to share

messages and they extend their own lifespan. These activities,

however, offer opportunities to target the fibroblast using a

variety of approaches.

One of the most studied strategies consists of preventing or

reversing the fibroblast-to-myofibroblast differentiation by

targeting the core profibrotic pathway, TGF-b1, which could

be achieved by blocking the production or activity of the ligands,

by preventing receptor activation or by targeting the

downstream effectors like the Smad cascade (101–103). It is

interesting that, despite the deep understanding of the pathways

leading to fibrosis and the mechanisms and pathogenic actions

of fibrotic fibroblasts, the mode of action of one the very few

approved anti-fibrotic drugs, pirfenidone, remains poorly

understood. It is believed that effects on the TGF-b1 pathway

and consequently on proliferation, myofibroblast differentiation

and collagen deposition are involved (104). The other approved

anti-fibrotic drug, nintedanib, is a non-specific tyrosine kinase

inhibitor, which prevents the phosphorylation multiple targets

involved in the development of fibrosis including platelet-

derived growth factor receptor (PDGFR), fibroblast growth

factor receptor (FGFR), vascular endothelial growth factor

receptor (VEGFR) as well as the type II TGF-b receptor (105,

106). Examples of other pathways that may prevent the

activation of pathogenic fibroblasts or reduce their recruitment

include the inhibition of the Notch (107), JAK/STAT (108), TNF

receptor (109), lysophosphatidic acid receptor 1 (LPA1) (110),

RANK ligand (42) or Ca2+ signalling (111) pathways, and on the

other hand, the activation of the Wnt pathway (112, 113).

Targeting fibroblast mechanotransduction pathways is

another option. Mechanical forces applied to connective tissues

alter the gene expression pattern and activity of fibroblasts, as

mechanical signals are converted into intracellular signalling

events, a process called mechanotransduction. As mechanical

stress produced by matrix stiffness can lead to fibrosis, strategies

targeting these pathways are also under development. This can be

achieved, for example, by using compounds that inhibit the FAK

pathway, aV integrins or the YAP/TAZ transcription factors,
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among others (114). A different approach to control the

mechanical activation of fibroblasts with application in the

prevention of fibrotic encapsulation consists of modulating the

stiffness of the materials used in the implants (115, 116).

Myofibroblasts present with increased survival due to the

expression of anti-apoptotic signals. Promoting fibroblast death

has shown beneficial outcomes in models offibrosis, for example

with the administration of TNF-related apoptosis-inducing

ligand (TRAIL) related compounds like TLY012, which

reduced fibrosis in a model of scleroderma (117). Similarly,

mimetics of the pro-apoptotic protein BH3, like the small

molecule ABT-263 can also override the enhanced survival

capacity of myofibroblasts (118).

Inactivation of hyperactivated fibroblasts can also be

achieved through the induction of cellular senescence, an

approach that has been tested in models of arthritis (16, 119,

120), where fibroblasts exhibit overactivation of their immune

component and degradative properties. These strategies,

however, might benefit from combining with senolytics, to

induce the clearance of these cells once they have exerted their

functions. Although the use of senolytics alone are being

investigated as anti-ageing approaches (121), their potential

off-target effects and how these therapies may affect

physiological wound healing have yet to be elucidated.

Given that fibroblast activation is usually preceded by

immune cell activation, targeting the stromal-immune

crosstalk may also offer opportunities. In many fibroblast

driven diseases, an inflammatory response often precedes the

activation of myofibroblasts. Then, preventing the crosstalk, i.e.,

intercepting the messenger, early in the pathogenic process may

be a useful strategy. For example, by pre-coating implants using

potent anti-inflammatory drugs like steroids, fibrotic

encapsulation could be prevented (122, 123), although the use

of corticoids may increase the risk of infections. In addition, this

strategy can only be applied in situations when the time of

initiation of the fibrotic cascade is known. Interestingly,

interfering with the crosstalk between immune cells and the

ECM using recombinant pentraxin 2, is also under development

for the treatment of pulmonary fibrosis (124). In a recent

preprint it was shown that promoting the shift from M2

towards M1 macrophage phenotype by targeting CD206

reduced fibrosis in the bleomycin mouse model of pulmonary

fibrosis, to a similar extent as pirfenidone and nintedanib (125).

