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Increasingly, patients with gastrointestinal tumors can benefit from

immunotherapy, but not patients with pancreatic cancer. While this lack of

benefit has been attributed to lower T-cell infiltration in pancreatic cancer, other

studies have demonstrated the presence of numerous T cells in pancreatic cancer,

suggesting another mechanism for the poor efficacy of immunotherapy. Single-

cell RNA sequencing studies on the pancreatic cancer immune microenvironment

have demonstrated the predominance of innate immune cells (e.g., macrophages,

dendritic cells, mast cells, and innate immune lymphoid cells). Therefore, in-depth

research on the source and function of innate immune lymphocytes in pancreatic

cancer could guide pancreatic cancer immunotherapy.
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1 Introduction

The pancreas is located in the retroperitoneum and connects to the digestive tract only

via the pancreatic duct, without direct contact with the external environment. Therefore, the

pancreas is relatively “clean” compared with the other digestive organs. Therefore, normal

pancreatic tissue contains very few lymphocytes, which has been confirmed by both our

research (1) and that of other researchers (2). However, pancreatic cancer initiation and

development are followed by substantial immune cell infiltration (Figure 1). Fractionation of
Abbreviations: PDAC, pancreatic adenocarcinoma; HSChematopoietic stem cell; RNA-seq, RNA sequencing;

EMP, erythroid-myeloid precursor; TAM, tumor-associated macrophageDC dendritic cell; DFS, disease-free

survival; OS, overall survival; CDP, common DC progenitor; CMP, common myeloid progenitor; GMP,

granulocyte-macrophage progenitor; MDP, monocyte-dendritic progenitor; MLP, multi-lymphoid progenitor;

CTMC, connective tissue mast cell; MMC, mucosal mast cell; MC, tryptase-positive mast cell; MCC, chymase-

positive mast cell; MCTC, ryptase/chymase-positive mast cell; ILC, innate lymphoid cell; NK cell, natural killer

cell; ILCreg, regulatory ILC.
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the immune cells in pancreatic adenocarcinoma (PDAC) revealed a

greater abundance of innate immune cells than adaptive immune cells

(2). Innate immune cells are the primary responders to inflammation;

therefore, a large proportion of macrophages, myeloid-derived

suppressor cells (MDSCs), and dendritic cells (DCs) are observed in

pancreatic cancer. The tumor microenvironment includes excessive

fibrosis, which further hampers the infiltration of adaptive

immune cells.

Current immunotherapy, including immune checkpoint

blockade, chimeric antigen receptor-T, and T-cell receptor-T, has

shown a low response rate in PDAC so far. The non-responsiveness to

immunotherapy in pancreatic cancers can be explained by these

tumors being less immunogenic (harboring fewer somatic

mutations) compared with breast and lung tumors, which tend to

have better immunotherapy responsive rates.

Furthermore, compared with adaptive immunity, innate

immune cells do not require antigen presentation, and can be

rapidly and directly activated by a large number of cytokines.

Therefore, in light of the predominance infiltration, decreased

antigenicity and instant activation, innate immunity might play a

more important role than adaptive immunity in the PDAC

immune microenvironment.
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In this review, we categorize the innate immune lymphocytes in

