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Hepatocytes: A key role
in liver inflammation

Jin Gong, Wei Tu, Jingmei Liu* and Dean Tian*

Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety

of cellular functions including carbohydrate, lipid and protein metabolism,

detoxification and immune cell activation to maintain liver homeotasis. Recent

studies show hepatocytes play a pivotal role in liver inflammation. After receiving

liver insults and inflammatory signals, hepatocytes may undergo organelle

damage, and further respond by releasing mediators and expressing molecules

that can act in the microenvironment as well as initiate a robust inflammatory

response. In this review, we summarize how the hepatic organelle damage link to

liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory

factors in response to chronic liver injury.
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1 Introduction

Chronic liver disease is characterized by hepatocyte injury and inflammation that lead to

the development of cirrhosis and liver cancer, accounting for approximately 2 million deaths

every year worldwide (1). Multiple etiologies include chronic HBV and HCV infection,

nonalcoholic steatohepatitis (NASH), alcoholic liver disease, and autoimmune liver disease

cause the global burden of liver disease. Hepatocytes comprise the majority (~85%) of the

liver mass, and play a role in various biochemical and metabolic functions (2). Traditional

concepts viewed hepatocytes as targets of immune or insults mediated injury, resulting in

hepatocyte death which identified as a typical pathological feature in liver disease. However,

recent studies have emphasized a role for hepatocyte as active drivers in liver inflammation

and fibrosis through intercellular communication (3). Organelle damage, including

mitochondria, lysosome, endoplasmic reticulum may determine the severity of hepatocyte

injury (4). It is widely accepted that sterile hepatocyte death leads to the release of damage-

associated molecular patterns (DAMPs), which are recognized by the innate immune system

through pattern recognition receptors, and exaggerate inflammatory response in liver (5).

What’s more, stressed hepatocytes engage in liver inflammation as well, for they can change

their phenotype, make an adaptation to the microenvironment and alter their surrounding

cell populations (2). Substantial evidence show that hepatocytes constitutively produce and

secrete a variety of mediators that play important roles in immune regulation and fibrosis (6,

7). In this review, we will provide current literature investigating the adaptive and

maladaptive alterations of hepatocytes during the initiation of liver injury, and how the
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stressed hepatocytes interact with the surrounding cells to trigger a

proinflammatory microenvironment in chronic liver disease.
2 Endoplasmic reticulum stress in
hepatocytes links to liver inflammation

Endoplasmic reticulum (ER) is the major site of secretory and

transmembrane protein folding, calcium homeostasis and lipid

synthesis. Upon the accumulation of misfolded proteins in the ER,

unfolded protein response (UPR) is activated by three ER-

transmembrane sensors, namely PKR like ER kinase (PERK),

activating transcription factor 6 (ATF6), and inositol requiring

enzyme 1 (IRE1), coordinately through downstream factors

including X-box binding protein 1 (XBP1), a-subunit of eukaryotic
initiation factor 2 (eIF2a), C/EBP homologous protein (CHOP),

activating Transcription Factor 4 (ATF4), to resolve the protein

folding defect (8). Sustained or massive ER stress leads to

hepatocyte steatosis and apoptosis (9) (Figure 1).

ER stress is observed in many chronic liver diseases. Chronic ER

stress plays a causative role in NAFLD progression by promoting
Frontiers in Immunology 02
lipogenesis, disturbing mitochondrial function and modulating

insulin signaling (10). ER stress markers are shown to decline in

livers of obese patients following weight loss after bariatric surgery

(11). It has confirmed that impaired autophagic flux is associated with

increased ER stress in livers from patients with biopsy-proven NASH

during the development of NAFLD (12). Various HBV and HCV

proteins localize inside the ER lumen and are undergo envelopment.

HBV infection can cause ER stress, which enhance HBV viral

replication by initiating autophagy (13). Moreover, chronic HCV

infection induce ER stress and the minimal expression of UPR target

genes, which confers hepatocytes adaptation and resistance to liver

injury (14–16). Hepatic PHLDA3 regulates ER stress-induced

hepatocyte death through Akt inhibition in HCV hepatitis (17).

