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The pathogenesis of autism spectrum disorder (ASD) is not well understood,

especially in terms of immunity and inflammation, and there are currently no

early diagnostic or treatment methods. In this study, we obtained six existing Gene

Expression Omnibus transcriptome datasets from the blood of ASD patients. We

performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and

Spearman correlation analysis, with a focus on expression profiling in hub genes

and immune cells. We validated that monocytes and nonclassical monocytes were

upregulated in the ASD group using peripheral blood (30 children with ASD and 30

age and sex-matched typically developing children) using flow cytometry. The

receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified

by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the

“training” and verification groups. Three immune cell types – monocytes, M2

macrophages, and activated dendritic cells – had different degrees of correlation

with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network

and agents-gene interactions using miRNA databases (starBase and miRDB) and

the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents

were linked with ASD. These findings suggest that dysregulation of the immune

system may contribute to ASD development, especially dysregulation of

monocytes and monocyte-derived cells. ASD-related hub genes may serve as

potential predictors for ASD, and the potential ASD-related miRNAs and agents

identified here may open up new strategies for the prevention and treatment

of ASD.
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Introduction
Autism spectrum disorder (ASD) is a group of disorders

characterized by impairment in social interaction and

communication and the presence of restricted and repetitive

behaviors and interests (1). It is often combined with intellectual

disability (2), immune dysfunction (3), and inflammatory diseases of

the gastrointestinal tract (4). ASD is a multifactorial process and is

associated with an adverse maternal environment, children’s lifestyle,

genetic factors, and immune, inflammatory, and psychosocial factors

(5–8). Among these, immune and inflammatory factors have been

shown to play an essential role in the development of autism (9–12).

However, the pathogenesis caused by immune responses and

inflammation remains unclear, and the regulatory mechanisms still

require in-depth investigations.

Recent studies have shown that immune cells play a vital role in

the occurrence and development of ASD. For example, abnormalities

in the peripheral blood monocytes of the innate immune system are

associated with behavioral changes in inflammatory subtype ASD

(13), while NK cells from patients with high-functioning ASD show a

high level of cell activation (14). Myeloid dendritic cells are increased

in autistic children and are related to amygdala volume and repetitive

behaviors (15). Microglia, as the resident macrophages in the central

nervous system in persons with ASD, show elevated protein synthesis

that causes autism-like synaptic and behavioral aberrations (16), and

mediators from mast cells can activate microglia causing local

inflammation and contributing to ASD symptoms (17). Moreover,

regulatory B cells and T cells are decreased in children with ASD, and

this plays a pivotal role in the evolution and severity of ASD (18).

However, no study has analyzed the immune cell landscape in whole

blood in persons with ASD and there is a need for a systematic

approach to assessing the contribution of immune cells and key

immune-related genes.

Non-coding RNAs with post-transcriptional regulatory functions

for genes have been shown to be closely associated with ASD. For

instance, the blood transcriptome in persons with ASD shows co-

expression modules associated with ASD risk genes, including genes

related to metabolism, immunity, neurodevelopment, and signal

transduction (19). A recent study showed that micro-RNA

(miRNA) is the key regu la tor of gene express ion in

neurodevelopmental transcriptional networks, and circulating

miRNAs might therefore be potential predictors for ASD diagnosis

and prognosis (20). In addition, many studies have focused on blood

and saliva samples of ASD patients, and the results have shown that

miRNAs might be of predictive significance in ASD because of their

associations with inflammation and immunity (21–23). However,

although miRNAs show great potential in treating cancer and other

diseases (24), few studies on ASD have been reported. Also, the effects

of known genes on ASD have not yet been fully elucidated, and more

gene sets should be concentrated on, and potential interactions

between genes might be further constructed and investigated such

as miRNA-mRNA networks and protein-protein interaction

(PPI) networks.

Bioinformatics analysis has attracted much attention with

continuous breakthroughs in the discovery of novel genes and
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predictors. The purpose of this study was to collect and analyze the

available ASD Gene Expression Omnibus (GEO) database to identify

ASD-related immune cells and hub genes related to biological

functions, gene networks, diagnosis, and treatment.
Materials and methods

Data collection and processing

To collect all existing datasets that used children and adults with

ASD’s peripheral blood for transcriptome studies, we searched the

datasets from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)

with the condition terms “Autism spectrum disorder,” “Autism,”

“Autistic disorder,” “ASD,” the tissue term “blood,” and the organism

term “Homo Sapiens.” The inclusion criteria were as follows: the

datasets contained gene expression profiling by microarray or high-

throughput RNA sequencing, the datasets included ASD and typically

developing (TD) samples, and 20 or more samples were in the dataset.