pancreatic cancer and describe their origin and function. We believe

that in-depth study of the innate immune function and characterizing

the pancreatic cancer immune microenvironment is crucial to

improve the efficacy of pancreatic cancer immunotherapy.
2 Macrophages

Single-cell RNA sequencing (RNA-seq) data from Magliano’s

group (2) demonstrated that macrophages are the dominant

immune cells among the CD45+ population in PDAC. Previously, it

was believed that peripheral tissue macrophages were derived from

circulating monocytes, which originate from bone marrow

progenitors. Recently, accumulating studies have demonstrated two

independent origins for macrophages (3–7). The first comprises early

erythroid-myeloid precursor cells (EMPs) of the yolk sac (embryonic

day [E]7) or the late EMPs of the liver (E8–E9.5). The EMPs migrate

into the peripheral tissues during the embryonic period, differentiate,

and mature, and have self-renewal and maintenance functions in

adults. The other macrophage origin is hematopoietic stem cells

(HSCs) from the bone marrow that enter the peripheral tissues
FIGURE 1

Compared with other digestive tract organs, the non-cancerous pancreas is relatively clean and contains very few immune cells. Nevertheless,
pancreatic cancer development is accompanied by the infiltration of numerous immune cells, including innate and adaptive immune cells.
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through the blood circulation, and then mature and differentiate into

monocytes. The proportions of these two macrophage origins differ

quite significantly between different organs (Figure 2).

In brain tissue, microglia are derived from the early EMPs of the

yolk sac and are not replenished by circulating monocytes (3). By

contrast, most adult intestinal macrophages are constantly

replenished by peripheral monocytes, for which Bain et al. (7)

demonstrated that the F4/80hiCD11blo subset (derived from

embryonic precursors) was dominant in newborn mice, but was

progressively lost in adult mice, in which almost all macrophages

were F4/80lowCD11bhi (derived from the circulation).

Similarly, in the pancreas, macrophages have an obvious dual

origin. Using lineage tracing mice (Flt3-CreYFP; Flt3, Fms related

receptor tyrosine kinase 3; YFP, yellow fluorescent protein) in which

HSC-derived cells were YFP+ and embryo-derived cells were YFP-,

Zhu et al. demonstrated that approximately 32% of macrophages in

the pancreas were YFP-. Furthermore, they established orthotopic

KPC (LSL-KrasG12D/+LSL-Trp53R172H/+Pdx1-Cre) tumor mice.

Similar to the results in the non-tumorous pancreas, almost one-

third of macrophages were YFP-, indicating that they were tissue-

resident (8).

The cells from these two origins have entirely different

development environments, which means that they might have

different functions. Using Ccr2 (encoding C-C motif chemokine

receptor 2) and Nur77 (encoding nuclear hormone receptor NUR/

77) knockout mice, Zhu et al. demonstrated that bone marrow-

derived macrophages were more prone to expressing human

leucocyte antigen DR (HLA-DR), and its absence did not impair

PDAC development (8). By contrast, embryonically derived tumor-

associated macrophages (TAMs) exhibited unique pro-fibrotic

activity and promoted cancer progression. Macrophages of these
Frontiers in Immunology 03
different origins appear to be distinguished by C-X-C motif

chemokine receptor 4 (CXCR4) in human pancreatic cancer, where

CXCR4-positive macrophages appear to be tissue-resident and have a

pro-fibrotic effect. Bockorny et al. used the CXCR4 inhibitor, BL-

8040, in combination with pembrolizumab and chemotherapy, which

was initially successful; however, the specific mechanism is unknown

(9). Whether CXCR4 is merely a downstreammarker or functions as a

driving gene requires further exploration.

Traditionally, macrophage function is divided into the M1 and

M2 types; however, this division might have some limitations. Single-

cell RNA-seq data suggested that macrophage function appears to

present as a continuous, rather than a separate state (10–12) and is

highly susceptible to the influence of the microenvironment.

Macrophages are generally inclined to the M2 phenotype in

pancreatic cancer. Their infiltration density was associated with

disease progression, recurrence, and metastasis in patients with

PDAC (13). TAM-derived interleukin (IL)6, tumor necrosis factor

alpha (TNFa), and regulated upon activation, normally t-expressed,

and presumably secreted (RANTES) could facilitate acinar-to-ductal

metaplasia and pancreatic intraepithelial neoplasia development via

Janus kinase (JAK)-signal transducer and activator of transcription3

(STAT3) (14) or nuclear factor kappa B (NF-kB) (15) signaling.

Depletion of TAMs could dramatically decrease tumorigenesis (16).