Besides, it is reported that interferon regulatory factor 3 (IRF3) is

activated by ER stress and induce hepatocyte apoptosis in early

alcoholic liver disease (18).

Under chronic ER stress, UPR is linked to the activation of several

inflammatory response pathways including NFkB, JNK, ROS, IL-6,
TNF-a (8, 19). Activated IRE1a induces JNKs activation, and

subsequent implicates in cell pro-inflammatory and pro-apoptotic

pathways. Knockdown of JNK1 gene protects mice from the
FIGURE 1

Role of ER stress in liver inflammation. Multiple stimuli lead to the activation of UPR response in hepatocyte. The three ER transmembrane sensors, PERK,
IRE1 and ATF6, coordinately through downstream signaling cascades to resolve the protein folding defect and promote cell survival. If the adaptive UPR
is overwhelmed by sustained or massive ER stress, it leads to hepatocyte steatosis and death. Meanwhile, ER stress may trigger NFkB and JNKs activation,
resulting in release of proinflammatory cytokines. On the other hand, ER stress can induce CHOP-dependent NLRP3 inflammasome activation in
hepatocytes. Besides, activation of IRE1A in hepatocytes promotes the release of inflammatory extracellular vesicles (EVs), thereby accummulating
immune cells infiltration.
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development of obesity and insulin resistance (20). Enhanced ER stress

can trigger NFkB activation through IRE1a and PERK pathway,

followed by the secretion of inflammatory and chemotactic cytokines

in hepatocytes (21, 22). SomeHCV and HBV protein accumulate at the

ER membranes which cause a deregulation of Ca2+ flux, generation of

reactive oxygen and nitrogen species, and the resulting ER stress could

induce IL-8 transcription (10, 23, 24). ER stress also induces CHOP-

dependent NOD-like receptor family, pyrin domain-containing 3

(NLRP3) inflammasome activation in hepatocytes, potentially causing

pyroptotic death and hepatic inflammation in patients with HBV-

associated liver failure and NAFLD (25, 26). Recent study shows that

activation of IRE1A in hepatocytes promotes the release of

inflammatory extracellular vesicles (EVs), which recruit macrophages

to liver, resulting in liver inflammation and injury in steatohepatitis

(27). Therefore, chronic ER stress cause inflammation and the

deregulation of lipid metabolism, that further exacerbate liver diseases.
3 Autophagy dysregulation in
hepatocytes leads to liver inflammation

Autophagy is a catabolic lysosomal process responsible for

clearing damaged proteins, dysfunction organelles and lipid

droplets. It is considered as a cellular response to maintain energy

balance and in reaction to multiple of cellular stress, such as

starvation, hypoxia, and viral infection (28).

Autophagy generally plays a protective role in hepatocytes, since

they can protect against steatosis and hepatocyte death. It is reported

autophagy can selectively degrades lipid droplets, termed lipophagy,

as evidenced by the increase in lipid accumulation upon inhibition of

autophagy in hepatocytes (29). Recent studies with specific genetic

inhibition of autophagy have established that hepatocytes are more

susceptible to various liver injury, such as alcohol, toxic agents,

lipotoxic metabolites, and pro-inflammatory factors. Autophagy

may promote cell survival by clearing misfolded proteins, lipids and

damaged mitochondria (30–33).