The approaches discussed above are aimed the prevention or

de-activation of fibroblast aggressive phenotypes. However,

strategies to enhance the actions of these cells can be beneficial

in certain conditions where a loss, rather than an excess of

fibroblast activity is present. The use of topical vitamin C is a

well-known anti-ageing strategy for the enhancement of collagen

deposition by dermal fibroblasts (126). The activation of

periodontal fibroblasts using fibroblast growth factor 2, FGF-2,

can induce tissue regeneration in periodontitis (127). Fibroblasts

themselves can be used as therapeutics, which can be given as
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injections of cell suspensions to induce tendon injury repair

(128). A study using fibroblast cell-based therapy also showed

prevention of hair loss in a mouse model of alopecia areata (129),

in line with other reports suggesting the use of fibroblast growth

factors or the TGF-b receptor ligand Scube3 as hair growth

stimulants (99, 130). Although still in its infancy, the novel

insights provided by single-cell technologies reveal another way

to enhance fibroblasts activity, consisting of activating those

subpopulations presenting with pro-repair actions, in contrast or

in addition to targeting only the aggressive pathogenic

populations (47). Theoretically, taking advantage of their

plasticity, by promoting the actions of the 'good' fibroblasts, or

by inducing the reprogramming of the 'bad' ones, for example by

targeting the transcription factor PU.1 (131), may bring novel

therapeutic approaches.

Finally, strategies based on promoting our body's

endogenous mechanisms to deal with inflammation and

restoration of homeostasis have also been developed and tested

in fibroblasts and the diseases that they drive. These 'pro-

resolving' mechanisms and the evidence for their therapeutic

potential for fibroblast mediated diseases will be discussed in the

next sections.
3 Resolution pharmacology to target
fibroblasts

3.1 The resolution of inflammation
at a glance

Resolution Pharmacology is a type of therapeutic strategy

based on the activation of endogenous mechanisms aimed at

promoting homeostasis after a pro-inflammatory stimulus (12).

These mechanisms consist of several families of receptors and

their ligands, expressed in immune cells but also in others like

endothelial cells and fibroblasts. Pro-resolving systems include,

among others, the formyl peptide receptor 2 (FPR2) and the

ligand annexin A1, the melanocortin system, and lipid mediators

like lipoxin A4, resolvins or protectins, acting on a wide range of

receptors (11, 13, 132, 133).

All these systems were discovered and extensively studied

upon the realization that inflammatory responses are brought

down to homeostatic levels by the active engagement of

endogenous pathways rather than passively as previously

believed (134). The physiological inflammatory response

comprises a balanced onset of inflammation, efficient

elimination of pathogenic agents and smooth transition into

the termination phase culminating in the restoration of

homeostasis, during which resolution mechanisms play a

major role. A second important turning point in the field, with

novel therapeutic implications, is the appreciation that

chronicity may emerge from persistent and exacerbated pro-
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1084394
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khodeneva et al. 10.3389/fimmu.2022.1084394
inflammatory signals as well as from the failure of the resolution

pathways, a concept now well accepted for example to explain

the chronicity of rheumatoid arthritis where aggressive

fibroblasts are key players (9, 10, 41). This represented the

beginning of a new field of research, which in less than 15

years since its formal birth in 2007 (11), has delivered several

drugs approved for use in humans, and many others under

clinical development (12, 135).

Several mechanisms of resolution have been described, like the

active reduction in cytokine release and prevention of cell

recruitment, enhancement of macrophage efferocytosis, induction

of macrophage class switch, promotion of granulocyte apoptosis,

and the production of anti-inflammatory cytokines (136–138). Pro-

resolving mediators are also involved, not only in the active

termination of the inflammatory response, but in the activation of

the repair mechanisms and wound healing (139–141). Given their

involvement in driving pathogenic actions, together with their

active role during healing and repair, the therapeutic potential of

pro-resolving mediators has been tested in fibroblasts and models

of fibrosis.
3.2 Resolution pharmacology to target
fibroblasts mediated diseases

everal mediators and their derivatives, acting on various pro-

resolving receptors have been tested in fibroblasts and in animal

models of fibrosis. For example, the FPR2 synthetic peptide agonist

WKYMVm reduced the accumulation of myofibroblasts and

macrophage infiltration in the bleomycin model of skin fibrosis

(142). The endogenous ligand for FPR2, annexin A1, has also

shown beneficial effects in reducing fibrosis in a mouse model of

non-alcoholic steatohepatitis (NASH) (143), while the Annexin A1

derived peptide Ac2-26 reduced collagen deposition in a model of

silicosis (144). Lipoxin A4, a bioactive lipid derived from

arachidonic acid, the receptor for which is also FPR2, was shown

to reduce cell proliferation and activation in lung fibroblasts from

human (145) and from mouse (146). This lipid mediator also

reduced IL-1b, IL-6 and metalloproteinase 3 expression in synovial

fibroblasts, while increasing the metalloproteinase inhibitor TIMP1

(147). Activation of FPR2 with the synthetic small molecule

'compound 43' showed reduction in fibroblast proliferation as

well as increased apoptosis using in vitro cultured human

synovial fibroblasts (148). Importantly, expression of the receptor

FPR2 has been confirmed in synovial fibroblasts from rheumatoid

arthritis patients (149, 150). Another peptide, C15, derived from the

endogenous pro-resolving protein chemerin, which binds to the

receptor ChemR23, was tested in a mouse model of skin wounds,

showing improved collagen organisation and fibre alignment (151).