In addition, TAMs could also express a series of immunosuppressive

factors (e.g., IL-10, transforming growth factor beta (TGF-b) and C-C
motif chemokine ligand (CCL)2) and negative immune checkpoints

(e.g., cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and

programmed cell death 1 ligand 1 (PD-L1)) to promote immune

escape in PDAC (17). With regard to fibrosis, macrophages could

secrete growth factors (e.g., TGFb1), cytokines (e.g., TNFa) and

chemokines (e.g., CCL2), which directly activate fibroblasts to form
FIGURE 2

Self-proliferative tissue-resident macrophages originate from the yolk sac and fetal liver, migrate into the peripheral organs during embryonic
development, and mature. Circulating macrophages are derived from bone marrow HSCs, which develop into myeloid-committed stem cells and further
develop into macrophages.
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fibrous desmoplastic tissue (18). This interstitial fibrosis leads to

extreme hypoxia, which in turn induces polarization toward the M2

phenotype, promotes the expression of vascular endothelial growth

factor (VEGF) and tunica interna endothelial cell kinase (TIE2), and

stimulates PDAC angiogenesis (19, 20). On the other hand, TAMs

will also secrete chemokines including CCL20 and CCL18, induce the

upregulation of matrix metalloproteinase 9 (MMP9) and vascular cell

adhesion molecule 1 (VCAM-1) expression in pancreatic cancer cells,

and enhance metastasis (21, 22). Nevertheless, TAMs can activate

cancer-associated fibroblasts to promote fibrosis and increase the

difficulty of drug delivery (23). Xian et al. also reported that TAMs

directly induced resistance to gemcitabine in PDAC cells (24).

Furthermore, D’Erico et al. suggested that TAMs can induce

regulatory T cell infiltration, thereby inhibiting the efficacy of

chemotherapy (25). Therefore, TAMs are one of the most

important regulators in the tumor microenvironment, including

tumorigenesis, immune escape, interstitial fibrosis, angiogenesis,

and chemoresistance.
3 Dendritic cells

Dendritic cells (DCs) were previously classified as belonging to

the mononuclear phagocyte system, until Steinman et al.

distinguished them from macrophages (26). DCs are generally

divided into three categories: classical (cDC1 and cDC2),

plasmacytoid cell (pDCs), and monocyte or inflammatory DCs.

Functionally, cDCs are more prone to present antigens, pDCs are

key in type I interferon (IFN) secretion during viral infection, and the

monocyte-derived or inflammatory DCs are common in areas of

inflammation (27).

DCs demonstrate considerable functional heterogeneity, even in

the same cell population. Villani et al. divided DCs into six groups

based on single-cell RNA-seq data (28). Nevertheless, they also

pointed out that single-cell sequencing alone was insufficient to

support the new DC definition and classification, and it was

difficult to distinguish whether DCs were a class of cells in different

functional states under the same cell group or a bona fide new cell

population based on differences in gene expression, which requires

verification via in vivo and in vitro experiments.

It is believed that the cDCs are derived from common DC

progenitors (CDP) and monocyte or inflammatory DCs originate

from monocyte–macrophage DC progenitors, while the origin of

pDCs remain a matter of debate. Previously, pDCs were thought to be

of the myeloid lineage, whereas recent single-cell studies suggested

that they mainly originate from the lymphoid lineage. It was believed

that cell differentiation and development is a step-wise directed

differentiation process, i.e., from HSC to common myeloid

progenitors (CMP), granulocyte-macrophage progenitors (GMP),

and monocyte-dendritic progenitor (MDP) to CDP, followed by

migration to the peripheral organs to differentiate and mature into

cDCs. However, recent research has challenged this view. Helft et al.

reported that precursor cells with lymphoid commitment such as

multi-lymphoid progenitors can also differentiate into DCs (29).