Studies show that regulation of autophagy links to the progression

of chronic liver diseases. Impaired autophagic flux links to steatosis and

progression to NASH in NAFLD patients and mouse models by genetic

or phamacological inhibition of autophagy (12). Shen et al. have

uncovered pathogenesis of IL-1b-induced liver injury in

steatohepatitis by finding that IL-1b becomes cytotoxic and pro-

inflammatory to hepatocytes when inhibition of autophagy, leading

to cell necrosis and liver inflammation (34). Although autophagy can

alleviate hepatocyte apoptosis and steatosis in acute alcohol liver disease

(35), decrease autophagic flux in hepatocyte is observed in models of

chronic alcohol exposure (36, 37). A significant decrease in UQCRC2

protein expression cause impaired mitophagy, which may aggravate

MLKL-mediated hepatocyte necroptosis and inflammation in alcoholic

liver disease (38, 39). Furthermore, early autophagy enhance HBV

infection and envelopment (40). Inhibition of autophagy by liver-

specific knockout of Atg5 in HBV transgenic mice can obviously

reduce HBV DNA level (41). Additionally, autophagy plays an

important role in HBV-mediated immune response (40). GAL9, a

type I IFN-stimulated gene, exerts effect on direct autophagic

degradation of HBc in HBV-infected hepatocytes (42). ATG12 is
Frontiers in Immunology 03
required for HBV replication and impediment of the IFN signaling

pathway, as evidence by decreased levels of IFN-a, IFN-b in ATG12-

knockdown hepatocytes (43). Autophagy inhibition also abrogates

HBx-induced activation of nuclear factor-kB (NF-kB) and

production of interleukin-6 (IL-6), IL-8, and CXCL2 (44). Similarly,

autophagy is required to promote HCV replication, partly through

suppression of innate immunity (45, 46). HCV-induced autophagy can

suppress host innate immune response through autophagic

degradation of TRAF6, which is an important signaling molecule that

mediates the activation of NF-kB and expression of cytokines and

interferons (47). Meanwhile, loss of autophagy signaling upregulates

HCV-induced cytoplasmic RIG-I signaling and IFN-b–mediated

antiviral responses (48). Interference of HCV-induced mitophagy by

Drp1 silencing enhances innate immune signaling (49). The correlation

between AIH and autophagy in hepatocyte is not clear. It has been

observed increased LC3 and p62 expression in hepatocytes of AIH

patients, and p62 level is strongly correlated with necroinflammatory

grade, which indicates that decreasing autophagic activity may be

linked to severity of inflammation in AIH (50).
4 The role of hepatic mitochondrial
dysfunction in liver inflammation

Mitochondria are abundant in the liver and required for lipid

metabolism and energy production. They can directly or indirectly

influence other cellular components such as the lysosomes, the

endoplasmic reticulum (ER), and cytosolic pathway, to meet the

cellular demands and alleviate mitochondrial dysfunction (51).

Generally, mitochondria maintain normal morphology and

homeostasis by the way of mitochondrial quality control, including

the regulation of mitochondrial fusion, fission, biogenesis, and

mitophagy (52). When they fail to adapt to various stress, they can

release mitochondrial DNA (mtDNA) in the cytosol or circulation,

which could induce cGAS-STING-dependent type I interferon (IFN)

response. Furthermore, mtDNA synthesis can activate the NLRP3

inflammasome which initiates inflammation (53). In addition,

mitochondrial dysfunction can generate excessive reactive oxygen

species (ROS), which stimulate synthesis of cytokines to amplify the

inflammatory cascade reaction and cause apoptosis and necrosis of

hepatocytes (52) (Figure 2).

Emerging evidence shows that mitochondria dysfunction,

especially mitochondria-derived immunogenic components

(including its DNA) have profound impacts on the development of

various chronic liver diseases. It is reported that NASH patients

produce high mitochondrial levels of ROS and ROS-mediated

mtDNA damage (54). Moreover, mtDNA is elevated in the serum

of NASH patients and in association with histological degree of

hepatic fibrosis. The mtDNA released from injured hepatocyte

mitochondria could directly activate hepatic stellate cells (HSCs)

and promote inflammation through binding to endosomal TLR9 of

Kupffer cells (55, 56). Besides, Mitochondrial protein mitofusion 2

(Mfn2) plays an important role in connecting ER membranes to

mitochondria and mitochondrial fusion, studies show that hepatic

mfn2 deficiency impairs ER-mitochondrial phosphatidylserine

transfer and mitochondrial function, leading to ER stress and liver
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inflammation in NAFLD (57, 58). Mitochondrial dysregulation is also

observed in hepatocytes of patients with AIH and experimental

mouse model with immune-mediated liver injury. Blockade of

dynamin-related protein 1(Drp1)-mediated mitochondrial fission

protects mice from concanavalin A (ConA)-induced liver injury

(59). In addition, hepatic ATF4 plays a pathological role in alcohol-

induced mitochondrial dysfunction and liver injury by repressing

TFAM expression, while AMPK protects against alcohol-induced

liver injury through up-regulating mitophagy (39, 60). Apart from

the above, chronic HBV and HCV infection could induce

mitochondrial oxidative stress and mitochondrial antiviral

signaling-mediated innate immune signaling as well (61, 62).
5 Mediators involved in
intercellular communication