The anti-fibrotic actions of several specialized pro-resolving

mediators (SPMs), which are bioactive molecules produced from

essential polyunsaturated fatty acids, have also been tested using in

vitro and in vivo models. For example, resolvins D1 and E1 were
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able to reduce inflammatory responses in cardiac fibroblasts (152).

In line with this, the endogenous expression of the enzyme

arachidonate 5-lipoxygenase (ALOX5), involved in the synthesis

of SPMs, was found to be essential in containing the damage

occurring upon myocardial infarct. ALOX5 and ALOX15, other

lipoxygenase enzymes involved in the biosynthesis of SPMs, were

also identified in rheumatoid arthritis synovium (153). Achilles

tendinopathy derived fibroblasts showed a reduced pro-

inflammatory aggressive phenotype after treatment with 15-epi-

Lipoxin A4 or maresin 1 (154). Maresin 1 was also able to reduce

proliferation in lung fibroblasts (155). SPMs also showed beneficial

effects using an in vivo pulpitis model, as well as dental pulp

fibroblasts, where inhibition of NFkB and subsequent reduction in

inflammatory responses were observed (156). Protectin DX is

another SPM derived from docosahexaenoic acid. Using a model

of acute lung injury, protectin DX inhibited TGF-b1 induced

proliferation of fibroblasts, myofibroblast differentiation and

collagen deposition (157).

Collectively, these reports provide evidence for the potential

application of pro-resolvingmediators as well as synthetic derivatives

for conditions where fibroblasts play a pathogenic role. In addition to

the previous examples, extensive research has been conducted using

pro-resolving mediators targeting the melanocortin pathway. These

will be discussed in detail in the next section.
4 Targeting the fibroblast with
melanocortin drugs

4.1 The melanocortin system at a glance

The peptides adrenocorticotropic hormone (ACTH), a-, b-,
and g-melanocyte-stimulating hormones (a, b, gMSH) are the four

endogenous melanocortin peptides derived from the enzymatic

processing of a larger precursor termed proopiomelanocortin

protein (POMC). Two other melanocortin ligands have been

identified, in this case encoded by individual genes, agouti related

neuropeptide (AGRP) and agouti signalling protein (ASIP). While

the POMC-derived peptides exert agonistic actions, ASIP and

AGRP act mostly by antagonising the actions of the former (13).

The five receptors that these ligands use to exert their functions

(MC1-5) belong to the class A rhodopsin-like G-protein coupled

receptors (GPCR), a fact that makes melanocortin receptors

appealing druggable targets, as roughly 35% of all currently

approved drugs act by targeting a GPCR (158).

Besides their GPCR nature and the associated implications for

drug discovery, one of the most interesting aspects of the

melanocortin system (Figure 2) that makes it very attractive for

the development of new therapies is the remarkable functional

specialization of the MC receptors, controlling multiple and diverse

processes around the body, including skin pigmentation and DNA

repair, appetite regulation, blood pressure, production of cortisol,

regulation of glands secretions, and immune responses, among
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others (13). This specialization also derives from the specific tissue

distribution of each receptor, the differential processing of the

POMC precursor to yield the different agonists, and the

expression in certain tissues of the antagonists, which for

instance, can also act as biased agonists (159). All these aspects

allow for a fine-tuned regulation of the actions that the

melanocortin system controls, while simultaneously offering

multiple ways to target and intervene the system for therapeutic

purposes. We recently reviewed elsewhere the vast array of

therapeutic opportunities that the targeting of each one of these

receptors offers, not only as a hope for the future, but as a current

success, as several MC drugs have already been approved and many

others are in clinical phase of development (135).

Here we focus on exploring and revising the existing

evidence for the use of melanocortin based therapies for the

management of fibroblasts mediated conditions.
4.2 Fibroblasts are target and source of
melanocortin components

Various studies have reported the expression of components of

the MC pathway in fibroblasts, including receptors and ligands. On
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in vitro cultured cells, expression of MC1 has been detected in

human dermal fibroblasts at the gene expression level (160, 161) as

well as at the protein level using immunofluorescence (160).

Similarly, synovial fibroblasts obtained from osteoarthritis patients

undergoing knee replacement also show immunoreactivity for MC1

(162). The expression of other MC receptors (MC3R, MC4R,

MC5R) was also detected by real-time PCR in synovial fibroblasts

obtained from rheumatoid arthritis patients, although at lower

levels compared to MC1R (16). Other fibroblast populations

expressing MC1 include dermal papillae and connective tissue

sheath fibroblasts (163).

