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Background: Myocardial injury may be caused by myocardial ischemia-

reperfusion (IR), and salvaging such an injury is still a great challenge in clinical

practice. This study comprehensively characterized the physiopathologic changes

of myocardial injury after IR to explore the underlying mechanism in the early

reperfusion phase with particular emphasis on early myocardial inflammation.

Methods and Results: The experimental IR model was obtained by the left anterior

descending artery’s transient ligation of C57BL/6 mice. T2W signals of all mice

showed increased signal at different IR stages. It was positively correlated with

inflammatory cytokines and cells. T2W imaging by 7.0 T MRI surprisingly detected

signal enhancement, but histopathology and flow cytometry did not reveal any

inflammatory cells infiltration within 3 h after IR. Cardiomyocyte swelling and

increased vascular permeability were observed by WGA staining and ultrastructural

analysis, respectively. The 3 h IR group showed that the cardiomyocytes were

severely affected with disintegrating myofilaments and mitochondria. Both VEGF

and phosphorylated Src protein were markedly expressed in the 3 h IR group in

comparison with the sham group, and TUNEL staining displayed little positive cells.

Cleaved caspase-3 apoptin also has similar expression levels with that of the sham

group. Resident macrophages had notably becomeM1 phenotype. The T2W signal

was still elevated, and we observed that collagen deposition occurred from 1 to 7

days.

Conclusions: The inflammation response during the first week after reperfusion

injury gradually increase 3 h later, but the main manifestation before that was

edema. This study indicated that the first 3 h may be crucial to the early rescue

process for reperfusion-induced myocardial injury due to inflammatory cell

infiltration absence and apoptosis.
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GRAPHICAL ABSTRACT
1 Introduction

Acute myocardial infarction (AMI) and the associated heart

failure are the leading causes of death and disability worldwide (1,

2). Timely myocardial reperfusion using primary percutaneous

coronary intervention (PCI) is the most effective treatment.

However, the myocardial reperfusion process itself can induce

cardiomyocyte death and myocardial injury, resulting in up to 50%

final volume myocardial infarction (3). The ischemia-reperfusion (IR)

injury rescue after reperfusion is still a great challenge in clinical

practice, although the preferred reperfusion strategy time is within 2 h

of ST-segment elevation MI diagnosis (4, 5).

The main mechanisms of myocardium IR injury involve

inflammation, oxidative stress, mitochondrial damage, apoptosis, and

autophagy (6, 7). Inflammation is significantly increased during

reperfusion (8), which is activated at the stage of myocardial

ischemia and plays a critical role in determining the AMI size and

subsequent post-MI adverse left ventricular (LV) remodeling (9–12).

The inflammatory process response includes inflammatory cell

infiltration, and cytokine synthesis and secretion during myocardium

IR (13). Previous findings have documented early neutrophils

infiltration into the ischemia zone from 6 to 24 h post-AMI, followed

by the accumulation of pro-inflammatory macrophages over the next

48-72 h, both of which contribute to cardiomyocyte death and

myocardial IR injury (14). However, whether the inflammatory

response was initiated in the very early reperfusion stage and its

underlying mechanism still needs to be further investigated.

To recognize the myocardial pathophysiological changes in vivo,

cardiac magnetic resonance imaging (MRI) has been identified as a

promising imaging modality (15). And T2-weighted (T2W) imaging

has particularly outstanding ability to determine edema with specific

high signal (16) and has potential specificity for myocardial

inflammation (17). Therefore, the present study focused on the

myocardial inflammatory response and post reperfusion related

tissue cellular changes in IR mouse model by 7.0 T MRI imaging

and pathological analysis, spanning from the very early to late

reperfusion stages, to provide new insight for myocardium rescue.
Frontiers in Immunology 02
2 Methods

2.1 Mouse cardiac IR model induction

The experimental design is shown in Figure 1A. All animal

procedure were approved by the Animal Experimentation Ethics

Committee of West China Second Hospital of Sichuan University

and conformed to the NIH Guide for the Care and Use of Laboratory

Animals. C57BL/6 wild-type male mice of 8-10 weeks were used in

this study. All mice were kept in the same room in a light-controlled

environment with a 12:12 h light-dark cycle and with free access to

standard mouse chow and water. The myocardial IR model was

established as described in a previous study (18). Briefly, mice were

anesthetized by isoflurane inhalation (1.5%-2%). Under a

stereomicroscope, left thoracotomy was performed between the

third and fourth ribs, and then the left anterior descending

coronary artery was identified and ligated with a 8-0 polypropylene

suture. A slipknot was tied over the vessel to create the occlusion.