Thus, six eligible GEO Series (GSE) datasets were adopted, including

GSE6575 (25), GSE18123 (26), GSE42133 (27), GSE111175 (28),

GSE26415 (29), and GSE89594 (30). All transcriptomic datasets are

listed in Supplementary Table 1. The GSE18123 dataset consisted of

two RNA sequencing profiles from different GEO Platforms (GPL), so

there were five datasets from children and two from adults. Among

the five children’s datasets, four were used as “training” datasets, and

one was used as the validation dataset. Figure 1 illustrates the

workflow of this study. The R package “limma” (v3.50.3) was used

to analyze each gene expression matrix with the threshold of p <

0.05 (31).
Functional and signal pathway
enrichment analysis

The biological functions and corresponding pathways of the

identified DEGs were determined through Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

using the R package “clusterProfiler” (32) (v4.2.2) with a significance

level of padjusted < 0.05. The online databases GENEMANIA (https://

genemania.org/) (33) and Metascape (http://metascape.org/gp/index.

html#/main/step1) (34) were used to predict gene function. Gene Set

Enrichment Analysis (GSEA) was conducted in R software using the

hallmarks gene set “h.all.v7.5.1.symbols.gm” (35). The results were

visualized with the R packages “enrichplot” (v1.14.2) and

“ggplot2” (v3.3.6).
Analysis of the immune cell landscape

The CIBERSORT analytical tool (https://cibersortx.stanford.edu/)

was used to evaluate the abundance and differences of 22 types of

immune cells between the ASD and TD group (36), including

different kinds of B cells, dendritic cells, macrophages, mast cells,

NK cells, T cells, eosinophils, monocytes, neutrophils, and plasma

cells. The results were analyzed using the R packages “ggplot2” and
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“Kruskal.test”. For the training dataset, LASSO logistic regression was

carried out to further select significantly different immune cells in

combination with Kruskal.test. The Wilcoxon test and receiver

operating characteristic (ROC) curves were calculated using R-

based tools to assess the classifier performance for the LASSO

regression model (v4.1.0).
PPI analysis and hub gene screening

A PPI network was constructed among the consistently changing

DEGs using the STRING database (https://string-db.org) (37). The

CytoHubba module in Cytoscape (v 3.7.1) was used to score the top

10 node genes using 12 different algorithms, namely MCC (Maximum

Clique Centrality), DMNC (Density of Maximum Neighborhood

Component), MNC (Maximum Neighborhood Component),

Degree, EPC (Edge Percolated Component), BottleNeck,

EcCentricity, Closeness, Radiality, Betweenness, Stress, and

Clustering Coefficient. The hub genes generated from each
Frontiers in Immunology 03
algorithm were shown by the R package “UpSet” and validated

using GSE111175.
Validation of significant immune cells

To validate the most significant immune cells in children, the

whole blood samples from 30 children with ASD and 30 age and sex-

matched TD children were collected at the 3rd Affiliated Hospital of

Zhengzhou University. All participants provided informed consent to

participate in the study, which was approved by the Medical Ethics

Committee of the 3rd Affiliated Hospital of Zhengzhou University

(Ethical number 2020–56). All blood samples were processed within

8 h for flow cytometry with a mix of antibodies according to the

manufacturer’s instructions. The antibodies purchased from BD

Biosciences included CD45 (HI30, Cat# 564105) CD14 (M5E2,

Cat# 561712), CD16 (3G8, Cat# 563692), and HLA-DR (G46-6,

Cat# 560896). The data were analyzed using FlowJo software

(TreeStar) and presented using the UMAP method.
FIGURE 1

The flow diagram of the study. The adult group (GSE26415 and GSE89594) was only analyzed regarding GO, KEGG, GSEA, and immune cell infiltration.
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Correlation analysis between hub genes and
significantly related immune cells

The association of the hub genes with the infiltration levels of

immune cells was explored and analyzed in R, and the correlation

results were visualized using the “ggplot2” and “ggstatsplot” packages.
Analysis of the predictive value of predictors

The GSE111175 dataset was used to assess the predictive

effectiveness according to the validation group between the children

with ASD and the children in the TD group using ROC curve analysis.

The results were visualized with the “pROC”, “ggplot2”, and

“ComplexHeatmap” packages.
Construction of the mRNA-miRNA
regulatory network

The starBase (predicted program ≥ 2) (38) and miRDB (39)

databases were used to predict the upstream miRNAs of hub mRNAs

by taking intersections. Cytoscape (v 3.7.1) was used to visualize the

mRNA-miRNA network.
Prediction of potential agents affecting ASD

The DSigDB database (http://tanlab.ucdenver.edu/DSigDB) was

used to predict potential agents for hub genes related to ASD, with

agents–hub genes ≥3 as the condition for the agents screen. The

results were displayed using a Sankey diagram based on the

“ggalluvial” (v0.12.3) package.
Statistical analysis

All data from the bioinformatics analyses were analyzed in R, and

the data from routine blood tests were analyzed using SPSS software

version 23 (IBM Corp). All data are presented as the mean ±

standard deviation.
Results

Screening of DEGs between ASD and TD in
child and adult datasets

We conducted the analysis using the four children’s datasets and

two adults’ datasets. For the children’s datasets, the “RRA” and “Batch

correction” methods were used to get accurate DEGs from multiple

children’s datasets. For the “Batch” dataset using the same platform,

including GSE6575-GPL570 and GSE18123-GPL570, batch effects

were removed using the ComBat function of the R package “SVA”

