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Single-cell RNA sequencing
reveals the molecular features
of peripheral blood immune
cells in children, adults
and centenarians
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Peripheral blood immune cells have different molecular characteristics at

different stages of the whole lifespan. Knowledge of circulating immune cell

types and states from children to centenarians remains incomplete. We profiled

peripheral blood mononuclear cells (PBMCs) of multiple age groups with

single-cell RNA sequencing (scRNA-seq), involving the age ranges of 1-12

(G1), 20-30(G2), 30-60(G3), 60-80(G4), and >110 years (G5). The proportion

and states of myeloid cells change significantly from G1 to G2. We identified a

novel CD8+CCR7+GZMB+ cytotoxic T cell subtype specific in G1, expressing

naive and cytotoxic genes, and validated by flow cytometry. CD8+ T cells

showed significant changes in the early stage (G1 to G2), while CD4+ T cells

changed in the late stage (G4 to G5). Moreover, the intercellular crosstalk

among PBMCs in G1 is very dynamic. Susceptibility genes for a variety of

autoimmune diseases (AIDs) have different cell-specific expression localization,

and the expression of susceptibility genes for AIDs changes with age. Notably,

the CD3+ undefined T cells clearly expressed susceptibility genes for multiple

AIDs, especially in G3. ETS1 and FLI1, susceptibility genes associated with

systemic lupus erythematosus, were differentially expressed in CD4+ and

CD8+ effector cells in G1 and G3. These results provided a valuable basis for

future research on the unique immune system of the whole lifespan and AIDs.

KEYWORDS

single-cell RNA sequencing (scRNAseq), peripheral blood mononuclear cells, whole
lifespan, autoimmune diseases, CD8+ cytotoxic T cells
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Introduction

The evolution of robust and flexible defense responses has

been driven by the diverse and adaptive nature of foreign threats.

To maintain its effectiveness, the immune system produces

highly specialized cell types that work together to prevent,

preserve the memory and eliminate threats (1). Meanwhile,

human immune system cells undergo time-dependent

deterioration as they are continuously stimulated by internal

and external factors (2). The aging adaptive immune system,

characterized by genomic instability, telomere depletion,

epigenetic alterations, and a loss of protein homeostasis,

exhibits progressive dysfunction and increased autoimmunity

(2, 3).

Unbiased single-cell techniques have been used to

characterize homogeneous immune cell populations in health

and disease, discover stochastic gene expression changes that

drive immune responses, and reconstruct developmental

trajectories for immune cells (4). Single-cell RNA sequencing

(scRNA-seq) research of mouse and human CD8+ T cells

revealed a surprising population of distinct age-related CD8+

T cells (5). Similarly, scRNA-seq from aged and young humans

found that naive CD8+ T cells were significantly reduced in old

age (6, 7). Combining the bulk and single-cell RNA profiles of

lymphocytes, myeloid cells, and hematopoietic stem and

progenitor cells from fetal, perinatal, and adult developmental

stages, the team demonstrated that the transition of immune

cells from the fetal period to adulthood occurs gradually along a

maturation continuum, which they named progressive

changes (8).

In addition, the degeneration of the thymus, successive

stimulation of foreign neoantigens, and immaturity of the

adaptive immune system shape the immune system in

childhood, with characteristics that are different from those of

other ages (9). Children’s unique innate and adaptive immune

responses may be related to the “relative safety” in coronavirus

disease 2019 (COVID-19) (10–12). By flow cytometry, previous

studies have found that the percentage of naive cells decreased

and the percentage of memory cells increased from age 0 to 18

years, regardless of whether it was CD4+ T cells or CD8+ T cells

(13–15). However, scRNA-seq studies on childhood immune

cells are still lacking. Incorporating childhood into the

interpretation of immune system changes will contribute to

understanding the development of and changes in the immune

system over the lifespan and provide new insights into

autoimmune diseases (AIDs) (16).

We constructed a peripheral blood mononuclear cells

(PBMCs) profile involving the age ranges of 1-12, 20-30, 30-

60, 60-80, and >110 years and comprehensively displayed the

transcriptional characteristics of immune cells from childhood

to old age at the single-cell level. We focused on the

characteristics of myeloid cells, CD4+ T cells, CD8+ T cells and
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B cells in multiple age groups, and investigated the changes in

crosstalk between cells. Finally, combined with the genome-wide

association studies (GWAS) of AIDs, it was found that

susceptibility genes for a variety of AIDs have different cell-

specific expression localization, and the expression of

susceptibility genes for AIDs changes with age. These results

provide a valuable basis for future research on the immune

system of the whole lifespan and AIDs.
Methods

Donors

The study was reviewed and approved by Institutional

Review Board of Children’s Hospital of Chongqing Medical

University. The ethics approval number for this study is 2022

Research 1. Written informed consent was obtained from all

healthy donors or their guardians. We recruited 3 healthy

children for scRNA-seq, while the additional 10 healthy

children and 8 healthy adults were recruited for flow

cytometry validation experiments. All donors were recruited

from Children’s Hospital of Chongqing Medical University

between January 2022 and June 2022. The inclusion criteria of

healthy donors were as follows: children aged 1-12 years, adults

aged 20-40 years, no gender restriction, without underlying

diseases or the results of routine blood and urine tests were

normal. For each donor, 2 ml of venous blood was collected in

EDTA anticoagulant tubes and transferred to the laboratory on

ice. PBMCs were isolated from whole blood by density gradient

centrifugation using Ficoll medium (TBD, Tianjing, China). For

3 healthy children whose samples underwent scRNA-seq,

PBMCs were frozen until analyzed according to the 10X

genomics recommended protocol (CG00039). For 10 healthy

children and 8 healthy adults whose samples underwent flow

cytometry, PBMCs were processed immediately. In addition, we

included 35 published healthy donors whose PBMCs underwent

scRNA-seq using the 10X Genomics platform. Details about

each sample and data can be found in Supplementary Table 1.
scRNA-seq library construction
and sequencing

PBMCs from 3 healthy childhood donors were thawed

according to the 10X genomics recommended protocol

(CG00039), and the cell viability of each sample was >80%.