The expression of MC1 has also been detected in tissue

samples, although the cellular localisation specifically on

fibroblasts has not always been fully inferred, as MC1 is highly

expressed in melanocytes and other cell types found in complex

tissues. For example, immunohistochemical detection of MC1

was shown in normal skin samples from healthy volunteers,

locating in dermal and epidermal regions. Interestingly, the

expression of MC1 was highly increased in skin samples from

acute burn injury, but essentially absent in skin samples obtained

from keloid scars (164). Congruently, fibroblasts derived from

keloid scars were unresponsive to the anti-fibrotic effects of

aMSH, in line with the absence of the target. Intriguingly, this
FIGURE 2

The melanocortin system. A summary of the melanocortin system is shown, including receptors, ligands, tissue distribution, their biological
actions, potential therapeutic indication and drugs that are currently under clinical development or approved for use in humans. Regarding
therapeutic indications, the receptor that mediates the therapeutic actions is highlighted, without implying receptor selectivity. Unless indicated
otherwise (with the symbol Ø denoting antagonism), the molecules included in this summary are melanocortin receptor agonists.
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fibrotic condition, characterised by enlarged raised scars that

spread beyond the limits of the original wound area, is more

common in individuals with dark skin (165), which are more

likely to carry a fully functional wild-type form of the MC1R

gene, compared to individuals with lighter skin. However, the

link between this receptor and the formation of keloids has yet to

be fully elucidated. A different study confirmed the increased

expression of MC1 in acute burns (166). Although the authors

did not detect the expression of MC1 in healthy skin, MC1 and

the ligand aMSH were increased in samples from hypertrophic

scars. In addition, using a mouse model of cutaneous wounds,

they observed increased expression of both MC1 and aMSH,

with a peak of expression at day 3 post-injury, and declining by

day 21.

MC1 protein has also been detected in tissues of scleroderma

patients obtained from clinically involved skin areas. MC1 was

detected in various dermal cells including endothelial cells,

macrophages and fibroblasts, the latter suggested by the co-

expression with prolyl 4-hydroxylase subunit beta (P4Hb). In
this case, there were no differences in MC1 expression levels in

disease compared to healthy skin (167).

In addition to receptors, the endogenous production of

melanocortin ligands by fibroblasts has been reported. Besides

aMSH increasing during cutaneous injury as mentioned earlier,

the precursor POMC protein can be detected at gene expression

level in dermal fibroblasts (160), while cultured synovial fibroblasts

are able to produce and release the melanocortin agonist ACTH

(16). ACTH and aMSH are also detected in supernatants from

human dermal fibroblasts (168), with enhanced expression when

cells are stimulated with TNF-a (169). In contrast, reduced levels of

POMC are detected when fibroblasts are stimulated with TGF-b1
(170). Accordingly, expression of the POMC processing enzymes

PC1 and PC2 can be detected in human dermal fibroblasts (171). In

the skin, the release of melanocortin peptides can be triggered by

exposure to UV radiation. However, the existence of a local

'hypothalamic-pituitary-adrenal axis' in the skin has been

proposed upon the discovery of the ability of the skin to produce

corticotropin-releasing hormone under stress conditions (172). The

expression of the receptor MC2, which is normally found almost

exclusively on the adrenal glands, was found dysregulated in scalp

skin samples from alopecia areata, suggesting a deficit for ACTH/

MC2 axis in the pathogenesis of this condition (173).

Altogether, these reports demonstrate, not only the presence

of MCRs in multiple types of fibroblasts, but their active

involvement in the endogenous control of their functions,

suggesting MCRs, and particularly MC1, as plausible therapeutic

targets for the treatment of fibroblast-mediated conditions.
4.3 Melanocortin actions on fibroblasts

The first evidence of testing the effects of melanocortins on

fibroblasts dates back to 1961 (174), where ACTH was used to
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address its effects on fibroblast growth. To date, enough evidence

has been generated to support the protective role of these

compounds (see Figure 3) in models of fibrosis and other

fibroblast-mediated conditions, resulting so far in the approval

of a clinical trial testing the efficacy of an MC1 selective molecule

MT-7117 (also known as dersimelagon) for the treatment of

diffuse cutaneous systemic sclerosis.

Studies conducted using in vitro models of fibroblast activation

are summarised in Table 1. Most of the work has been conducted

with human primary dermal fibroblasts in which the effects of the

endogenous peptide aMSH were tested. Collectively, these studies

show that aMSH was able to reduce collagen synthesis (160, 161)

while activating MMP-1 (183), suggesting the acquisition of a

remodelling phenotype, relevant for treating fibrotic conditions.

aMSH also reduced activation offibroblasts, as measured by aSMA

staining (161), reduced inflammatory markers like TNF-a-induced
activation of NFkB (179) or IL-1b-induced IL-8 release (181), as

well as it conferred cytoprotection under inflammatory stimuli like

IL-1b, LPS and TNF-a (180). The effects of aMSH on fibroblasts

obtained from keloid scars were also addressed, resulting in lack of

efficacy derived from the reduced or negligible expression of the

target MC1 on these cells. More recently, it was suggested that

strategies restoring MC1 expression in keloid fibroblasts by treating

these cells with a long noncoding RNA molecule, LINC00937,

resulted in suppressed ECM deposition and cell proliferation (184).