(40). The 3D principal component analysis plots indicated that the

processed data were more reliable after batch effect removal
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(Figures 2A, B). For “RRA” dataset using different platforms,

including GSE18123-GPL6244 and GSE42133-GPL10558, the batch

effect was corrected using the R package “RobustRankAggreg” (RRA)

(41) (Figure 2C). As analyzed by “limma”, the final list of DEGs used

for further analysis was generated as shown by the Venn diagram in

Figure 2D. There were a total of 113 DEGs, of which 95 were

consistently changing DEGs between these two datasets in the

childhood group, including 57 co-upregulated and 38 co-

downregulated genes (Supplementary Table 2 and Figure 2D). For

the two adult datasets, DEGs were extracted as the intersection

between GSE26415 and GSE89594 as shown in Supplementary

Figure 1. A total of 25 consistently changing DEGs were screened

between the GSE26415 and GSE89594 adult datasets, including 17 co-

upregulated and 8 co-downregulated genes (Supplementary Table 3

and Supplementary Figure 1A).
Functional and signaling pathway
enrichment analysis in children and adults
with ASD

To reveal the biological processes and signaling pathways behind

the DEGs in children and adults, we performed a systematic analysis,

including GO, KEGG, GSEA, and DisGeNET database prediction.

For the childhood group, the 95 consistently changing DEGs were

analyzed with Metascape and GSEA. In total, biological functions

related to neuronal development (axon guidance, nervous system

development, and Roundabout (ROBO) receptors), immunity

(adaptive immune system, IFN-alpha/gamma response,

complement, and IL2/Stat5 signaling), and cell development and

metabolic processes (mTORC1 signaling, mitotic spindle formation,

KRAS signaling, heme metabolism, and protein secretion) (Table 1;

Figure 3A) were identified.

Interestingly, the DisGeNET prediction suggested that the DEGs

were mainly associated with erythrocyte-related parameters and

disorders such as mean corpuscular hemoglobin (MCH),

extramedullary hematopoiesis function, red cell distribution width

(RDW), mean corpuscular hemoglobin concentration (MCHC), and

anemia (Figure 3B; Supplementary Table 4). Indeed, these results

were confirmed and validated when using peripheral blood samples

collected from children with ASD. We observed significant differences

between the ASD and TD groups for red blood cell count (RBC),

hematocrit (HCT), MCH, coefficient of variation of RDW (RDW-

CV), and MCHC (Table 2). Moreover, GO enrichment analysis of the

DEGs suggested biological functions associated with erythrocyte

differentiation (Supplementary Figure 2).

It is noteworthy that when analyzing the functional enrichment of

DEGs using the “RRA” and “Batch”method separately, we found that

the B cell receptor (BCR) signaling pathway was significantly enriched

in both (Supplementary Figures 3A, B). Similarly, when analyzing all

113 DEGs instead of the consistently changing 95 DEGs between the

two methods using the Metascape database, we also found the BCR

signaling pathway to be a significant pathway (Supplementary

Figure 3C). In addition, several DEGs, including PIR-B (LILRB1),

IgA, CD81, and VAV, were found to be involved in the BCR signaling

pathway (data not shown).
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For the adult group, Metascape analysis of the 25 consistently

changing DEGs suggested that deubiquitination, regulation of

hormone levels, cell morphogenesis involved in neuron

differentiation, and positive regulation of catabolic process were the

most enriched terms (Supplementary Figure 1B). GENEMANIA

analysis showed that the TGF-b/SMAD signaling pathway was a

significantly altered signaling pathway (Supplementary Figure 1C),

and some metabolic disorders and immune disease-related processes

were significantly enriched according to the DisGeNET analysis, such

as hyperinsulinism, scleroderma, juvenile arthritis, inflammation, and

celiac disease (Figure 3C). In addition, GSEA analysis showed that

oxidative phosphorylation, MYC targets v1, E2F targets, and protein
Frontiers in Immunology 05
secretion were suppressed, while heme metabolism and KRAS

signaling DN were activated, all of which were the opposite of what

was seen in the childhood group. It is also noteworthy that estrogen

response was among the biological processes enriched in the adult

ASD datasets compared to children (Figure 3D).

Overall, the biological process analysis using DEGs showed that

immune function, neuronal development, and metabolic disorders

were common in both children and adults with ASD. However,

there were obvious differences between the two groups. For

example, erythrocyte differentiation was involved in children with

ASD, while estrogen response affected the course of adults

with ASD.
TABLE 1 The top four GO MCODE components identified in 95 consistently changing DEGs in the protein-protein interaction network.