The PBMCs from each sample were diluted to a final

concentration of 700~1200 cells/µl, and approximately 16000

cells per reaction were loaded on a Chromium Single Cell

Controller (10X Genomics, Pleasanton, CA). The libraries for

scRNA-seq were constructed using the Chromium Next GEM
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Single Cell 3’ GEM, Library & Gel Bead Kit v3.1 (10X Genomics,

PN-1000121) following the manufacturer’s protocol. Libraries

were sequenced on an Illumina NovaSeq 6000. Each sample was

processed independently.
scRNA-seq data processing

For 3 unpublished data, the raw sequencing reads were

processed using Cell Ranger (version 6.0.0). The reference

index was built using the GRCh38 human reference genome

assembly. The dataset in this study includes 3 unpublished

scRNA-seq data and 35 published public data from

GSE168732, GSE158055 and the link provided by the article

(http://gerg.gsc.riken.jp/SC2018/). Among them, the author of

GSE158055 provided the data after quality control, so the quality

control will not be repeated. Unpublished datasets, GSE168732

and SC2018 datasets are quality-controlled based on data

characteristics. The quality standards include the number of

genes in cells (nFeature), the number of UMIs in cells (nCount),

and the distribution ratio of mitochondrial gene content in cells

(Mitochondrion) (Supplementary Table 3). After removing

unwanted cells from the dataset, the next step is to normalize

the data using Seurat (version 4.0.5). By default, we employ a

global-scaling normalization method “LogNormalize” that

normalizes the feature expression measurements for each cell

by the total expression, multiplies this by a scale factor (10,000

by default), and log-transforms the result. 38 samples were

integrated using Seurat (version 4.0.5). Due to the large

number of samples, the strategy of Reciprocal Principal

Component Analysis (RPCA) and Reference-based integration

were adopted. We observed samples from different datasets and

found that batch effects between datasets have been removed.

Principal component analysis (PCA) was performed on the

highly variable genes. The graph-based clustering algorithm is

used for clustering, which constructs a K-Nearest Neighbor

(KNN) graph through Euclidean distance, and the Louvain

algorithm is used to group cells and optimize modules. We

applied KNN graph to unsupervised clustering of cells. T-

distributed stochastic neighbor embedding (t-SNE) and

uniform manifold approximation and projection (UMAP)

algorithms were used to visualize clustered cells in 2D space.
Correlation analysis

The gene expressions of single-cell level of samples were

averaged and fitted to bulk-level, using the AverageExpression

function of Seurat. Then we calculated the Pearson’s correlation

coefficient between samples. In addition, PCA was applied to

analyze the relationship between PC and sample distribution in

different age groups.
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Differential gene expression and
functional enrichment analysis

The comparison of gene expression between a certain cluster

and other clusters was conducted by the FindMarkers function of

Seurat using the Wilcoxon rank sum test to obtain the differentially

expressed genes (DEGs) dataset of the certain cluster compared

with other clusters (threshold: log (fold change) >= 0.25, p adjust

value (Bonferroni correction) < 0.01). The DEGs datasets of a

cluster in one group compared with the cluster in other groups

(G1vsG2, G1vsG3, G1vsG4, G1vsG5) and a cluster compared with

other clusters in the same group were built using the protocol

described before (6). UpSetR (version 1.4.0) was used to build the

specific DEGs datasets and common DEGs datasets by making

intersections between different clusters or different groups. For

example, in the DEGs datasets of G1vsG2, some DEGs only

existed in myeloid cell and we named it “myeloid-specific DEGs”

or “cell-specific DEGs”, while some DEGs existed in all cell types

and we named it “common DEGs”. Enrichment analysis for the

functions of the DEGs and Protein-protein Interaction enrichment

analysis (PPI) were conducted using the Metascape webtool (www.

metascape.org). Gene sets were derived from the Gene Ontology

(GO) Biological Process ontology and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway.
Defining cell function and state scores

We used the AddModuleScore function of Seurat to evaluate

the expression degree of a certain predefined expression gene set.

The cell scores were based on the average expression of the genes

from the predefined gene set in the respective cell.We used immune

effector process (GO:0002252), activation of immune response

(GO:0002253), establishment or maintenance of cell polarity

(GO:0007163), regulation of defense response (GO:0031347),

leukocyte activation (GO:0045321), leukocyte homeostasis

(GO:0001776), cytokine production involved in immune response

(GO:0002367), leukocyte migration (GO:0050900), response to

virus (GO:0009615), immunoglobulin mediated immune response

(GO:0016064), regulation of mast cell activation involved in

immune response (GO:0033006), 4 naive marker genes (CCR7,

TCF7, LEF1, SELL), 12 cytotoxicmarker genes (PRF1, IFNG,GNLY,

NKG7, GZMA, GZMB, GZMH, KLRK1, KLRB1, KLRD1, CTSW,

CST7) and 6 exhaustion marker genes (TOX, PD1, LAG3, TIGIT,

GZMK, CCL5, CTLA4) to define some meaningful functions

and states.
Transcription factor analysis

We used pyscenic (version 0.11.2) to analyze the gene

regulation network of scRNA-seq datasets.
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Ligand–receptor interaction analysis

Cellphone DB was used to analyze the crosstalk between cell

clusters based on ligand–receptor relationships. The results were

visualized using igraph (version 1.2.10).
Pseudotime analysis

Monocle3 (version 1.0.0) was used to predict development

trajectories. The umap datasets of Seurat were directly imported

into Monocle3 for pseudotime analysis, with the start of the

pseudotime set to the highest correction ratio in the G1 group.
Analysis of GWAS gene expression