Others have also suggested that the differentiation tendency of

precursor cells with the same surface marker definition vary

considerably. Therefore, unlike the previous directional
Frontiers in Immunology 04
development model of this tree-like structure (Figure 3), the

development process in the human body might present

multidirectional differentiation, including cells such as monocyte-

dendritic progenitors and common DC progenitors, which maintain

the directional differentiation of DCs while being able to differentiate

into other cells when responding to external stimuli.

Compared with lung cancer, PDAC contains significantly fewer

DCs (especially cDC1), which are mainly located on the tumor

periphery (30). The maturation and antigen presentation-ability of

cDC1 are relatively weak. This deficiency in cDC1 abundance and

maturation are unique to pancreatic tumors, occurring from the early

stage of pancreatic intraepithelial neoplasia and declining

systematically and progressively as the disease progresses, which is

caused by IL-6-mediated apoptosis (31). In PDAC, cDC1 and pDC

infiltration in the tumor and tumor stroma was associated with better

prognosis (32). High DC infiltration polarizes CD4+ and CD8+

tumor-infiltrating lymphocytes, while relatively poor DC abundance

and antigen-presenting function impair the T cell response, leading to

tumor immune escape. Therefore, DCs are indispensable as a key link

in activating adaptive immunity. In a genetically engineered PDAC

tumor model constructed by Hegde et al., featuring the poor

infiltration and activation of DCs in the tumor, the pathological

adaptive immune responses initiated by the expression of the

engineered model neoantigen even accelerated the occurrence of

PDAC through pro-fibrotic inflammation. By mobilizing cDCs into

pancreatic lesions and maintaining their activation and function, this

pro-fibrotic inflammation was reversed and PDAC progression was

controlled. Based on this premise, a variety of DC-based treatment

methods have emerged, including DC vaccines (33) and CD40

agonists that promote DC maturity (34). CD40 agonists effectively

promote cDC1 maturation, while the Flt3 ligand (Flt3L) helps to

increase cDC1 abundance, and the synergistic effect of the two

promotes superior T cell activation and enhances anti-tumor

immunity (31). Some trials of DC vaccines have also shown clinical

effectiveness. For example, in a Phase I clinical trial of patients with

PDAC, 10 patients were injected with autologous tumor lysate-loaded

autologous monocyte-derived DCs. During a median follow-up

period of 25 months, 7 patients have not experienced tumor

recurrence or progression and no vaccine-related serious adverse

reactions occurred, indicating good feasibility, safety, and clinical

efficacy (33). The combination of CD40 agonists and DC vaccines also

demonstrated clinical effectiveness by combining the advantages of

both (34).
4 Mast cells

In mice, mast cells are classified as connective tissue mast cells

(CTMCs) and mucosal mast cells (MMC). Li et al. used Runx1cre/EYFP

and Csf1rcre/EYFP reporter mice to confirm that CTMCs in adipose

tissue and the pleural cavity were mainly derived from early EMPs,

while CTMCs in other organs were derived mostly from late EMPs.

Therefore, mouse CTMCs are considered tissue-resident while mouse

MMC are derived mainly from the bone marrow (35).

There are three mast cell populations in human: tryptase-positive

mast cells (MCTs), chymase-positive mast cells (MCCs), and

tryptase/chymase-positive mast cells (MCTCs) (Figure 4). Mast cells
frontiersin.org
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are important in infection (36), chronic inflammation (37), and

metabolic diseases (38).

In human PDAC, Strouch et al. (39) firstly determined that MCTs

were significantly increased in tumors and associated with poor

prognosis. Guo (40) et al. and Ammendola et al. (41) demonstrated

that MCTs were strongly associated with angiogenesis in PDAC.

Ammendola et al. also confirmed that MCCs were positively associated

with angiogenesis in pancreatic cancer (42). However, the above studies

were based on the immunochemistry of PDAC specimens. Given the

limitations of themethod, immunochemistry cannot accurately assess the

mast cell fraction and function in the PDAC microenvironment.