GO Description Log10(P) Gene sets

R-HSA-422475 Axon guidance –6.7 AP2A1, PRKCA, PSMC4, RPS3A, RPS26, YES1, IRS2, PSMF1, USP33

R-HSA-9675108 Nervous system development –6.6 AP2A1, PRKCA, PSMC4, RPS3A, RPS26, YES1, IRS2, PSMF1, USP33

R-HSA-376176 Signaling by ROBO receptors –5.9 PRKCA, PSMC4, RPS3A, RPS26, PSMF1, USP33

R-HSA-1280218 Adaptive immune system –5.5 AP2A1, CD79A, CD81, KLRB1, PSMC4, YES1, PSMF1, UFL1, FBXO7
B

C D

A

FIGURE 2

Identifying the DEGs from two methods in children’s databases. (A, B) Principle component analysis of the batch correction of GSE6575 and GSE18123:
(A) before batch correction and (B) after batch correction. (C) The top 20 upregulated and 20 downregulated DEGs of the different platforms from two
datasets determined by “RRA”. (D) Venn diagram showing the consistently changing DEGs screened by “RRA” and “Batch”.
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Immune cell landscape in peripheral blood
samples of children with ASD

The analysis above clearly showed that immune function is

among the most significantly affected biological functions in both

children and adults with ASD. In addition, immune responses and

inflammation have been suggested to play a crucial role in childhood

ASD progression, so we conducted a comprehensive analysis of the

immune cell profiles in the selected datasets. The “Batch” dataset for

children (101 ASD children and 45 TD children) and the GSE26415
Frontiers in Immunology 06
dataset for adults (21 ASD adults and 21 TD adults) were used

because of the high quality of their sequencing data and the

availability of the CIBERSORT algorithm.

Using the CIBERSORT algorithm, 22 immune cell types were

identified in each sample from each group (Supplementary Figure 4).

Among these, naive B cells, monocytes, neutrophils, resting NK cells,

naive CD4+ T cells, and CD8+ T cells were the main immune cells in

children, while monocytes, neutrophils, memory-activated CD4+ T

cells, and CD8+ T cells were similarly enriched in adults. In addition,

there were significant differences between the ASD and TD groups
B

C

D

A

FIGURE 3

Gene enrichment analysis based on DisGeNET and GSEA. Summary of the enrichment analysis in DisGeNET in the children (A) and adult (B) groups. The
GSEA results showed the enriched activated and suppressed pathways in children (C) and adults (D).
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regarding resting/activated dendritic cells, M0/M2 macrophages, and

monocytes in children and M0 macrophages, resting mast cells, and

resting/activated NK cells in adults (Figure 4A).

LASSO regression analysis can more accurately identify

significant differences in immune cells. As shown in Supplementary

Table 5 and Figure 4B, the LASSO regression model was found to

have good classifier performance according to Wilcoxon’s test and

area under the ROC curve (AUC) analysis. When further analyzing

the data in children with ASD, 12 types of immune cells were

extracted (Figure 4C). Among these, four cell types (monocytes, M2

macrophages, and resting/activated dendritic cells) from two

algorithms (Kruskal.test and LASSO logistic regression)

were identified.
Monocyte phenotype validation and
confirmation using peripheral blood in
children with ASD

It has been suggested that monocytes play a major role in ASD

development in children (42). To validate the results obtained from

the integration analysis above, monocyte phenotypes were further

identified and confirmed using peripheral blood samples. We

collected a total of 60 peripheral whole blood samples, including 30

ASD and 30 age and sex-matched TD children, and performed flow

cytometry analysis (Figure 5A). In the UMAP analysis, each of the

monocyte subtype populations, including intermediate monocytes,

classical monocytes, and nonclassical monocytes (ncMos), were

shown as distinct cell clusters (Figure 5B). The flow cytometry

analysis showed that among all analyzed monocyte subtypes, there

were significant differences in total monocytes (p < 0.05) and ncMos

(p < 0.001) (Figure 5C).
Frontiers in Immunology 07
Screening and validation of hub genes as
predictors in children with ASD

Hub genes usually refer to genes with a connectivity degree

greater than 10 in the genetic interaction network, and these play

important roles in biological systems. Here, we used the “Batch” and

“RRA” datasets as the training dataset and GSE111175 as the

validation dataset for children with ASD. Notably, due to the

integration and consistency of the data in the “Batch” and “RRA”

datasets, we used the expression data from the “Batch” dataset to

represent the expression levels of the hub genes in the training dataset.

The PPI network used to identify the hub genes was obtained

when 95 consistently changing DEGs in children with ASD were

analyzed by STRING (Supplementary Figure 5). Using the

CytoHubba function, there were a total of 15 hub genes

(Figure 6A), including AHSP, ALAS2, SELENBP1, AP2A1, BCL2L1,

CD3G, MAP1LC3A, CD69, DCAF12, EPB42, GMPR, IGF2R, LILRB1,

PSMC4, and SLC4A1, and the expression levels of the hub genes were

determined in the training (Figure 6B) and validation (Figure 6C)

datasets in children with ASD and TD. Clearly, the validation dataset

confirmed only ALAS2, SELENBP1, CD3G, MAP1LC3A, CD69,

DCAF12, IGF2R, PSMC4, and SLC4A1 as significantly differently

expressed hub genes between children with ASD and TD and not

the genes AHSP, AP2A1, BCL2L1, EPB42, GMPR, and LILRB.