Ischemia was deemed successful when the myocardium supplied by

the vessel turned pale. Mice of sham group were identically except

that the ligature was not tied. After 30 minutes of ischemia, the

slipknot was released by gently puling the slipknot sutures in opposite

directions. At this time, reperfusion began and lasted for 7 days. All

mice were euthanized by inhaling 3%-5% isoflurane.
2.2 MR imaging study

Magnetic resonance images were acquired using a NOVA 7.0 T

preclinical horizontal MRI system (Time Medical Ltd). Mice were

imaged on 3 h, day 1, day 3, day 7 after reperfusion. Baseline MRI scan

was performed immediately before myocardial IR induction. All MRI

images were acquired with ECG and respiration double-gating. Gated

muilti-slice IntraGate Fast Low Angle Shot-cine was performed to

confirm the heart position in three planes (short-axis, and 2- and 4-

chamber long axis) to determine the location of LV. The echo signals

of mice were measured with a T2W imaging sequence: TR = 800 ms,
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TE = 10.16 ms, slice thickness = 1.0 mm, matrix = 192 x 192, field of

view = 40 x 40 mm, number of signal averages = 2. Successful IR

induction was confirmed by late gadolinium enhancement (LGE)

sequence (TRir = ~1 s depending upon respiratory rate, TE = 2.21

ms, slice thickness = 1.0 mm, matrix = 128 x 128, field of view = 40 x 40

mm, flip angle =907°) starting 15 min after intraperitoneal injection of

0.5 mmol/Kg Gd-DPTA. T2W signal and LGE area were evaluated

using cvi42 software (Circle Cardiovascular Imaging) or

ImageJ software.
2.3 Echocardiography

To assess LV physiology, echocardiography was performed using a

Vevo 3100 system (VisualSonics, Toronto, ON, Canada) with a 30 MHz

image transducer. Images were acquired prior to IR surgery (baseline) and

at day 1 post-reperfusion. Mice were anesthetized with 1.5% isoflurane in

an oxygen mix. Heart rate, body temperature, and electrocardiogram were

monitored throughout the imaging procedure. Measurements were taken

from the LV parasternal long axis (B-mode) and short axis (M-mode)

views. For analysis, three images form consecutive cardiac cycles were
Frontiers in Immunology 03
included. Percent fractional shortening (FS) and ejection fraction (EF) were

calculated as described previously (19).
2.4 Histological analysis

At indicated time points, hearts were fixed through trans-cardiac

perfusion with saline followed by 4% paraformaldehyde (PFA),

subsequently, the heart samples were immersed into 4% PFA and

fixed over 24 h. Latter, the heart samples were embedded into paraffin

blocks and cut into 5 mm thickness sections. Hematoxylin Eosin (H&E)

staining, Masson trichrome staining (Solarbio ®) and WGA staining

(VectorLabs) were performed following a standard protocol. The cell

apoptosis was detected by using TUNEL System (Roche) according to

the operating manual, after which the sections were incubated with

DAPI for nucleus staining. For immunohistochemistry staining, the

sections were rehydrated and heat-mediated antigen retrieval was

performed using Target Retrieval Solution (S1699, Dako). The sections

were incubated with 3% H2O2 (Sigma) to block endogenous peroxidase

activity, followed by blocking with normal serum. A primary antibody

specific for macrophages (CD68, Abcam; 1:400) was used at 4°C
A

B

D E

C

FIGURE 1

Establishment of mouse IR model. (A), schema of in vivo protocol. The present study population comprised 60 mice which were used for the
characterization of myocardial inflammation during the first week after IR. (B), graphic image of myocardial IR injury induction. (C), typical LGE image on
day 7 in IR group. (D), representative echocardiography on day 1 in sham and experimental group. (E), immunofluorescence staining detect the
infiltration of leukocytes (Bar=150 mm).
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overnight, followed by incubation with rabbit anti-rat IgG and ABC

reagent (VectorLabs). For immunofluorescence staining, the sections

were blocked with goat serum at room temperature for 1 h. The primary

antibodies (CD45, Servicebio; F4/80, Abcam; Ki67, Abcam) diluted in

goat serumwere then dropped to cover sections and incubated overnight

at 4°C. Then the sections were washed three times with PBS, followed by

incubating with a second primary antibody (Alexa Fluor 594, Abcam;

Alexa Fluor 488, Life). DAPI was used for nucleus staining. Images were

acquired on the Olympus IX73 imaging microscope. All histological

analysis were quantified using ImageJ software.
2.5 Ultrastructural analysis by transmission
electron microscopy