We downloaded the susceptibility gene sets of some

immune-related diseases from the genome-wide association

studies Catalog (https://www.ebi.ac.uk/gwas), including gene

sets for Kawasaki disease, rheumatoid arthritis, Graves’ disease,

type I diabetes, systemic lupus erythematosus and nephrotic

syndrome. A gene heatmap was used to observe the expression

in the PBMCs of this susceptibility gene set in different groups,

and the Seurat AddModuleScore function was used to evaluate

the degree of expression.
Flow cytometric analysis

Flow cytometry was performed on the remaining blood

samples of donor CON-2 and CON-3 after scRNA-seq

samples were retained. Another cohort of 10 healthy children

and 8 healthy adults was recruited and their blood samples were

collected for flow cytometry. To evaluate the expression of T cell

surface markers by flow cytometry, 200mL whole blood was

incubated with the following antibodies, 7-AAD (BioLegend,

420406), CD3-Pacific Blue (BioLegend, 300330), CD4-PE/CY7

(Invitrogen™, 25-0049-42) and CD8-APC/CY7 (BioLegend,

344714). After staining for 20 minutes at room temperature in

the dark, erythrocytes (BD Pharmingen, 555899) in the samples

were lysed by incubation with lysing solution for 5 minutes.

Following centrifugation (300g/5 minutes, 4℃) and washing

with PBS, cells were then examined using BD FASCCanto™. For

intracellular staining, PBMCs were cultured by RPMI-1640

medium containing 10%FBS, 50ng/ml PMA, 1ug/ml

Streptomycin and 1ml/ml Golgi-stop in 37℃, 5% CO2 for 4h,

and were dealt with Fixation/Permeabilization Solution

(Invitrogen™,00-5523-00). Flow cytometry analysis for

CCR7+GZMB+CD8+cytotoxic T cells was carried out in BD

FASCCanto™ using the following antibodies: CD3-FITC
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(BioLegend,300452), CD4-PE/CY7 (Invitrogen™, 25-0049-42),

CD8-APC/CY7 (BioLegend ,344714) , BV421-CCR7

(BioLegend,353207), PE-GZMB (BD Pharmingen, 56114). The

datasets were analyzed using FlowJo (version 10.4.2).
Statistical analysis

Flow cytometry analysis was performed using unpaired t-test

by GraphPad Prism 8, and P<0.05 was considered statistically

significant. For others, unless otherwise stated, all data were

analyzed using the two-sided Wilcoxon rank sum test, and P <

0.01 was considered statistically significant.
Results

The single-cell profile of PBMCs in
multiple age groups

We constructed a healthy multiage PBMC profile including

children (n=6, 1-12 years old, Group 1, G1), young adults (n=8, 20-

30 years old, Group 2, G2), middle-aged adults (n=12, 30-60 years

old, Group 3, G3), aged adults (n=5, 60-80 years old, Group 4, G4)

and supercentenarians (n=7, >110 years old, Group 5, G5)

(Figure 1A). The basic profile of healthy donors in each age

group is shown in Supplementary Table 1. After the unified

single-cell analysis pipeline (Methods), 44689 cells (20.23%) were

from children (G1), 42351 cells (19.17%) were from young adults

(G2), 68153 cells (30.85%) were from middle-aged adults (G3),

32007 cells (14.49%) were from aged adults (G4), 33707 cells

(15.26%) were from supercentenarians (G5). All high-quality cells

(220907 cells) were integrated into an unbatched and comparable

dataset and subjected to principal component analysis after

correction for read depth and mitochondrial read counts, and

visualized of cell types with t-SNE and UMAP (Figure 1B;

Supplementary Figures 1, 2). We identified the immune cell types

in all the groups, and the cell-type-specific canonical marker genes

of different immune cells are displayed in Supplementary Table 2

(Figure 1C). To analyze the heterogeneity of metadata, we carried

out correlation analysis and PCA of all samples. Samples among

different age groups showed obvious heterogeneity. The

transcriptomic characteristics of G1 and G5 are significantly

different from the other three groups, while the samples of G2,

G3, and G4 show more similar distribution. It was age that drives

the clustering of samples, rather than other heterogeneity such as

gender (Supplementary Figure 3). The percentages of CD3+CD4+ T

cells and CD3+CD8+ T cells in PBMCs at the scRNA-seq level were

consistent with those measured by flow cytometry using canonical

markers (Supplementary Figures 4A, B).
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The proportion and molecular
characteristics of monocytes change
significantly from G1 to G2.

In general, G1 had an increased percentage of B cells and a

decreased percentage of myeloid cells compared to the other

groups (Figure 2A). Moreover, the percentage of B cells

gradually decreased with age, while the percentage of myeloid

cells gradually increased with age (Figure 2A). We found that

this trend began as G1 to G2.What is not the same as a change in

the proportion of immune cells is a change in the molecular

characteristics of immune cells. We therefore performed

pairwise comparison of differential expression in each other

groups relative to G1, and found that the number of cell-specific
Frontiers in Immunology 05
differentially expressed genes (DEGs) in myeloid cells was the

most obvious (Figure 2B, Methods). At the same time, the

number of DEGs in myeloid cells was the highest when G1

was compared with G2. On the other hand, we performed an

integrated comparative analysis of DEGs of immune cells

between G1 and other groups and found that myeloid cells

had the highest number of cell-specific DEGs (Figures 2C, D).

Myeloid cells included 4 groups of CD14+ monocytes, CD16+

monocytes, plasmacytoid dendritic cells (pDCs) and classic

dendritic cells (cDC) (Figure 2E) (Supplementary Table 2).