During chronic liver injury, stressed hepatocytes can release

mediators that involved in crosstalk between hepatocytes and

surrounding cell populations. Besides, hepatocytes serve as liver-

resident nonprofessional antigen presenting cells (APCs), resulting

in a bias toward immune tolerance.
Frontiers in Immunology 04
5.1 Hepatocyte-derived extracellular vesicles
in liver inflammation

Extracellular vesicles (EVs) are homogeneous vesicles containing

lipid, nuclear acid, proteins, which can be secreted by various cell

types to the extracellular space and circulation. EVs include

microvesicles, exosomes and apoptotic bodies depending on their

source and molecular structure.

A growing body of evidence have identified EVs as a conveyor

mediating intercellular communication in liver diseases (63) (List in

Table 1). Hepatocyte-derived EVs as pathogenic mediators play a role

in NASH (77). Hepatocyte-derived exosomes from early onset obese mice

promote insulin sensitivity through miR-3075 (64). The increase in

plasma mtDNA contained in EVs of hepatocyte origin could drive

NASH development by activation of TLR9 (56). EVs are also shown as

mediators of toxic lipid-induced intercellular signaling. Lipotoxic

activation of hepatocytes induce release of EVs enriched in ceramide,

CXCL10, miR-192-5p, which trigger chemotaxis and inflammatory

phenotype switch of macrophages (65–68). Besides, EVs mediate cell-

to-cell communication in alcoholic liver disease. In patients with alcoholic

hepatitis, the number of circulating EVs is reported higher than those in

healthy individuals, and the EVs contain elevated levels of miR122,
FIGURE 2

Role of mitochondrial damage in liver inflammation. Various liver injury impair mitochondrial respiration and increase ROS formation, cause mtDNA
damage. High levels of ROS can increase synthesis of cytokines, which cause apoptosis and necrosis of hepatocytes. The presence of mtDNA in the
cytosol or circulation can trigger proinflammatory and type I IFN responses. Moreover, release of mitochondria-derived danger signals, such as mtDNA,
formylated proteins, can attract macrophage and neutrohphils, resulting in activation of NFkB and NLRP3 inflammasome. MtDNA also promotes
fibrogenic activation of HSCs. Besides, reduced expression of mitochondrial protein Mfn2 leads to deficient ER-mitochondrial phosphatidylserine
transfer, which provokes liver inflammation. HBV and HCV can activate innate immune antiviral signaling and inflammatory pathways through induction
of type I interferons and expression of inflammatory cytokines by NFkB.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1083780
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2022.1083780
miR192 and miR309 (69). Hepatocyte-derived EVs modulate activation

of liver marcophages by transferring miRNA-122 and CD40ligand after

alcohol exposure (70, 71). In addition, it is reported that exosomes isolated

from sera of chronic HBV and HCV infected patients or supernatants of

those hepatocytes contain viral RNA, which can mediate viral

transmission to naive hepatocytes (72, 75). These hepatic derived-

exosomes involve in host innate immune response and virus-mediated

immunosuppression. HCV-associated exosomes can transfer

immunomodulatory viral RNA from infected cells to neighboring

immune cells and trigger myeloid-derived suppressor cell expansion

(73). EVs from hepatitis C virus-infected cells stimulate monocytes to

produce galectin-9, which induces apoptosis of hepatitis C virus-specific T

cells and increases inhibitory regulatory T cells (74). Similarly, HBV

components are observed to be transmitted into NK cells by exosomes,

resulting in NK-cell dysfunction (75). Exosomes also can regulate innate

immune response against HBV through inducing NKG2D ligand

expression in macrophages, which stimulates IFN-g from NK cells, and

suppressing IL-12p35 mRNA expression to counteract he host innate

immune response (76). In a word, EVs exert a crucial role on the crosstalk

between hepatocytes and nonparenchymal liver cells.
Frontiers in Immunology 05
5.2 Hepatic cytokines involved in
liver inflammation
Hepatocytes can produce diverse cytokines to regulate liver

injury, repair, and inflammation in liver injury. Here, we make a

summary of cytokines that involved in the pathogenesis of chronic

liver diseases below.