In primary lung fibroblasts, aMSH reduced aSMA

expression and cell proliferation (176), while on Tenon's

capsule fibroblasts, involved in conjunctival fibrosis, aMSH

reduced collagen deposition, proliferation and cytokine release

(177). A modified aMSH, covalently coupled to poly-L-glutamic

acid (PGA-aMSH), showed beneficial effects for endodontic

regeneration due to its ability to induce cell adhesion,

proliferation and reduction of IL-6 and TNF-a on dental pulp

fibroblasts. Using orbital fibroblasts from patients with Grave's

disease, it was shown that aMSH can also reduce the

inflammatory phenotype of these cells (175).

The effects of melanocortin treatment, in this case using the

selective MC1 agonist BMS-470539, on synovial fibroblast have

been addressed using cells from both osteoarthritis (OA) and

rheumatoid arthritis (RA) patients. In OA-derived fibroblasts, the

compound increased cell adhesion and reduced the release of pro-

inflammatory cytokines (162). Similar protective effects were

detected in RA fibroblasts, where the compound reduced

proliferation and attenuated the aggressive phenotype typically

exhibited by these cells although in this case, the acquisition of a

senescence-like phenotype was also observed (16). This unique

phenotype resembled that of a remodelling phase of wound healing,

with decreased collagen and an increase in remodelling enzymes,

indicating that this effect may also have applications in

fibrotic diseases.

An interesting aspect related to the therapeutic use of

melanocortins is the impact of genetics on the actions of these

drugs. It was found that the ability of aMSH in reducing dermal
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fibroblast proliferation was diminished by the presence ofMC1R

gene variants like R163Q, R151C and V60L (185), strongly

suggesting the need to incorporate pharmacogenomics

approaches applied to MC1-based therapies to deliver

personalised therapies.

The mechanisms and pathways behind the actions exerted

by melanocortins on fibroblasts are not well studied. While the

canonical signalling pathway engaged upon MCR activation is

the increase in cyclic-AMP, it was found that inhibition of

human lung fibroblast proliferation and differentiation by Gs-

coupled receptors is not predicted by the magnitude of cAMP

response (176), suggesting that the involvement of other

pathways should be investigated to understand these actions.

Indeed, ERK1/2 phosphorylation was suggested as the pathway

mediating the actions of BMS-470539 on RA synovial fibroblasts

(16). In terms of downstream signalling pathways, it has been

suggested that the modulation of the inflammation-related

transcription factors NFkB and AP-1 may be involved in the

antifibrotic actions of melanocortin peptides (181).

Much of the work described above has been generated by

Böhm and colleagues, who also provided useful insights into the

actions of these drugs using in vivo models of fibrosis (Table 2).

In a mouse model where skin fibrosis was induced by

intracutaneous injections of TGF-b1, aMSH reduced the

accumulation of aSMA positive cells and collagen deposition

(160). In one the most commonly used models of skin fibrosis

induced by intracutaneous injections of bleomycin, aMSH also

showed potential therapeutic effect by reducing skin thickness,

collagen content and expression of superoxide dismutase 2
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(SOD2) and heme oxygenase 1 (HO-1) (161). Later, using a

low dose of bleomycin (10ug/mouse daily), the authors found

that while wild-type C57BL/6J mice did not show signs of

fibrosis at that dose, Mc1r e/e mice, deficient for MC1 receptor

on a C57BL/6J background, displayed obvious signs of fibrosis

like increased skin thickness, collagen expression and levels of

chemoattractant protein MCP-1, suggesting that the deficiency

in Mc1r increases the susceptibility to develop bleomycin-

induced fibrosis (194). This is of relevance due to the high

polymorphic nature of MC1R gene, for which loss-of-function

variants are common in certain populations like north

Europeans. Indeed, there is epidemiological evidence that

highlights a possible association between variants in the MC1R

gene and the risk of developing fibrosis. MC1 is involved in the

regulation of pigmentation, and several MC1R variants are

known to be associated with fairer skin, hair and eye colour

(196, 197). In a cohort of idiopathic pulmonary fibrosis patients,

a higher disease incidence was noted in white patients compared

to black patients (198). Similarly, in a recent observational study,

it was highlighted that there were three times as many idiopathic

pulmonary fibrosis patients with lighter eye colour compared to

those with dark eye colour (199).