Among them, the percentages of all CD14+ monocyte subtypes

in G1 were significantly lower than those in the other groups

(Figure 2F; Supplementary Figure 4C). By analyzing the specific

DEGs of different myeloid cell subtypes in G1, we found that
A

B

C

FIGURE 1

Single-cell transcriptome profiling of the PBMCs of healthy children and multiple other age groups. (A) Schematic representation of the cell
profile of blood immune cells in multiple age groups. (B) Two-dimensional UMAP visualization of PBMCs for multiple age groups. Different
colors represent 43 clusters (cell types). (C) Expression of marker genes for 7 main cell types; cell positions are from the UMAP plot in (B).
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different CD14+ monocyte subtypes showed heterogeneous

transcriptional characteristics. The CD14+ monocyte 4 subtype

was mainly enriched in interferon-related genes (Figure 2E),

while the top enriched GO terms of the CD14+ monocyte 1, 2,

and 3 subtypes were enriched in catabolic process, regulation of
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binding and response to cytokine, and T cell activation and T cell

differentiation in thymus, respectively (Supplementary

Figures 3D–F). By constructing a multi-age PBMC profile, we

found that the cell percentage and molecular characteristics of

myeloid cells were significantly altered from G1.
A B

D

E F

C

FIGURE 2

Changes in cellular proportion and molecular characteristics with age. (A) Composition of the main cell types in the 5 age groups. (B) Smoothed
line plot displaying the number of specific and common DEGs of different cell types for pairwise comparisons with a G1 reference. Positive
(negative) values represent upregulated (downregulated) genes. (C) UpSet plot showing the integrated comparative analysis of upregulated
DEGs in the main cell types between G1 and the other groups. Upregulated DEGs: upregulated in G1, downregulated in other groups. (D) UpSet
plot showing the integrated comparative analysis of downregulated DEGs in the main cell types between G1 and the other groups.
Downregulated DEGs: downregulated in G1, upregulated in other groups. (E) Violin plots showing the expression distribution of selected
canonical cell markers in the 7 subtypes of myeloid cells. (F) Boxplots of the percentage of 4 CD14+ monocyte subtypes in PBMCs. All
differences with P < 0.01 are indicated. NS, not statistically significant; *P < 0.01; **P < 0.001.
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A new subtype of CD8+ T cells specific
to children

According to the expression of canonical marker genes

(Supplementary Table 2), there were 8 CD8+ T cell subtypes:

naive CD8+ T cells, 2 subtypes of memory CD8+ T cells (CD8+

memory T1, T2) and 5 subtypes of cytotoxic CD8+ T cells (CD8+

cytotoxic T1~T5) (Figure 3A). It should be noted that the

proportion of naive CD8+ T cells decreased significantly with

age, whereas that of cytotoxic CD8+ T cells increased
Frontiers in Immunology 07
significantly (Figure 3B; Supplementary Figures 5A, B). In

addition, the CD8+ cytotoxic T2 subtype, with high GZMK

expression and low GZMB expression, was significantly

increased in G5, which was consistent with a recent study

revealing the relationship between GZMK+GZMB-CD8+T cells

and aging (5) (Supplementary Figures 5C, D). Subsequently, we

found that the percentage of the CD8+ cytotoxic T5 subtype was

significantly higher in childhood than in other age groups,

especially in other groups that were very rare (Figure 3C). By

analyzing the gene signatures of the CD8+ cytotoxic T5 subtype,

we found that the CD8+ cytotoxic T5 subtype significantly
A B

D E

F

G

IH

J

C

FIGURE 3

A distinct subtype of CD8+ cytotoxic T cells in childhood. (A) Violin plots showing the expression distribution of selected canonical cell markers in
the 8 subtypes of CD8+ T cells. (B) Composition of CD8+ T cells in the 5 age groups. (C) Boxplots of the percentage of CD8+ cytotoxic T5 subtype
in PBMCs. All differences with P < 0.01 are indicated. **P < 0.001; ***P < 0.0001. (D) The gating strategy of CD8+CCR7+GZMB+ T cells analyzed by
flow cytometry. (E) The scatter plot showed the proportion of CD8+CCR7+GZMB+ T cells in PBMCs of healthy children and healthy adults (P=0.03).
Differences with P < 0.05 are indicated. (F, G) Results of GO enrichment analysis (F) and KEGG pathway enrichment analysis (G) of the top50 marker
genes of CD8+ cytotoxic T5. (H) Pseudotime trajectory of CD8+ T cells in G1 estimated using Monocle 3. (I) Pseudotime trajectory of CD8+ T cells
in each group estimated using Monocle 3. (J) Transcription factors unique to the CD8+ cytotoxic T5 subtype.
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expressed both naive marker genes (SELL, LEF1, TCF7, and

CCR7) and cytotoxic marker genes (NKG7, GZMH, and GZMB)

(Figure 3A). Based on the molecular characteristic of the CD8+

cytotoxic T5 cell subtype, five protein markers (CD3, CD4, CD8,

CCR7, GZMB) were used to analyze CD8+CCR7+GZMB+ T cells

by flow cytometry. We performed flow cytometry analysis on the

peripheral blood of children and adults, and found that the

proportion of CD8+CCR7+GZMB+ T cells in children was

significantly higher than that in adults (P=0.03) (Figures 3D,

E; Supplementary Figures 6A, B).
Molecular characteristics of
CD8+CCR7+GZMB+ T cells