Furthermore, as shown in Figure 7A, ALAS2, CD3G, DCAF12,

IGF2R, PSMC4, SELENBP1, and SLC4A1 were significantly and

consistently altered hub genes in the training and validation

datasets, which suggested that these genes were critical to ASD and

might be used as predictors for ASD in children. An AUC more than

0.60 was considered to be relatively good predictive accuracy. The

AUC values of PSMC4 and ALAS2 were 0.633 (95% CI 0.534–0.732)

and 0.651 (95% CI 0.559–0.744) in the training group and 0.677 (95%
TABLE 2 The comparison of routine blood tests between TD and ASD groups in the clinical children’s samples.

TD (n = 30) ASD (n = 30) p

WBC (10^9/L) 7.64 ± 1.55 8.30 ± 2.06 0.19

RBC (10^12/L) 4.40 ± 0.28 4.67 ± 0.41 <0.01

HGB (g/L) 126.33 ± 7.04 125.37 ± 9.80 0.77

HCT (%) 35.88 ± 1.82 37.63 ± 2.55 <0.01

MCV (fL) 81.68 ± 2.66 80.95 ± 5.85 0.82

MCH (pg) 28.77 ± 1.16 26.98 ± 2.09 <0.001

MCHC (g/L) 352.10 ± 6.46 333.23 ± 9.11 <0.001

RDW-CV (%) 12.30 ± 0.53 13.31 ± 0.96 <0.001

RDW-SD (fL) 37.77 ± 1.41 37.96 ± 2.26 0.71

PLT (10^9/L) 296.23 ± 74.43 316.53 ± 70.41 0.16

PCT (%) 0.27 ± 0.06 0.27 ± 0.07 0.82

MPV (fL) 9.17 ± 1.22 8.63 ± 1.24 0.06

WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; RDW-CV, coefficient of variation of red cell distribution width; RDW-SD, standard deviation of red cell distribution width; PLT, platelet count; PCT, plateletcrit; MPV,
mean platelet volume.
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CI 0.574–0.779) and 0.625 (95% CI 0.517–0.733) in the validation

group, respectively. In the logistic regression model the combined

AUC values of PSMC4 and ALAS2 reached 0.668 (95% CI 0.575–

0.762) and 0.729 (95% CI 0.630–0.829), respectively, in both datasets

(Table 3; Figure 7B). In addition, we also undertook diagnostic

performance analyses of the remaining five possible marker genes,

including single and multiple gene combination diagnostic analyses.

However, we did not find any additional predictors in the two datasets

when considering higher diagnostic efficiency and lower cost.

Therefore, PSMC4 and ALAS2 might act as predictors with

moderate strength (43).
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To further estimate the sensitivity of using these hub genes as

indicators for ASD severity, we extracted the Autism Diagnostic

Observation Schedule Social Affect (ADOS-SA) deficit scores that

were positively correlated with ASD severity from the GSE111175

dataset. The children with ASD were divided into the following three

groups according to severity: mild (5 to 11), medium (12 to 15), and

high (16 to 21). The heatmap showed the expression of 15 hub genes

in the three groups (Figure 7C), and we used scatter plots to show

gene expression patterns among the three groups to make it more

intuitively understandable. In particular, LIlRB1 could distinguish

between high and mild severity ASD (p < 0.05), and CD69 had
B

C

A

FIGURE 4

Identifying the significantly different infiltrations of immune cells. (A) Kruskal test analysis in children and adults. (B) LASSO regression analysis in children’s
datasets. (C) Box-plots and ROC curves for assessing classifier performance in the LASSO regression model. ns: not significant; *p < 0.05; **p < 0.01.
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relatively lower expression in the medium severity group compared to

the mild and high severity groups (p < 0.05) (Figure 7D). These results

indicate that LIlRB1 and CD69 can be used as indicators for ASD

severity in children.
Correlation between hub genes and
peripheral immune cell profiles in children
with ASD

To investigate the correlations between hub genes and immune

cell profiles in children with ASD, we performed Spearman

correlation analysis using the “Batch” dataset. First, we explored the

correlation between immune cells in children with ASD and TD, and
Frontiers in Immunology 09
we found that monocytes were positively associated with M0/M1

macrophages but negatively related to M2 macrophages in children

with ASD, whereas M0 macrophages were negatively related to M2

macrophages in TD children (Figure 8A). Second, the correlation

between 15 hub genes and 4 significantly differentially expressed

immune cells (Figure 8B) showed that activated dendritic cells were

positively correlated with AHSP, LILRB1, and CD69 (r > 0.20, p <

0.05) but negatively correlated with PSMC4 (r < –0.20, p < 0.05). In

addition, M2 macrophages showed a positive correlation with AP2A1,

MAP1LC3A, EPB42, BCL2L1, GMPR, SLC4A1, and AHSP (r > 0.20,

p < 0.05) and a negative correlation with CD3G (r < –0.20, p < 0.05) in

children with ASD (Figure 8C). Lastly, the graphs of the linear

correlation indicated that monocytes were significantly and

positively related to LIlRB1 (r > 0.40, p < 0.001) (Figure 8D).
B C

A

FIGURE 5

The expression of the monocyte phenotype. (A) Monocytes were typed using flow cytometry. (B) UMAP for monocytes and monocyte subtypes in
children with ASD and TDs. (C) The percentage of monocytes and subtypes in dot plots. *p < 0.05; ***p < 0.001. Mo, monocyte; iMo, intermediate
monocyte; cMo, classical monocyte; ncMo, nonclassical monocyte; ns, not significant.
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Construction of the miRNA-hub gene
network and ASD-related agents’ prediction
in children with ASD

To gain further insight into the regulatory mechanisms and to

identify potential agents affecting ASD in children, we next tried to

identify the miRNAs and agents that influence identified 15

hub genes.