These encouraging results regarding the potential anti-fibrotic

actions of melanocortins, and likely the potential for MC1 receptor

targeting receptor targeting for skin fibrosis, possibly prompted the

initiation of the first clinical trial testing a melanocortin compound

for the treatment of a fibrotic disease like systemic sclerosis. The

efficacy and tolerability of MT-7117 (reported as MC1 selective) are

being tested in a phase II, randomized, double-blind, placebo-
FIGURE 3

Sequences and structures of melanocortin drugs tested in fibroblasts and related diseases. The amino acid sequences and chemical structures
of the melanocortin agonists that have been tested using in vitro and in vivo models of diseases mediated by fibroblasts included in Tables 1, 2
are shown.
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controlled trail, using an orally administered formulation for 52

weeks. Previous positive antifibrotic actions of this compound were

observed in the bleomycin-induced skin fibrosis model in mice

(167). The trial is currently on recruitment phase and efficacy

parameters that will be measured include skin thickness (modified

Rodnan Skin Score, mRSS), ACR CRISS score and disability

questionnaires like HAQ-DI, among other outcomes

(ClinicalTrials.gov identifier NCT04440592).

Bleomycin is also used to induce fibrosis in the lungs by

administering a single intratracheal instillation of bleomycin

solution. Two aMSH derivatives, STY39 and NDP-aMSH were

tested in mice and rats, respectively, using this model of lung

injury (188, 189). Both compounds demonstrated their ability to

reduce the expression of pro-inflammatory mediators like IL-6,

TNF-a and TGF-b1. In addition, STY39 displayed anti-fibrotic

actions like reduced collagen and hydroxyproline content,
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reduced myofibroblast number and tissue damage, and

increased survival.

Several studies have been conducted in the context of liver

fibrosis, suggesting that aMSH reduces markers of fibrosis in the

carbon tetrachloride (CCl4) and in the thioacetamide-induced

mouse models of liver fibrosis (190, 191). Interestingly, mice

deficient for the melanocortin receptor type 4 fed on a high fat

diet develop signs of steatohepatitis associated with obesity, insulin

resistance, dyslipidaemia, inflammatory cell infiltration, liver

fibrosis, and the development of hepatocarcinoma after one year.

Thus,Mc4r -/- mice on a high-fat diet were proposed as a model of

non-alcoholic steatohepatitis, or NASH (195). The effects of aMSH

and its derivative NDP-aMSH in tissue regeneration upon partial

hepatectomy were also investigated, showing some positive

outcomes as measured by modulation of the IL-6 pathway and

protein content (187, 193).
TABLE 1 Testing of melanocortin drugs using in vitro models of fibroblast activation.

In vitro model MC compound Biological effect Translational relevance Year (Reference)

Scleroderma human dermal fibroblasts MT-7117 ↓ aSMA+ cells
↓ Collagen

Scleroderma 2022
(167)

Thyroid eye disease orbital fibroblasts aMSH ↓ IL-6, IL-8
MCP-1, ICAM-1, COX2

Thyroid eye disease (Grave's disease) 2021
(175)

Rheumatoid arthritis human synovial fibroblasts BMS-470539 ↓ Proliferation
↓ Aggressive profile

↓ Collagen

Rheumatoid arthritis 2020
(16)

Human lung fibroblasts aMSH ↓ Proliferation
↓ aSMA+ cells

Lung fibrosis 2018
(176)

Osteoarthritis human synovial fibroblasts aMSH
BMS-470539

↓ Cytokines IL-6, IL-8
↑ Cell adhesion

Osteoarthritis 2016
(162)

Human dermal fibroblasts, normal and keloid scars aMSH ↓ Collagen
↓ Metabolic activity

↓ aSMA+ cells

Dermal fibrosis, keloid scars 2013
(164)

Human Tenon’s capsule fibroblasts aMSH ↓ Proliferation
↓ Collagen
↓ Cytokines

Conjunctival fibrosis 2012
(177)

Human dental pulp fibroblasts PGA-aMSH ↑ Proliferation
↑ Cell adhesion
↓ IL-6, TNF-a

Endodontic regeneration 2010
(178)

Human dermal fibroblasts aMSH
NDP-aMSH

ACTH

↓ Collagen Dermal fibrosis 2009
(161)

Human dermal fibroblasts aMSH
KPDV

↓ NFkB
↓ ICAM-1

Skin inflammatory conditions 2006
(179)

Human dermal fibroblasts aMSH ↑ Cytoprotection
↓ Apoptosis

Skin inflammatory conditions 2005
(180)

Human dermal fibroblasts aMSH ↓ Collagen Dermal fibrosis 2004
(160)

Human dermal fibroblasts aMSH ↓ IL-8 (IL-1b stimulated)
↑ IL-8 (unstimulated)

Skin inflammatory conditions 1999
(181)

Human dermal fibroblasts aMSH ↑ IL-8 Skin inflammatory conditions 1999
(182)