Cardiac tissue was prepared from sham group and 3 h group

following reperfusion, and the infarct regions were sectioned. Tissue

was fixed in 0.1 M sodium cacodylate buffer (pH 7.3) containing 4%

paraformaldehyde and 1.5% glutaraldehyde for 2 hours, transferred to

5% glutaraldehyde overnight, then to 1% osmium tetroxide for 1

hour. Blocks were washed, dehydrated in a graded ethanol series, and

embedded in Epon/Araldite resin. Ultrathin sections were stained

with uranyl acetate and lead citrate and were viewed using a Hitachi

HT7700 transmission electron microscope.
2.6 Cell preparation for flow cytometry

Samples were obtained from Left ventricular at indicated time

points. Single cell suspensions were prepared as described previously,

with some modifications (20). Briefly, hearts were cut into small pieces

and digested with 0.3 mg/ml collagenase II (Invitrogen, USA), 0.3 mg/

ml dispase II (Sigma, USA), DNase I (Biosharp, China) and 2.5 mM

Cacl2 (Mackin, china) in HBSS solution (Invitrogen, USA) for 45 min

at 37°C with gentle agitation. After the digestion, primary cardiac cells

were obtained using Percoll (Solarbio ®) gradient separation and

passed through 70-mm cell strainer. The obtained cells were washed

with RPMI-1640 cell culture medium for further analysis.
2.7 Flow cytometric analysis

To block the nonspecific binding of antibodies to Fcg receptors,

isolated single cell suspensions were incubated first with anti-CD16/32

antibody (101302, Biolegend) at 4°C for 10 min. Subsequently, the cells

were incubated with a mixture of antibodies at 4°C for 25 min. Anti-

CD11b-PE (Cat: 101208, Biolegend), anti-Gr1-FITC (Cat: 108406,

Biolegend), anti-F4/80-BV421 (Cat: 123132, Biolegend) and anti-

CD206-Alexa674 (Cat: 565250, BD Pharmingen) were used for flow

cytometric analysis. The obtained results were expressed as the percent.

Flow cytometric data was analyzed using official FlowJo software.
2.8 Western blotting analysis

Left ventricles were homogenized in ice-cold RIPA lysis buffer

containing 1% PMSF. The protein concentration was determined using
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Bradford BCAmethod (Beyotime, China). Total protein (30 mg) of each
samples was separated by SDS-PAGE, transferred to 0.2 mm PVDF

membrane (Millipore, USA) and probed with primary antibodies

against VEGF (Cat: ET1604-28, HUABIO), p-Src (Cat: ET1609-15,

HUABIO), Cleaved-caspase 3 (Cat: ab32042, Immunoway), CCL2

(Cat: HA500267, HUABIO) and GAPDH (Cat: ET1601-4,

HUABIO). The ECL system was used for detection. GAPDH was

used as an internal control and results expressed as the mean value.
2.9 ELISA assay

Blood samples were collected from the ophthalmic vein and kept

4 °C overnight before centrifugation for 15 min at 1000x g. Levels of

IL-1b、TNF-a、TGF-b and Arg-1 in serum were measured with

mouse ELISA kits (All from Animalunion, China) according to the

manufacture’s instruction respectively.
2.10 Statistical analysis

The mice were randomized to experimental groups. All statistical data

analyses were conducted using GraphPad prism 9.3.1 software. All

experiments were performed independently at least three times, and the

results were presented as the mean ± SD. Tow group means were compared

by two-tailed independent samples student’s t-tests, while means of more

than two groups were compared by one-way ANOVA. Correlation analysis

was performed using Pearson’s or Spearman’smethod, as appropriate. For all

comparisons, *p < 0.05, **p < 0.01 and ***p < 0.001.
3 Results

3.1 Establishment of IR model in mice

The study design is showed in Figures 1A, B. Firstly, to evaluate the

success of the model, we measured the cardiac function by performing

echocardiography on day 1 post- myocardial IR induction. Following

IR, the experimental mice displayed cardiac dysfunction and left

chamber dilation, while the sham group exhibited a normal

physiology (Figure 1D). Moreover, left ventricular EF and FS were

significantly reduced in the experimental mice, as compared to those of

the sham group (Figure S1). After 7 days, late gadolinium

enhancement (LGE) magnetic resonance imaging revealed an

obviously high light signal intensity in the experimental mice

(Figure 1C), indicating the presence of cardiomyocyte necrosis. The

infiltration of leukocytes is also a sign of successful modelling.

Subsequently, the CD45 immunofluorescence staining revealed that

more inflammatory cell infiltration was observed in the IR group

(Figure 1E and Figure S2). These results suggested that the IR mice

models were successful and could be used for subsequent experiments.
3.2 MRI evaluation of myocardial
inflammation during the first week after IR

Myocardial IR is characterized by inflammation, which contributes

to myocardial injury. To noninvasively evaluate inflammation, cardiac
frontiersin.org
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MRI was used. We utilized a small animal 7.0 T MRI to detect

myocardial inflammation post-IR, specifically at baseline and at 3 h,

1 day, 3 days and 7 days post-IR. All MRI scans were acquired with an

electrocardiogram and respiration double-gating method (Figures 2A,

B). Baseline T2W image was relatively black in the LV anterior wall

(Figure 2C). Initial reperfusion (3 h) was associated with a significant

increase in T2W signal above that of the baseline, which subsequently

increased progressively, reaching peak values on day 7 (Figure 2D).