A total of 118 candidate miRNAs were predicted to target the 7

identified hub genes. There were 10 miRNAs targeting AP2A1, 18

miRNAs targeting BCL2L1, 33 miRNAs targeting CD69, 37 miRNAs

targeting DCAF2, 5 miRNAs targeting GMPR, 33 miRNAs targeting

IGF2R, and 2 miRNAs targeting LIlRB1 (Figure 9A). We then

summarized those miRNAs that regulated more than one hub gene

in Table 4. Of these, hsa-miR-342-3p and hsa-miR-1321 interacted

most intensively with robust hub genes (target hub genes = 3).
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In addition, using the DSigDB database, the 23 agents affecting

ASD were shown in a Sankey diagram with agents–hub genes ≥ 3, and

the agents-disease associations were also displayed, including positive,

negative, and unknown correlations with ASD status (Figure 9B).
Discussion

This study identified seven ASD-related hub genes (PSMC4,

CD3G, IGF2R, DCAF12, SELENBP1, ALAS2, SLC4A1) and found

that PSMC4 and ALAS2 had good diagnostic efficacy. In addition,

LIlRB1 and CD69 had the ability to diagnose mild, medium, and high

severity ASD. Among these, CD3G encodes the CD3-gamma

polypeptide, which plays an important role in autoimmunity. It has

been reported that CD3g-deficient patients present with Treg

phenotypic and functional defects (44); however, no study has been
B

C

A

FIGURE 6

Identifying the hub genes. (A) The 12 algorithms used to screen for hub genes in the R package “UpSet”. Expression levels of 15 hub genes in the (B)
training and (C) validation groups. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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reported on the relationship between CD3G and ASD. Here, we found

that the expression of CD3G was lower in children with ASD, which

shows that there were Treg cell abnormalities in these children (45).

Both Treg cells and M2 macrophages can suppress overly aggressive

immune responses, and thus loss of Treg cell function may require

more M2 macrophages to restore immunosuppressive function,
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which could be the reason that CD3G had a negative correlation

with M2 macrophages.

LILRB1 and CD69 are essential genes in immune regulation

through T cells and play roles in the development of autoimmune

responses (46–49). The most intriguing result in our study was that

LILRB1 was tightly related to ASD. LILRB1 is expressed mainly in
B

C D

A

FIGURE 7

Verifying the predictors from hub genes in the training and validation groups. (A) Seven hub genes with consistent changes in expression levels in the
training group (top) and validation group (bottom). (B) ROC curve and logistic regression model to assess the predictive accuracy of PSMC4 and ALAS2 in
the training group (top) and validation group (bottom). (C) Heat maps of the expression of 15 hub genes in the three groups according to ASD severity.
(D) Prognostic values for LILRB1 and CD69 in dot plots. ns, not significant; *p < 0.05; **p < 0.01.
TABLE 3 Receiver operative characteristic curves of PSMC4, ALAS2, and Model (PSMC4+ALAS2) in the training and validation group.

Level Sensitivity Specificity 95% CI AUC

TD ASD

Training group PSMC4 6.72 ± 0.28 6.60 ± 0.23 0.84 0.40 0.534-0.732 0.633

ALAS2 8.09 ± 0.88 7.53 ± 1.07 0.73 0.52 0.559-0.744 0.651

Model -0.59 ± 0.66 -1.02 ± 0.65 0.87 0.46 0.575-0.762 0.668

Validation group PSMC4 8.16 ± 0.29 7.96 ± 0.33 0.68 0.67 0.574-0.779 0.677

ALAS2 8.86 ± 1.15 8.37 ± 0.81 0.74 0.49 0.517-0.733 0.625

Model -0.96 ± 0.85 -0.26 ± 0.88 0.71 0.69 0.630-0.829 0.729
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myeloid lineage cells like monocytes and dendritic cells, and because

LILRB1 expression increases with progressive ASD severity the

circulating monocyte numbers increase progressively with

advancing disease, which is similar to previous reports (50). These

results suggest that LIlRB1 plays a crucial role in ASD processes, and

in-depth explorations will provide us with a better understanding of

the mechanisms of autism. CD69, the early T cell activation marker,

can promote the proliferation and activation of T cells, and dendritic

cells act as professional antigen-presenting cells to initiate T cell-

mediated immune responses, which could explain why CD69 was

positively related with activated dendritic cells in our study.