Human dermal fibroblasts aMSH ↑ MMP-1 Photo-ageing 1995
(183)
Reports on the effects of melanocortin drugs using in vitromodels of fibroblast activation are shown in chronological order, showing the most recent first. The arrow pointing up (↑) means
"increase", the arrow pointing down (↓) means "decrease".
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Cutaneous wound healing, using a mouse model in which

through-and-through wounds were inflicted in the dorsal area,

was also improved with aMSH administered 30min before

creating the wounds. The drug reduced immune cell

infiltration, fibroblast number, scar formation, and improved

collagen fibres organization (186). Similarly, aMSH presented

positive results in a model of renal fibrosis, induced by the

administration of cyclosporine A, including reduction in TGF-

b1, inflammatory markers, cell apoptosis and collagen

deposition (192). Finally, the effects of the selective MC1

compound BMS-470539 showed signs of reducing the

aggressive activity of synovial fibroblasts, an effect that
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translated into anti-arthritic actions in vivo, using the model

of K/BxN serum transfer induced arthritis in mice (16).
5 Challenges are directions towards
melanocortin-based therapies
targeting fibroblasts

More than 60 years after the first report testing the role of the

endogenous melanocortin ACTH on fibroblasts, a synthetic

agonist is being trialled in a phase II study for the treatment of
TABLE 2 Testing of melanocortin drugs using in vivo models driven by fibroblasts.

In vivo model MC
compound

Biological effect Translational relevance Year
(Reference)

Bleomycin induced skin fibrosis (mouse) MT-7117 ↓ aSMA+ cells
↓ Skin thickness
↓ Inflammation

Scleroderma 2022
(167)

K/BxN serum transfer induced arthritis (mouse) BMS-470539 ↓ Leukocyte infiltration
↓ Paw swelling
↓ Clinical score

Rheumatoid arthritis 2020
(16)

Skin injury (mouse) aMSH ↓ Fibroblast number
↓ Scar
↑ Collagen organization

Cutaneous wound healing 2015
(186)

Partial hepatectomy (rats) NDP-aMSH ↑ IL-6/SOCS pathway Liver regeneration 2013
(187)

Bleomycin induced lung injury (mouse) STY39 ↓ Collagen, hydroxyproline
↓ aSMA+ cells
↓ Leukocyte infiltration
↓ IL-6, TNF-a, MIP-2

Pulmonary fibrosis 2011
(188)

Bleomycin induced skin fibrosis (mouse) aMSH ↓ Collagen
↓ Oxidative stress

Dermal fibrosis 2009
(161)

Bleomycin induced lung injury (rat) NDP-aMSH ↓ TGF-b1, iNOS
↓ IL-6, TNF-a,
↓ CCL-2, CCL-5

Acute lung injury 2007
(189)

Carbon tetrachloride (CCl4) induced hepatic fibrosis (mouse) aMSH ↓ Collagen
↓ TGF-b1, COX2
↓ aSMA+ cells
↑ MMP activity

Liver fibrosis 2006
(190)

Thioacetamide induced liver fibrosis (mouse) aMSH ↓ Matrix density
↓ TGF-b1, COX2
↑ MMP activity
↓ TIMP activity

Liver fibrosis 2006
(191)

TGF-b1 induced skin fibrosis (mouse) aMSH ↓ aSMA+ and vimentin+ cells
↓ Collagen

Dermal fibrosis 2004
(160)

Cyclosporine induced tubulointerstitial fibrosis (rat) aMSH ↓ Collagen
↓ Apoptosis
↓ Inflammation

Tubulointerstitial fibrosis 2004
(192)

Partial hepatectomy (rat) aMSH ↑ Liver protein content Liver regeneration 1975
(193)

Insights from gene deficiency

Bleomycin induced skin fibrosis (mouse, Mc1r e/e) MC1 deficiency ↑ Collagen, skin thickness
↑ MCP-1, CTGF

Points at MC1 as therapeutic target 2014
(194)

High fat diet (mouse, Mc4r -/-) MC4 deficiency Steatohepatitis
↑ Leukocyte infiltration
↑ Fibrosis

Points at MC4 as therapeutic target 2011
(195)
f

Reports on the effects of melanocortin drugs using in vivomodels of fibroblast activation are shown in chronological order, showing the most recent first. The arrow pointing up (↑) means
"increase", the arrow pointing down (↓) means "decrease".
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systemic sclerosis. In between, substantial evidence has been

generated to support the therapeutic potential of melanocortin

agonists for the treatment of fibroblast driven diseases, including

fibrosis and more.

Besides the recent success of the melanocortin field in reaching

clinical development and drug approvals (135), several challenges

and hurdles still exist, some difficult to solve, others at our

immediate reach. One of the major handicaps in MC research

has been the lack of validated antibodies with demonstrated

selective detection of each specific receptor subtype. This, together

with the scarcity of true selective agonists, has prevented the

progress towards obtaining an accurate understanding of the

cellular and tissue distribution of these receptors as well as their

specialised functions. The single-exon nature of the genes encoding

for the MCRs also presents a challenge in determining gene

expression accurately as samples require harsh DNAse

treatments, not always conducted in all studies. Then, investing in

producing better tools will help to achieve substantial advances

within the field. A possible avenue could be formation of a

university/commercial partner consortium to fund generation of

these tools, which then will be available to the wider community.