IL-6 can be synthesized by hepatocytes in response to specific

stimuli to induce acute phase response, it implicates in the liver

regeneration following partial hepatectomy and exerts antiviral effects

on limiting the replication of HBV in hepatocytes (78, 79). Moreover,

substantial studies show that IL-6 trans-signaling promotes

inflammation in chronic liver diseases (80). Excessive lipid

accumulation in hepatocytes stimulates IL11 protein secretion,

autocrine IL11 activity drives lipotoxicity and underlies the

transition from NAFLD to NASH (81). Interleukin 33 (IL-33)

functions as an “alarmin” released from hepatocytes in response to

tissue damages. It exerts protective effects on hepatocytes through the

activation of autophagy and suppression of cell death, meanwhile, it
TABLE 1 Biosynthesis of secreted extracellular vesicles by hepatocytes.

Molecules role liver disease model references

miR-3075
promote insulin sensitivity,
promote proinflammatory activation of macrophages

a HFD diet induced-obesity model (64)

mtDNA activate TLR9 on Kupffer cells Experimental NASH model induced by HFD
diet

(56)

ceramides
activate macrophage chemotaxis hepatocytes treated with palmitate,

a HFD diet model with hepatocyte-specific
disruption of Ire1a

(27, 65)

TRAIL
activate an inflammatory phenotype in macrophages hepatocytes treated with palmitate,

Experimental NASH model induced by HFD
diet

(66)

CXCL10
induce macrophage chemotaxis hepatocytes treated with palmitate or LPC,

a FFC diet-fed Mlk3 deficient mice
(67)

miR-192-5p
activate an inflammatory phenotype in macrophages Experimental NASH model induced by high-

fat high-cholesterol diet
(68)

miR122
activate an inflammatory phenotype in macrophages,
potential diagnostic markers

patients with alcoholic hepatitis
Experimental AH model induced by alcohol-
fed mice

(69, 70)

miR192
potential diagnostic markers patients with alcoholic hepatitis

Experimental AH model induced by alcohol-
fed mice

(69)

miR309
potential diagnostic markers patients with alcoholic hepatitis

Experimental AH model induced by alcohol-
fed mice

(69)

CD40ligand
activate an inflammatory phenotype in macrophages Experimental AH model induced by alcohol-

fed mice
(71)

HCV RNA

mediate viral transmission to naive hepatocytes,
transfer immunomodulatory viral RNA to neighboring immune cells, trigger
myeloid- derived suppressor cell expansion,
induce apoptosis of hepatitis C virus-specific T cells,

hepatitis C virus-infected hepatocytes
chronic HCV infected patients

(72–74)

HBV nucleic acids
and proteins

induce active infection in naive human hepatocytes,
transmit into NK cells and lead to NK-cell dysfunction,
stimulate IFN-g from NK cells and suppress IL-12p35 mRNA expression,
transfer of antiviral molecules from liver nonparenchymal cells to hepatocytes

hepatitis B virus-infected hepatocytes
chronic HBV infected patients

(75, 76)

HFD, high fat diet; LPC, lysophosphatidylcholine; FFC, fat, fructose and cholesterol.
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regulates host innate immunity by recruitment and activation of ST2-

positive target immune cells in the liver (82). Furthermore, it is

responsible for repressing viral transcription, protein production and

genome replication in HBV-infected hepatocytes (83). IL-32 is

markedly induced in hepatocytes in various liver diseases. It plays

an important role in inflammatory response by promoting

proinflammatory cytokines such as IL-1b and tumor necrosis factor

alpha (TNF-a) (84, 85). IL32 also has a critical role in the

pathogenesis of NAFLD, partly due to its association with

hepatocyte insulin resistance and cholesterol homeostasis (86, 87).