SELENBP1, as its name suggests, combines with selenium and

participates in various intracellular selenium transport mechanisms

(51). Hence, deficiency of SELENBP1 causes deficiency of selenium,

leading to certain neurologic diseases such as recent-onset

schizophrenia (52) and autism (53, 54). Consistent with other

studies, we also observed that SELENBP1 was lower in ASD

children than in TD children, which indicates that low selenium

levels is a risk indicator for autism. This finding provides further

evidence for the addit ion of selenium supplements to

ASD treatments.
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IGF2R, the receptor that binds to insulin-like growth factor 2

(IGF2), is important for fetal growth and development (55). IGF2 via

IGF2R reverses the abnormal activity of the AMPK-mTOR-S6K

pathway and rescues active translation at synapses in autism-like

phenotypes in mice (56), and bidirectional regulation of IGF2 in

autoimmune diseases has been suggested to be related to the

differential activation of IGF1R and IGF2R, which regulates both

the anti- and pro-inflammatory effects of macrophages (57). Thus

IGF2R plays a key role in neuronal development, and its increased

expression in cases of ASD implies that there are different degrees and

types of activation of macrophages in ASD. As we expected, M0

macrophages levels were increased in ASD patients, which indicates

that there are abnormalities in immunologic homeostasis. In addition,

the decreased numbers of M2 macrophages and increased numbers of

monocytes suggest that children with ASD are in a relatively pro-

inflammatory state.

DCAF12 and PSMC4 are both involved in the degradation of

ubiquitinated proteins (58, 59), but there have been no studies

showing a relation between these two genes and autism. Here we

observed that DCAF12 and PSMC4 in the ASD group had reduced

expression compared to TD group. This suggests that there might be a
B

C D

A

FIGURE 8

Correlation between immune cells and genes. (A) Correlation between 15 hub genes and 4 significantly differential immune cells. (B) Lollipop diagram of
the correlation between 15 hub genes and M2 Macrophages with |r| > 0.20, p < 0.05. (C) Correlation among immune cells in the child ASD and TD
groups. (D) Scatter plot of significantly related LIlRB1 and monocytes with r > 0.40 and p < 0.001. *p < 0.05; **p < 0.01.
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problem with the degradation of ubiquitinated proteins in children

with autism. Therefore, we further explored whether there might be

another pathway for protein degradation, such as autophagy.

Interestingly, MAP1LC3A, also known as microtubule-associated

protein light chain 3 (LC3), is lipidated to form LC3-II and is
Frontiers in Immunology 13
generally considered to be a good indicator of macroautophagy

(60). We found that MAP1LC3A was a DEG in both the training

and validation groups. Although the trends were opposite in these two

groups, we cannot exclude that autophagy takes part in the

development of autism. In addition to macroautophagy’s role in
B

A

FIGURE 9

Prediction in miRNA-mRNA and agents-genes. (A) miRNA-mRNA network. (B) Sankey diagram for agents–hub genes.
TABLE 4 The candidate miRNAs that regulate multiple target genes in the miRNA-hub genes network.

miRNAs Target genes miRNAs Target genes

hsa-miR-30a-5p,
hsa-miR-30e-5p,
hsa-miR-30d-5p,
hsa-miR-30c-5p,
hsa-miR-361-3p,
hsa-miR-30b-5p

AP2A1, IGF2R

hsa-miR-142-5p,
hsa-miR-5590-3p,
hsa-miR-340-5p,
hsa-miR-499a-5p

DCAF2, CD69

hsa-miR-589-5p,
hsa-miR-371a-5p

DCAF2, IGF2R hsa-miR-4644 GMPR, IGF2R

hsa-miR-4756-5p BCL2L1, AP2A1 hsa-miR-342-3p BCL2L1, DCAF2, IGF2R

hsa-miR-377-3p BCL2L1, DCAF2 hsa-miR-1321 BCL2L1, DCAF2, AP2A1

hsa-miR-185-5p LIlRB1, IGF2R
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protein degradation, local protein is also cleared by dendritic cells. We

found that PSMC4 was negatively correlated with activated dendritic

cells, which suggests that more activated dendritic cells might prevent

the accumulation of proteins due to the reduced degradation caused

by decreased PSMC4.