Furthermore, most studies focused on tryptase-induced angiogenesis

without the connection of mast cells and other immune cells in the tumor

microenvironment. Some researchers believed that mast cell function

cannot be reflected accurately by dividing mast cells according to their

proteases. Therefore, referring to macrophage categorization, mast cells

are divided into anti-tumor MC1 and pro-tumor MC2 based on TNF,

granzyme B (GZMB), IL9, VEGF-A, and C-X-C motif chemokine ligand

8 (CXCL8) expression. Consequently, mast cell function remains

ambiguous in PDAC.

Similar to macrophages, mast cells undergo prenatal development

in two distinct waves: the first is from the yolk sac and fetal liver and
Frontiers in Immunology 05
the second is from the aorta-gonad-mesonephros region (43).

Salomonsson et al. reported a group of Lin−CD34hiCD117int/

hiFcϵRI+ cells in the peripheral blood in humans (44) that could

further differentiate into mast cells in in vitro culture and were

therefore considered mast cell precursors. However, considering the

high heterogeneity of mast cells in peripheral tissue, some researchers

proposed a different lineage model. Similar to DCs, a pool of non-

committed stem cells might give rise to different types of mast

cells (43).

With the further development of new technical methods,

including single-cell sequencing and spatial transcriptomes, the

identification and functional conversion of mast cells at different

times and locations in pancreatic cancer occurrence and development

will be further explored.
5 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) comprise a

heterogeneous population of immature bone marrow cells that

originate from bone marrow HSCs, differentiate into CMP and

immature myeloid cells (IMP), and then migrate to peripheral
FIGURE 3

(i) Schematic representation of classical HSCs in a tree-like model. (ii) Multiple progenitor cells maintain the ability to differentiate into DCs.
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organs and develop into GMP, which in turn form granulocytes,

macrophages, or DCs (45). However, under pathological conditions,

especially in tumors, a large number of cytokines are produced,

including granulocyte-macrophage colony-stimulating factor (GM-

CSF), granulocyte colony-stimulating factor (G-CSF), and

macrophage colony-stimulating factor (M-CSF), which promote the

formation of MDSCs through mitogen-activated protein kinase

(MAPK) or phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)

pathways (46–48).

Based on their phenotypic and cell surface markers, MDSCs can be

classified into two main types: polymorphonuclear MDSCs (or

granulocytic (G-MDSCs)) and mononuclear or monocytic MDSCs.

Human G-MDSCs are labeled as HLA-DR-CD33+CD11b+

CD15+CD14-, and mononuclear or monocytic MDSCs are labeled as

HLA-DRlowCD11b+CD14+CD15- (49, 50). MDSCs share surface

markers with normal myeloid cell subsets, such as CD14, CD15, and

CD33, and exhibit intrinsic heterogeneity; therefore, it is imperative to

combine phenotypic characterization with functional assays for

their identification.
Frontiers in Immunology 06
MDSCs have a significant immunosuppressive function in the

tumor immune microenvironment, which is mainly achieved by

inhibiting the function of effector T lymphocytes, and this

immunosuppressive effect is antigen-nonspecific. They can secret

indoleamine 2,3-dioxygenase (IDO), arginase-I (Arg-1), inducible

nitric oxide synthase (iNOS), reactive oxygen species (ROS), and

several inhibitory cytokines (IL-10, IL-13 and TGF-b) (51) (Figure 5).
Khaled et al. phenotyped MDSCs in pancreatic cancer and found

that G-MDSCs represented the majority of the MDSC subpopulation

in circulation and in tumors, not mononuclear or monocytic MDSCs.