Given their unclear biological functions, we further focused

on the molecular characteristics of the CD8+ cytotoxic T5 cell

subtype that express both naive and cytotoxic marker genes. GO

enrichment analysis and PPI analysis were performed on the top

50 specific genes of CD8+ cytotoxic T5 cell subtype

(Supplementary Table 4), and they are mainly related to

immune response-activating cell surface receptor signaling

pathway and regulation of leukocyte activation (Figure 3F),

and SEPTIN-related genes (SEPTIN 1,6,7,9) may play a key

role in it (Supplementary Figure 6C). Septins are evolutionarily

conserved in their crucial role in cytokinesis and tune

actomyosin forces during motility and probably regulate

lymphocyte trafficking in confined tissues (17, 18). Similarly,

KEGG analysis found that it is related to T1D, autoimmune

thyroid disease and asthma which were AIDs (Figure 3G). In

addition, we found CD8+ cytotoxic T5 cell subtype had

significantly expressed ASCL2 and KLRB1 (CD161)

(Figure 3A; Supplementary Figure 6D). Ectopic expression of

Ascl2 downregulated CCR7 expression in T cells in vitro, as well

as accelerating T cell migration to the follicles and TFH-cell

development in vivo in mice (19). However, both CCR7 and

ASCL2 were significantly expressed in the CD8+ cytotoxic T5 cell

subtypes (Figure 3A). Recent evidence suggested that

CD8+CD161+ T cells were effector memory cells with stem cell

characteristics that upregulate granzyme B and perforin and

become highly cytotoxic upon activation (20). We performed

pseudotime analysis of CD8+ T cells in G1 and found that the

CD8+ cytotoxic T5 subtype had a unique differentiation

trajectory. (Figures 3H, I; Supplementary Figure 6E). In

addition, we identified some transcription factors that are

more prominent in the CD8+ cytotoxic T5 subtype, such as

CTCF,MYBL1, and ZBTB7A (Figure 3J). These results indicated

that the CD8+ cytotoxic T5 subtype was a group of CD8+

cytotoxic T cells different from the others, which might play a

special function in the childhood immune environment.
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Molecular characterization of B cells and
CD4+ T cells in multiple age groups

The effect of age change on peripheral blood immune cells

involves multiple cell types.

G1 had the highest percentages of naive B1 and naive B2

subtypes compared with the other groups (Figures 4A, B). The

number of cell-specific DEGs of naive B1 and memory B cell

subtypes was significantly higher than that in other B cell

subtypes (Figure 4C). In G1, the naive B1 subtype specifically

upregulated functions related to the response to virus and mast

cell activation involved in the immune response, while the

memory B subtype upregulated functions related to antigen

processing and presentation, immunoglobulin-mediated

immune response and viral processes (Supplementary

Figures 7A, B). Hence, we evaluated the expression levels of

the gene set related to these important functions in naive B1 and

memory B subtypes across all age groups. Naive B1 and memory

B subtypes in G1 had higher scores for functionally relevant gene

sets for “response to virus”, “immunoglobulin mediated immune

response” and “regulation of mast cell activation involved in

immune response” than other age groups (Figure 4D, Methods).

The age-related reduction in naive CD4+ T cells is consistent

with CD8+ T cells (Figures 4E, F; Supplementary Figure 7C).

Previous studies found a high level of CD4+ cytotoxic T cells in

G5 (21), which paralleled our results (Supplementary Figure 7C).

As expected, the pseudotime results of CD4+ T cells formed a

transcriptional continuum, ranging from naive to cytotoxic

CD4+ T cells (Figure 4G; Supplementary Figures 7E, F). At the

same time, different age groups also exhibited unique

pseudotime distributions (Figure 4H).
Abundant ligand–receptor interactions
of PBMCs in childhood

To further demonstrate the characteristics of PBMCs with

age, we comprehensively evaluated the functions and states of 4

main cell types of PBMCs (myeloid cells, CD4+ T cells, CD8+ T

cells and B cells) across multiple age groups. The functional

scores of “immune effector process”, “activation of immune

response”, “establishment or maintenance of cell polarity”,

“regulation of defense response” and “leukocyte activation” in

all main cell types were significantly decreased with age

(Supplementary Figures 8A–E). However, the functional scores

of “leukocyte homeostasis”, “cytokine production involved in

immune response” and “leukocyte migration” in all main cell

types increased first and then decreased, with the increase of age

(Supplementary Figures 8F–H). For CD4+ T cells, the naive

score in G1 was significantly higher than that in the other
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groups, while the scores of “cytotoxicity” and “exhaustion” in G1

were significantly lower than those in the other groups

(Figure 5A). In contrast, the naive score and cytotoxic score of

CD8+ T cells in G1 were significantly higher than those in the

other groups, whereas the exhaustion score was significantly

lower than that in the other groups (Figure 5B). In addition,

through comparing multiple age groups, we found that CD8+ T

cells showed significant changes in the early stage (G1 to G2),
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whether “naive score”, “cytotoxic score” or “exhaustion score”,

while CD4+ T cells changed in the late stage (G4 to G5).

The number of ligand–receptor interactions between each

cell type gradually decreased with age (Figure 5C). Nevertheless,

the number of ligand–receptor interactions of different cell types

had different trends according to aging, such as myeloid cells and

B cells with a slower decline and NK cells with a rapid decline

(Figure 5C). Taking different monocyte subtypes as an example,
A B

D

E F

G

H

C

FIGURE 4

Molecular characterization of B cells and CD4+ T cells in multiple age groups. (A) Violin plots showing the expression distribution of selected
canonical cell markers in the 5 subtypes of B cells. (B) Boxplots of the percentage of naive B1 subtype in PBMCs. All differences with P < 0.01 are
indicated. NS, not statistically significant; **P < 0.001; ***P < 0.0001. (C) Smoothed line plot displaying the number of specific and common
DEGs of different B cell subtypes for pairwise comparisons with a G1 reference. Positive (negative) values represent upregulated (downregulated)
genes. (D) Expression levels of 3 GO biological process terms in naive B1 and memory B subtypes across the 5 age groups. All differences with
P < 0.01 are indicated. **P < 0.001; ***P < 0.0001. (E) Violin plots showing the expression distribution of selected canonical cell markers in the 8
subtypes of CD4+ T cells. (F) Composition of CD4+ T cells in the 5 age groups. (G) Pseudotime trajectory of CD4+ T cells estimated using
Monocle 3. (H) Pseudotime trajectory of CD4+ T cells in each group estimated using Monocle 3.
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the number of ligand–receptor interactions in each cell subtype

also decreased significantly with age (Supplementary Figure 9).