In the DEG analysis, erythrocyte differentiation, erythrocyte-

related disorders, and heme metabolism were enriched in children

with ASD, and our clinical data from routine blood tests validated the

significant changes in erythrocyte-related parameters (RBC, HCT,

MCH, RDW-CV, and MCHC) in ASD patients. Erythrocyte

parameters can reflect iron status (61), and thus the results

presented above imply that abnormalities in iron metabolism affect

the course of ASD, as reported in previous studies (62, 63). ALAS2

(64, 65), SLC4A1 (66), AHSP (67), EPB42 (68), and GMPR (69) were

identified as ASD hub genes, and these are associated with

erythrocytes, especially with regard to changes in hemoglobin,

which are closely related to iron metabolism. A review article

summarized the evidence showing that iron content regulates

macrophage polarization (70). Our study found that SLC4A1 had a

positive correlation with M2 macrophages, which suggests that

decreased SLC4A1 affects erythrocyte formation and may cause an

imbalance in heme-iron metabolism in macrophages and may further

result in a decrease in the production of anti-inflammatory M2

macrophages. In summary, our data provide genetic and cellular

evidence supporting the correlation between iron metabolism

abnormalities and ASD, and further studies are needed to validate

these findings. Compared to children, hormone levels and early/late

estrogen response were enriched in adults with ASD. Although recent

research reported that prenatal estrogens contribute to the risk of

autism (71), there is no study on the link between adults with ASD

and estrogen. A previous study showed that estrogen is indispensable

for immune robustness and for neural functions (72), so abnormal

activation of estrogen may contribute to immune and neurological

abnormalities in adults with ASD.

In the GSEA analysis in adults with ASD, the MYC targets v1, E2F

targets, protein secretion, heme metabolism, and KRAS signaling DN

showed opposite trends in inhibition or activation compared to

children with ASD. These age-related differences in ASD may

indicate distinct disease characteristics between children and adults,

and this suggests the need for different approaches to raising

awareness and adjusting treatment for ASD patients in different

age groups.

In terms of the immune cell landscape, decreased activated NK

cells and increased resting NK cells suggest that reduced NK cell

number and activity may result in immune disorders in adults with

ASD. In children with ASD, we postulate that ncMos are abnormal. A

recent article showed that ncMos regulate autoimmune and

inflammatory diseases (73) and can directly regulate the adaptive

immune response by regulating the activity of specific subpopulations

of other immune cells. Hence, the significantly elevated ncMo levels

indicate that ASD is a class of immune-mediated disorders, especially

disorders in the adaptive immune system. Also, identifying ncMos

that exhibit specific pathogenic roles is important for the development

of targeted autism therapies.

We predicted that BCL2L1, DCAF2, and IGF2R are the target

genes of miR-342-3p and that BCL2L1, DCAF2, and AP2A1 are the

target genes of miR-1321, which suggested miRNAs’ therapeutic value
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in treating ASD. Previous studies showed that miR-342-3p controls

macrophage survival by targeting BCL2L1 (74) and that miR-342 is

up-regulated in lymphoblastoid cell lines in autism cases (75). In

addition, hsa-miR-1321 has been suggested to play a role in the

development of cancer (76, 77). However, there are no data reporting

these miRNA-gene regulatory axes in peripheral blood samples from

children with ASD. Because the identified hub genes are tightly linked

to the initiation and progression of ASD, the targeted therapies using

miR-342-3p and miR-1321 might be a promising novel treatment

modality for autism.

We further found identified agents-gene axes using the DSigDB

database. The existing studies have shown different types of agents

affecting ASD, including those that improve ASD (resveratrol,

vitinoin, vitamin E, and retinoic acid) (78–82) and those that

exacerbate ASD (valproic acid, arsenic, benzo[a]pyrene, and

acetaminophen) (83–86). Moreover, there are ASD-related agents

with unknown risks, including reagents with neurotoxicity and

immunotoxicity (platinum, bortezomib, tert-butyl hydroperoxide,

vincristine, atrazine, 7646-79-9, hydrogen peroxide, aflatoxin B1,

and copper sulfate) (87–95) or agents providing neuroprotection

and immune regulation (genistein, cyclosporin A, and decitabine)

(96–98) and agents that require exploration in terms of immune and

neurological function (hematoxylin and tetradioxin). Interestingly,

selenium has a bidirectional modulatory effect on autism, and

supplementation with selenium can improve autism-like behaviors

in animal models (99), while prenatal exposure to high levels of

selenium may affect childhood neurodevelopment and induce ASD

(100). Overall, these agents play distinct roles in the ASD process,

which suggests that agents should be tailored to the biological

functions of the hub genes to be targeted.

There are some limitations in our study. First, the datasets were

from different GEO datasets, and there was not enough

corresponding clinical information for assessment and prediction.

Second, we focused on ASD in children due to the lack of more readily

available adult datasets and samples, and this hindered us from

exploring difference between children and adults in a

comprehensive and objective manner. Third, we analyzed ASD in

children and adults as groups with no details regarding specific ages,

which may mask the greater and/or earlier age-related changes.

Fourth, we used bioinformatics methods to screen hub genes and

miRNA, and experimental verification of such interactions is lacking.

Fifth, the clinical sample size was small, which may not support

rigorous statistical analysis.
Conclusion

In summary, our study identifies four potential blood predictors

(PSMC4, ALAS2, LIlRB1, and CD69), four dysregulated immune cell

types (monocytes, M2 macrophages, and resting and activated

dendritic cells), two miRNAs (miR-342-3p and miR-1321) and 23

potential agents affecting ASD. The gene expression profiles are age-

related in ASD, and we show for the first time that ncMos are

upregulated in children with ASD. This study enriches our

knowledge of the molecular mechanisms of ASD and promotes the

development of early diagnosis and treatment strategies for

childhood ASD.
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