And they found that Arg was significantly highly expressed in

circulating G-MDSCs, which could dramatically inhibit the

proliferation and activation of T cells (52). Enrichment of G-

MDSCs further led to tumor progression, accompanied by a

decrease in monocyte MDSC frequency. And it is worth noting that

even after tumor resection, the MDSC cells in the peripheral blood of

patients are still high, which may be related to tumor micrometastasis

(53). Takeuchi et al. reported that the production of GM-CSF was

significantly enhanced in various PDAC cell lines or PDAC tumor
FIGURE 4

Mast cells are divided into tryptase/chymase-positive mast cells, MCCs, and MCTs according to their contents. MCCs and MCTs promote tumor
development through their pro-angiogenic effects but their specific role in pancreatic cancer is unknown.
FIGURE 5

Bone marrow derived HSC differentiate to CMP, IMP and GMP, then develop into MDSC under stimulation of M-CSF, G-CSF and GM-CSF in PDAC,
where G-MDSC occupied the majority of MDSC subpopulation.
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tissues of patients after chemotherapy, thereby inducing monocyte

differentiation into MDSCs (54). The high heterogeneity of MDSCs

means that selective depletion of MDSCs with antibodies for

therapeutic effect remains elusive. However, Choueiry et al.

reported that CD200 expression might expand MDSCs, and

targeting CD200 could enhance the activity of checkpoint

immunotherapy (55). In addition, Karakhanova et al. demonstrated

that sildenafil could reduce the amount of chronic inflammatory

f a c t o r s ( I L - 1b , VEGF , and GM-CSF ) and supp r e s s

immunosuppressive MDSC function, thereby restoring T cell

antitumor reactivity and significantly prolonging survival in treated

mice. Furthermore, Porembka et al. reported that zoledronic acid

reduces MDSC prevalence and tumor growth in PDAC (56).

However, the immunotherapy targeting MDSCs still needs

more investigation.
6 Innate lymphoid cells

Innate lymphoid cells (ILCs) can be classified into natural killer

(NK) cells, ILC1s, ILC2s, and ILC3s. As classic innate immune

lymphocytes, NK cells have a different origin from ILC1s, ILC2s,

and ILC3s, mainly originating from the bone marrow and constantly

migrating through the circulation to the peripheral tissues (57, 58).

The extreme fibrotic feature of PDAC means that the proportion of

NK cell infiltration in PDAC tissue is very low (< 0.5%) and NK cell

function in patients with pancreatic cancer is significantly inhibited

compared with that in healthy subjects (59). NK cells express natural

cytotoxicity receptors (NCRs: NCR1/NKp46, NCR2/NKP44, NCR3/

NKP30), killer inhibitory receptors (KIRs), and other receptors, such

as NK cell receptor D (NKG2D) and DNAX accessory molecule-1

(DNAM-1). In PDAC, NK cells exhibit impaired cytotoxicity

receptors and increased IL-10 expression (60). As a novel immune
Frontiers in Immunology 07
receptor-targeted drug in pancreatic cancer, NKG2D is receiving

increasing attention (61).

The mouse pancreas rarely contains ILC1s and ILC3s, wherein

ILC2s are prevalent. ILC2s exhibit pronounced heterogeneity and

high plasticity. Xu et al. reported that a higher percentage of ILC2s

predicted poor prognosis in patients with hepatocellular carcinoma

(62). Heinrich et al. reported that ILC2s were associated with better

prognosis of patients with hepatocellular carcinoma (63). The

discrepancy between these two studies might be because Xu et al.

focused on KLRG1- ILC2s, while Heinrich et al. concentrated on IL33

(alarmin)-activated KLRG1+ ILC2s.

Moral et al. demonstrated that IL33-activated ILC2s recruited

CD103+ DCs to activate CD8+ T cells in PDAC, which predicted

better survival (64). However, Alam et al. reported that the

mycobiome upregulated IL33 then activated ILC2s in PDAC, which

was associated with poor prognosis (65). Therefore, the function of

ILC2 in pancreas is still on the debate. Our research confirmed that

IL33-activated ILC2s shrank tumors in a mouse model. However, the

tumor microenvironment is complicated, such that not only are

molecules such as IL33 present, but so are extreme physical

conditions, such as hypoxia. Furthermore, we detected no

significant association between IL33 and overall survival or disease-

free survival in the Cancer Genome Atlas PDAC data (1). Therefore,

IL33 activation in ILC2 function in cancer might be overestimated.