Thus, we believe that crosstalk between PBMCs is very frequent

in childhood, which may be one of the characteristics of the

immune system in childhood.
Cell-specific distribution of susceptibility
genes for AIDs

There are significant differences in the autoimmune diseases

(AIDs) spectrum of different ages (22–25), which may be related

to the molecular characteristics of PBMCs at different ages (26,

27). GWASs have successfully identified thousands of disease-
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associated variants, and single-cell profiles allow the

construction of multiple gene programs to relate GWAS

variants more finely to function (28). We assessed the

expression levels of susceptibility genes reported in GWASs of

AIDs in PBMCs, including Kawasaki disease (KD), type 1

diabetes mellitus (T1D), rheumatoid arthritis (RA), Graves’

disease (GD), systemic lupus erythematosus (SLE) and

nephrotic syndrome (NS). Sex differences in immune cells

have been well documented (29), with G1 being close to G3 in

sex ratio (Supplementary Figure 1B, Supplementary Table 6),

and we contrasted the differences between these two age groups.

For KD, the expression of susceptibility genes was mainly

distributed in monocytes, CD4+ T cells and gd T cells,

especially in monocytes (Figure 6A). Susceptibility genes for
A

B

C

FIGURE 5

Active intercellular crosstalk of PBMCs in childhood. (A, B) Naive state, cytotoxicity and exhaustion scores of different CD4+ T cells (A) and CD8+

T cells across 5 groups. All differences with P < 0.01 are indicated. NS, not statistically significant; **P < 0.001; ***P < 0.0001. (C) The intercellular
crosstalk number of each main cell type estimated using Cellphone DB, including myeloid cells, B cells, CD8+ T cells, CD4+ T cells, NK cells and
other T cells.
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RA and SLE could be divided into 5 groups, including

monocytes, CD4+ T cells, CD8+ cytotoxic cells, NK cells and B

cells (Figure 6A). Nephrotic syndrome is a group of diseases that

may be associated with immune disorders, leading to kidney

podocyte injury and thus proteinuria (30). Its susceptibility

genes are mainly expressed in monocytes and B cells.

Although there are several HLA-related genes in the

susceptibility genes of nephrotic syndrome, we can clearly see

that the susceptibility genes are significantly expressed in B cells

(Figure 6A). This may provide clues for B cell therapy in

nephrotic syndrome, such as rituximab targeting CD20 (31).

Notably, the CD3+ undefined T cells clearly expressed

susceptibility genes for multiple AIDs, especially in G3

(Figure 6A). Although not statistically significant, we observed

that the CD3+ undefined T cells was elevated in G3

(Supplementary Figure 10A). DEGs analysis of CD3+

undefined T cells between G1 and G3 showed that it

significantly down-regulated TNFSF13B, ARID5B and up-
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regulated IGKC , SEPTIN7 and other genes in G1

(Supplementary Figure 10B). CD3+ undefined T cells

expressed the marker genes of CD3+ naive cells, but did not

express B cell-related marker genes (Supplementary Figure 10C).

Transcriptional factor analysis revealed a pattern of

transcriptional regulation in CD3+ undefined T cells that was

similar to CD8+ cytotoxic T4 and Naive B3 (Supplementary

Figure 10D). However, some transcription factors, such as

FOXB1, ZEB1, STAT3 and so on, were expressed prominently

in CD3+ undefined T cells, making them different from other T

cells (Supplementary Figure 10D). At the same time, by

comparing the cross-talk between CD3+ undefined T cells in

G1 and G3, we found that TNFSF13B related pathway was up-

regulated in G3, and the ligand-receptor relationship of CCL5-

CCR4 only existed in CD3+ undefined T cells in G3

(Supplementary Figures 10E, F). These results suggested that

CD3+ undefined T cells may be a special type of immune cells in

adult life.
A B

FIGURE 6

Combined analysis of genes associated with immune-related disease risk. (A) Heatmap of susceptibility genes for AIDs in G1 and G3. (B)
Susceptibility genes with significantly different expression between G1 and G3.
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Susceptibility genes for AIDs were
differentially expressed in different
age groups

The expression of susceptibility genes in AIDs not only

showed obvious cellular localization, but also changed between

G1 and G3. The expression level of ETS1 was extensively down-

regulated in circulating immune cells in G3 (Figure 6B). The

SNP (rs1128334) associated with SLE resulted in decreased ETS1

expression (32), and down-regulation of ETS1 expression was

also found in PBMCs of SLE patients (33). Recent studies have

confirmed that ETS1mainly involves CD4+ T cells to participate

in the occurrence and development of SLE (34). We found that

the down-regulation of ETS1 expression was significant not only

in CD4+ T cells, but also in CD8+ T cells (Figure 6B). However, it

was unclear what effect ETS1 has on CD8+ T cells. This suggested

that the extensive down-regulation of ETS1 expression in G3

may be associated with the pathogenesis of SLE. The chromatin

accessibility of ETS1 was regulated by the inhibitory effector T-

cell transcription factor FLI1, whose loss increases the chromatin

accessibility of ETS1 (35). Interestingly, FLI1 was significantly

upregulated in CD4+ effector T cells and CD8+ effector T cells in

G3 (Figure 6B), and previous studies confirmed that FLI1

expression was significantly upregulated in SLE patients (36).