The early discovery in 2002 of the MC1 selective compound

BMS-470539 (200) together with the use of mice deficient in

Mc1r may have helped to point to a role for MC1 in fibroblast

functions, as discussed earlier in section 4.3. However, the role

and the therapeutic potential of other MCRs to target fibroblasts

should not be excluded.

An effort from the MC community is also needed to improve

accuracy and prevent confusion, and the accompanying distrust,

when reporting drug activity. For example, setmelanotide is

commonly wrongly referred to as an MC4 agonist, when this

compound is not selective for this receptor, or melanotan I and

II are usually alluded to as MC1 selective peptides when they are

pan-agonists. Equally needed is the characterization of novel MC

compounds according to several signalling pathways, instead of

the classical approach based solely on Gs protein derived cAMP

accumulation. It is now accepted that biased signalling can

derive from engagement with MC receptors, as for other

GPCRs, through the activation of alternative pathways other

than the canonical cAMP. This should be considered, not only

for the sake of accuracy and to avoid mischaracterization of

drugs, but because the existence of ligand bias provides

interesting therapeutic opportunities to achieve functional

selectivity. Indeed, the novel melanocortin candidate AP1189,

currently in phase II trials, may have been discarded early during

development as it does not induce cAMP, but activates ERK1/2

phosphorylation instead (15). This translates into anti-

inflammatory activity, derived from the latter, with no

unwanted melanogenic activity, derived from the former.

Moreover, as previously mentioned, cAMP magnitude does

not correlate with fibroblast responses (176), indicating that at

least when addressing the anti-fibroblast activities of MC

compounds, other pathways should be considered.
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The possibility of differences between mouse and human

receptors needs to be considered during the development of

novel MC candidates. For example, a compound demonstrating

selectivity at the human MC3 receptor may not replicate this

activity in the mouse ortholog, as it occurs with the peptide

g2MSH (201). Another example of discrepancy between mouse

and human receptors is the high constitutive activity presented

by the mouse but not for the human MC1. This is demonstrated

by the phenotype associated with POMC deficiency (i.e. lack of

MC ligands): while individuals carrying a mutation in this gene

present with fair skin and red hair (202), Pomc-/- mice on a black

coat mouse strain (129;B6) are still black, due to the high ligand

independent activity of this receptor (203).

Other challenges related to fibroblast biology also need to be

addressed to achieve optimal translation of melanocortins, as well as

other drugs, for the treatment of diseases driven by these cells. For

example, a better understanding of the pathogenic mechanisms that

are specific to each condition, which contribute to the sustained

unresolved activation, as well as how fibroblasts interact with

surrounding cells, both immune and others. While in broad

terms we now know that excessive collagen deposition drives

fibrosis and excessive immune component mediates arthritis, the

exact pathogenic mechanisms of fibroblasts in other contexts like

fibromyalgia or frozen shoulder are not so well understood and are

fundamental to know how to target these cells therapeutically and

how to shift them back to homeostatic states.

Another emerging idea is that a general 'anti-fibroblast strategy'

may not suffice, and a better definition of fibroblast heterogeneity

together with the specialised functions of the different subsets is

needed to fine-tune potential fibroblast-based therapeutic

approaches. Then, the identification of specific fibroblast

subpopulations across organs and tissues, in health and disease,

and importantly, their specific functions will provide insights for the

development of novel therapies. Collective efforts and initiatives like

the Human Cell Atlas (https://www.humancellatlas.org), powered

by single-cell technologies, will provide access to a catalogue of all

cell types and their subtypes for the whole of the human body.

Recently, a stromal atlas constructed from four chronic

inflammatory diseases revealed the existence of two major

fibroblasts subpopulations, the CXCL10+CCL19+ inflammatory

fibroblasts, and the SPARC+COL3A1+ perivascular fibroblasts (6).

Irrespective of which specific receptor mediates the actions

and what intracellular signalling mechanism may be involved, it

has been demonstrated that MC drugs are generally safe for their

use in humans (135). In terms of their potential in treating

fibroblast mediated disorders, it would be interesting to

accurately describe which receptors are expressed, what are their

endogenous functions, and whether MC drugs may differentially

affect certain fibroblast subpopulations. Their presence in most

organs and tissues, their active role in driving disease, their high

plasticity, and a better understanding of their functions, make this

cell type a very attractive therapeutic target. To date, most of the in

vitro and in vivo evidence for the potential of MC drugs in
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fibroblast-driven diseases have been conducted using the natural

agonist aMSH, but the time is ripe to move forward into testing

improved synthetic analogues and small molecules with higher

pharmacokinetic and pharmacodynamic profiles to provide hopes

for the effective management of countless diseases with high needs

involving dysregulated fibroblasts.
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