Besides, it can suppress HBV transcription and replication (88).

Hepatocyte also can produce several chemokines to attract immune

cells in response to liver injury. For example, hepatocyte can express

chemokine MCP-1, which recruits macrophages to promote liver

steatosis and inflammation in alcoholic and non-alcoholic fatty liver

disease. Moreover, hepatic MCP-1 expression is found to regulate

fatty acid oxidation resulting in steatosis during chronic alcohol

exposure (89, 90). Apart from the above, hepatocytes can secrete

high amounts of CXCL1, leading to hepatic neutrophil infiltration

through TLR2 and TLR9-dependent pathway in alcohol-mediated

liver injury (91). Hepatocyte is the main source for necrotic cell-

induced CXCL1 production, which dependent of NF-kB activation by

Kupffer cells, resulting in neutrophils mobilization and finally clearing

dead cells (92). Another study shows that hepatocyte-specific gp130

signaling is sufficient to induce CXCL1 expression, independent of

NF-kB activation, triggering a robust systemic innate immune

response (93). Steatotic hepatocytes also can stimulate IL-8

production, an active neutrophil chemoattractant, potentially

contributing to hepatic inflammation (94).
5.3 Role of hepatocytes in
antigen-presentation

In clinical hepatitis, viral or autoimmune especially, hepatocytes

can directly modulate immune cells via cell-cell interactions.

Hepatocytes could function as nonprofessional APCs because they

express MHC class II during inflammation. MHC-II overexpressing

hepatocytes are capable of activating CD4+ T-cells in vitro, but they

only induce T helper cell (Th) 2 differentiation, which impair antiviral

CD8 T-cell responses and viral clearance (95, 96). Hepatocytes appear

to play a role in the liver tolerogenic effect. They can activate CD8+ T

cells in a manner that leads to apoptosis of these cells since lack of

either costimulatory signals or CD4+ T cell help (97). What’s more,

the hepatocytes may endocytose and kill CD8+ T cells that recognize

them, a process known as suicidal emperipolesis (98). In viral

infection, virus-positive hepatocytes can be eliminated by activated

circulating CD8+ T-cells through directly recognizing antigen on

hepatocytes, leading to CD8+T-cell exhaustion (99). Among the

underlying mechanism, Notch signaling may performed an

important regulatory role in the interaction between hepatocytes

and T cells activation. It is reported hepatocytes fine -tune liver

inflammation by upregulation of Jagged1 and activation of Notch

signaling in Th1 cells, resulting in induction of IL10-producing CD4+

T cells (100). Besides, Notch signaling contributes to liver

inflammation by regulation of interleukin-22-producing cells in
Frontiers in Immunology 06
hepatitis B virus infection (101). In addition, hepatocytes may

induce tolerance via Notch-mediated conversion of CD4(+) T cells

into Foxp3(+) Tregs upon TCR stimulation (102). Apart from these,

intercellular adhesion molecule 1 (ICAM-1) is involved in CD4+ T

cell engulfment by hepatocytes and huh-7 cells by facilitating T cell

early adhesion and internalization (103).
6 Conclusion

A growing number of evidences have demonstrated stressed

hepatocytes exert a pivotal role on the development of inflammation

and fibrosis via cell-cell interactions during liver injury. In this review,

we summarize the role of hepatic organelle disorders in the

pathogenesis of chronic liver diseases, especially, their links to liver

inflammation. Furthermore, we introduce a wide variety of pro-

inflammatory signals carried by hepatocyte derived-EVs that can

deliver the message to neighbor target cells and in the circulation to

modulate immune response. Besides, we conclude several cytokines and

chemokines of hepatocyte origin which engage in chronic liver diseases.

Finally, we address briefly antigen-presentation properties of

hepatocytes in immune regulation. Understanding of the molecular

mechanisms involved in the regulation of hepatic organelle damage, as

well as role of hepatocyte in immune regulation may provide us novel

insights of dysregulated inflammation during liver injury and identify

new therapeutic targets for various liver diseases.
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