These results emphasized that FLI1 may be involved in the

regulation of ETS1 in CD4+ effector T cells and CD8+ effector T

cells of SLE patients.

ARID5B associated with a variety of AIDs (37, 38),

significantly up-regulated in multiple cell subsets of G3,

especially in monocytes (Figure 6B). The expression of

ARID5B in monocytes of the elderly (>65 years old) was

significantly up-regulated, which may be related to

atherosclerosis (39). Our results indicated that changes in the

expression of this gene may occur earlier (30-60 years old) and

may be common to multiple immune cells. In addition, we also

found that other susceptibility genes related to AIDs were

differentially expressed in different age groups, such as ACE,

PTPN22, TNIP1, etc. (Figure 6B).
Discussion

Based on single-cell transcriptome sequencing data, we

constructed a PBMC profile over multiple age groups, ranging

from 1 year old to over 110 years. We comprehensively displayed

the functional characteristics of PBMCs in childhood at the

single-cell level, including the percentage of cell subtypes, gene

expression differences, ligand–receptor relationships and

pseudotime relationships. In contrast to previous reference

studies on the percentage of immune cells in childhood (13–

15), using as little as 2 mL of blood as material, we analyze all

major immune cell populations by high-throughput method,
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providing the landscape of immune system in childhood. Given

the influence of ethnic factors on the immune characteristics of

different age groups, only East Asian populations were selected

for our research in different age groups. At the same time, the

correlation analysis and PCA among the samples suggested that

the samples of different age groups showed significant

heterogeneity. Age was the main factor driving the sample

clustering, while there was no obvious clustering for different

genders (Supplementary Figure 3). Significant changes in

immune cells during embryonic and neonatal periods have

been demonstrated (40, 41); thus, our study did not include

these specific age groups for comparison.

Previous studies have found that the percentage of

circulating monocytes progressively increases with age (42)

and circulating monocytes show similar transcriptional

signatures in young and elderly healthy individuals (43). We

found significant time-dependent changes in both the number

and the gene expression levels of monocytes, with significant

changes occurring at an early stage (from G1 to G2). In addition,

different CD14+ monocyte cell subtypes had different time-

dependent changes, and future research on changes in

monocytes with age may require attention to distinguish

between different CD14+ monocyte subtypes (Figure 2E).

Furthermore, we found that the CD4+ cytotoxic T cell subtype

and the GZMK+GZMB-CD8+ T cell subtype were significantly

expanded in supercentenarians; the expansion of the former was

believed to be one of the reasons why supercentenarians are less

susceptible to chronic diseases and tumors (21), and the latter

was thought to be the senescence-associated CD8+ T cell

subtype (5).

We considered that the significant differential changes in

PBMCs from G1 to G2 might be closely related to the

degeneration of the thymus during puberty and the changes in

the development of myeloid and lymphoid cells in the bone

marrow. We also showed the dynamic changes in the ratio of

naive and effector types in CD4+ T cells and CD8+ T cells. More

researches are needed to explore the possible mechanisms by

why CD8+ T cells changed significantly at the early stage (G1 to

G2) but CD4+ T cells changed only at the late stage (G4 to G5),

and the possible role of this differential change throughout the

life cycle. At the same time, we innovatively found that the

CD8+CCR7+GZMB+ cytotoxic T cell subtype might be a group

of circulating immune cells specific to childhood, and this cell

subtype expressed both naive and cytotoxic T cell marker genes.

The specific genes and characterist ic functions of

CD8+CCR7+GZMB+T cells indicated a special function for this

niche cell population. The CD8+CCR7+GZMB+ cytotoxic T cell

subtype that significantly expressing KLRB1 could have similar

cellular functions to CD8+CD161+ T cells (20), but more

evidence is needed.

We also demonstrated changes in the crosstalk of PBMCs at

multiple ages, and the cell–cell communication of PBMCs is
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evident in childhood. Genome-wide association studies have

identified many disease-related susceptibility genes (44).

Combined with the genomics results, we found that

susceptibility genes for AIDs showed cell specificity in our

immune cell profile (Figure 6). Meanwhile, the cell type-

specific expression of susceptibility genes varied in different

AIDs, which suggested the key contribution of the associated

cell types in the disease process. Surprisingly, we found that B

cells in nephrotic syndrome expressed multiple susceptibility

genes (Figure 6A). Although many of these molecules are HLA-

related, they also provide valuable clues for future immune-

related studies in nephrotic syndrome. Our data indicated a

possible relationship between CD3+ undefined T cells and AIDs

and explored their molecular features (Figure 6; Supplementary

Figure 10). However, we did not find the characteristic marker

genes for this subpopulation, which may be due to the small

number of cells. The upregulation of TNFSF13B expression in

this cell subtype and its effect on the ligand-receptor relationship

need to be determined in future studies.

In conclusion, our study displayed the molecular

characterist ics of PBMCs in childhood adults and

centenarians at the single-cell level and provided new

evidence to elucidate the special immune environment of

different age groups. Due to the small sample size as one of

the major shortcomings of this study, our results may not fully

display the immune cell landscape in cross the lifespan, and

future studies with larger cohort are needed (27). Sex bias

existed in our multiple age groups, and future studies could

observe the changes of immune system of different genders in

different age groups. Although PBMCs are a window into the

entire immune system (45), recent studies have found that

organ senescence may be associated with immune cell

infiltration in tissues and consequently lead to systemic

inflammation (46). Although our work did not involve

immune cells in various organs of children, we believe that

more research will be carried out to reveal the differences in

immune cells in tissues and organs of children and other age

groups. Moreover, T cell receptor (TCR) and B-cell receptor

(BCR) V(D)J transcriptome analysis at a single-cell resolution

might be a powerful tool for exploring the origin and nature of

lymphocytes in organs (47, 48), which was not conducted in

our research. This research provided a valuable basis for future

research on the unique immune system of childhood and AIDs.
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SUPPLEMENTARY FIGURE 1

scRNA-seq data quality assessment and processing. (A) The number of

UMIs and genes, and the percentage of mitochondrial genes ribosomal
genes for each of the donors in the 5 groups. (B) Gender composition of

each age group. (C–E) Two-dimensional principal component analysis
(PCA) (C), UMPA (D) and tSNE (E) visualization of PBMCs for multiple age

groups. Different colors represent 43 clusters (cell types) illustrated in
tSNE plots. (F) Two-dimensional visualization of PBMCs for each group

illustrated in UMPA (left) plots and tSNE plots (right).