IL33-activated ILC2s have a well-established role in inflammation,

especially in asthma (66). However, in the tumor microenvironment,

the classical suppression of tumorigenicity 2 (ST2)–IL33 pathway

might not be the dominant pathway. Our RNA-seq data

demonstrated that hypoxia induced regulatory ILCs from an ILC2

population in PDAC, which differed from the Id3-expressing

regulatory ILCs in the mouse intestines (67) and the retinoic acid-

induced regulatory ILCs in patients with asthma (68) (Figure 6).

Therefore, thorough investigation of the PDAC tumor
FIGURE 6

Under IL33 stimulation, ILC2 recruits CD103+ DCs and prime CD8+ T cells to inhibit tumor progression. Nonetheless, the extreme hypoxic environment
of pancreatic cancer induces ILC2 conversion to ILCreg.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1081919
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2022.1081919
microenvironment complexity to clearly demonstrate how ILC2s

transition when encountering different signals is still required.

Similar to tissue-resident macrophages, the maintenance and

expansion of most ILCs in peripheral tissues is independent of the

bone marrow. ILC precursor cells migrate to the peripheral tissues

during the embryonic and postnatal developmental window and their

proportions differ greatly in different peripheral organs and tissues

(69). Huang et al. used the CD45.1 and CD45.2 mouse parabiosis

model to prove that there was a considerable proportion of immune

cells in the circulation from each mouse type; although ILCs were

hardly exchanged with each other in the peripheral organs (70).

However, because of the abundant proliferation of ILCs in infection, it

is speculated that a group of ILC precursor cells is present in the

peripheral organs. Zeis et al. reported on a population of IL18R1+ST2-

ILC2 precursor cells in the lung that could differentiate into ILC2s in

vitro and in vivo (71).

However, because of its relatively “clean” property, the non-

cancerous pancreas contains almost no lymphocytes. Therefore, it is

difficult to detect the possible ILC2 progenitor cells in the pancreas. In

PDAC, 20–30% of CD45+ cells are CD103+. Therefore, circulatory

ILC2s might exist in patients with PDAC (1). Lim et al. reported the

presence of CD117+ multi-potent ILC progenitors in human

peripheral blood, which gave rise to all ILC subsets (72). Moreover,

Huang et al. reported the existence of inflammatory ILC2s in mice

that could migrate from the intestinal lamina propria to other tissues

under the induction of IL25 or helminth-induced inflammation and

replenish natural ILC2s in various organs (70). Therefore, the

function and proportion of tissue-resident and circulating ILC2s in

PDAC still requires further investigation.
7 Conclusion

Pancreatic cancer is one of the most malignant tumors and its

incidence increases year-by-year as lifestyles change. Nevertheless, the

5-year survival rate remains at approximately 10% and there has been

no significant improvement compared with 10 years ago (73, 74).

Therefore, there is an extremely urgent need to find new treatments.

Unfortunately, unlike other digestive system tumors, immune

checkpoint antibodies are not successful to treat pancreatic cancer.

Nonetheless, innate immunity might be a promising target.

Accumulating research evidence demonstrates that most innate

immune cells in the peripheral organs are more inclined to be tissue-

resident rather than classically bone marrow-derived. The

unsatisfactory efficacy of current immunotherapy regiments in

PDAC prompted us to investigate the roles of innate immune cells

in PDAC. A reasonable therapeutic schedule should focus on not only
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enhancing the function of adaptive immunity cells, but also on

activating innate immunity in the tumor microenvironment. The

application of DC vaccines or their combination with CD40 agonists

have achieved promising results in early phase clinical studies.

However, targeting the innate immune system still faces huge

challenges and requires more detailed exploration to bring hope for

a breakthrough in pancreatic cancer immunotherapy.
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