SUPPLEMENTARY FIGURE 2

Two-dimensional UMAP visualization of PBMCs for each sample.

SUPPLEMENTARY FIGURE 3

Heterogeneity analysis of samples. (A) The heatmap showed the results of

correlation analysis among the samples. (B) The PCA result of all samples

at the bulk-level.

SUPPLEMENTARY FIGURE 4

Assessment of unpublished data and an integrated comparative analysis

of the DEGs of the main immune cell types. (A, B) The flow cytometric
analysis results of CD3+CD4+ T cells and CD3+CD8+ T cells in CON-2 and

CON-3. (C) Boxplots of the percentage of CD16+ monocyte, cDC and

pDC subtypes in PBMCs. All differences with P < 0.01 are indicated.
*P < 0.01; **P < 0.001. (D–F) GO enrichment analyses of the specific

Up-DEGs of CD14+ monocyte 1 (D), 2 (E), and 3 (F) subtypes in G1.

SUPPLEMENTARY FIGURE 5

Characterization of CD8+ T cells in childhood. (A) Boxplots of the

percentage of each subtype of CD8+ T cells in PBMCs. All differences
with P < 0.01 are indicated. *P < 0.01; **P < 0.001; ***P < 0.0001 (B)
Boxplots of the percentage of CD8+ cytotoxic T in CD8+ T cells. All
differences with P < 0.01 are indicated. *P < 0.01; **P < 0.001. (C) Boxplots
of the percentage of CD8+ cytotoxic T2 in PBMCs. All differences with

P < 0.01 are indicated. **P < 0.001. (D) The distributions of the CD8+

cytotoxic T2 subtype in CD8+ T cells in the G1 and G5 groups illustrated

in UMAP plots.

SUPPLEMENTARY FIGURE 6

Characteristics of CD8+CCR7+GZMB+ T cells. (A, B) The proportion of

CD8+CCR7+GZMB+ T cells to CD8+ T cells in peripheral blood of 10
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healthy children (A) and 8 healthy adults (B). (C) Results of PPI analysis of
the top50 marker genes of CD8+ cytotoxic T5. (D) The gene expression

level of ASCL2 and KLRB1 in different subtype of CD8+ T cells. All
differences with P < 0.01 are indicated. NS, not statistically significant;

**P < 0.001; ***P < 0.0001. (E) Pseudotime trajectory of each CD8+ T cell
subtypes in G1 estimated using Monocle 3.

SUPPLEMENTARY FIGURE 7

Characterization of B cells and CD4+ T cells in childhood. (A, B) GO

enrichment analyses of the specific Up-DEGs of Naive B1 (A) and Memory
B (B) subtypes in G1. (C) Boxplots of the percentage of CD4+ naive T1 and

CD4+ cytotoxic T in PBMCs. All differences with P < 0.01 are indicated.

*P < 0.01; **P < 0.001; ***P < 0.0001. (D) Smoothed line plot displaying
the number of specific and common DEGs of different CD4+ T cell

subtypes for pairwise comparisons with a G1 reference. Positive
(negative) values represent upregulated (downregulated) genes. (E)
Pseudotime trajectory of CD4+ T cells in G1 estimated using Monocle 3.
A continuous value was assigned to each cell as a pseudotime. (F)
Pseudotime trajectory of each CD4+ T cell subtypes in G1 estimated

using Monocle 3.

SUPPLEMENTARY FIGURE 8

Functional differences in the main cell types across the 5 groups. (A–H)
The functional scores of “immune effector process” (GO:0002252) (A),
“activation of immune response” (GO:0002253) (B), “establishment or

maintenance of cell polarity” (GO:0007163) (C), “regulation of defense

response” (GO:0031347) (D), “leukocyte activation” (GO:0045321) (E),
“leukocyte homeostasis” (GO:0001776) (F), “cytokine production

involved in immune response” (GO:0002367) (G), and “leukocyte
migration” (GO:0050900) (H) of the main cell types in the 5 groups. All

differences with P < 0.01 are indicated. NS, not statistically significant;
*P < 0.01; **P < 0.001; ***P < 0.0001.

SUPPLEMENTARY FIGURE 9

Active intercellular crosstalk of myeloid cells in childhood. The

intercellular crosstalk number of each subtype of monocyte cells
estimated using Cellphone DB, including CD14+ monocyte 1, CD14+

monocyte 2, CD14+ monocyte 3, CD14+ monocyte 4 and
CD16+ monocyte.

SUPPLEMENTARY FIGURE 10

Characterization of CD3+ undefined T cells. (A) Boxplots of the

percentage of CD3+ undefined T subtype in PBMCs. (B) The volcano
map showed the DEGs in CD3+ undefined T of the G1 vs G3 groups. (C)
Expression of canonical marker genes of T cells and B cells in CD3+

undefined T. (D) The results of transcription factor analysis for CD3+

undefined T. (E, F) Dot plot showing the ligand–receptor relationship of
the CD3+ undefined T subtype in G1 (E) and G3 (F).
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