Figure 2C shows a representative example of one mouse serially

scanned at all time-points.
3.3 Inflammatory response induced by
myocardial IR injury

The inflammatory response after IR was subsequently evaluated

via a histological analysis. H&E staining demonstrated an increase in

leukocyte infiltration from day 1 to day 7 (Figure 3A). Monocyte/

macrophage recruitment in the ischemic hearts was further

investigated by immunostaining with CD68, and the number of
Frontiers in Immunology 05
infiltrated macrophages was evaluated (Figure 3B and Figure S3).

Interestingly, the inflammatory cells before 3 h were absent,

indicating that, although IR injury causes an inflammatory

response, activated leukocytes have not reached the ischemic area

yet in the very early stage (3 h). It is possible that increased

macrophages may come from recruitment of peripheral monocytes

or from proliferation of residential macrophages. As shown in Figure

S4A, F4/80 and Ki67 were co-located in several cells (Person’s

correlation coefficient: 0.14) at the site of myocardial ischemia after

1 day reperfusion, but this was absent in the sham group and post-

reperfusion 3 h group. Additionally, we detected that CCL2

chemokine was highly expressed in post-reperfusion 1 day group

(Figure S4B). At the same time, the ELISA results indicated that both

anti-inflammatory cytokines IL-1 b and TNF-a and pro-

inflammatory cytokines Arg-1 and TGF-b were improved after IR

induction in the peripheral blood in mice (Figures 3C-F).

Additionally, the expression level of myocardial IL-6 mRNA was

significantly elevated in 3 h group (Figure S5). Collectively, these data

indicated that the inflammatory response was induced and gradually

increased after myocardial IR injury.
A B

D

C

FIGURE 2

The immune response induced by IR injury at the first week. Representative images of histological changes in the ischemic myocardium. (A), for each
time point, images are shown of staining with H&E (Bar=1mm, 50mm). (B), macrophages in mice post-IR were evaluated by CD68 staining (Bar=50 mm).
(C-F), plasma levels of IL-1b (C), TNF-a (D), Arg-1 (E) and TGF-b (F) were also determined by ELISA (n = 3-5). *p < 0.05 VS. Sham.
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3.4 Temporal dynamic of the main cellular
subsets of infiltration after IR

To detect major cellular components associated with

inflammation, flow cytometry was conducted at 3 h and 1, 3, and 7

days following IR. Given the relatively low number of macrophages in

the mouse heart, we used standard negative and positive magnetic

beads (BD™ Comp Beads) to calibrate fluorescence compensation

(Figure S6). The CD11b+ and F4/80+ double positive cells were

defined as macrophages; pro-inflammatory M1 macrophages were

labelled with CD206- (CD11b+F4/80+Gr1-CD206-), whereas CD206+

was used to identify M2 macrophages (CD11b+F4/80+Gr1-CD206+)

(Figure 4A). Neutrophils were defined as CD11b+Gr1+. After the IR

injury, neutrophils accumulated in the ischemic heart, peaking at day

1 and then notably, continuing to accumulate in the myocardium over

3 days (Figure 4E). Moreover, macrophages began to infiltrate on day

1 and peaked on day 3 in the ischemic myocardium (Figure 4B), and

these cells showed a biphasic pattern of activation. M1 macrophages

increased gradually and dominated at 3 days post-IR, whereas the M2

macrophages represented the predominant cell subset after 3 days

post-IR (Figures 4C, D). Consistent with the histopathological

findings, flow cytometry also did not detect infi ltrating

inflammatory cells at 3 h after the IR injury. From these results, we

found that neutrophils and macrophages were the major cellular

components during the first week of IR injury, although inflammatory

cell infiltration did not occur in the first 3 h post-IR.
Frontiers in Immunology 06
3.5 Correlation of T2W signal with
inflammatory components

To further prove whether T2W imaging can detect inflammation

after myocardial IR in mice, a correlation analysis between T2W

signal and inflammatory components was performed. Inflammatory

cytokine activity in the serum of IR mice was significantly correlated

with the T2W signal from 3 h to 7 days post-reperfusion (Figures 5A-

D). In addition, both macrophage and neutrophil contents were also

obviously correlated with the T2W signal. Interestingly, regarding

macrophage phenotype, the pro-inflammatory M1 macrophages

showed a moderate correlation with T2W signal rather than anti-

inflammatory M2 macrophages (Figure 5E). These results indicate

that T2W imaging could help detect myocardium inflammation in

the IR mice models.
3.6 Myocardial edema occurs in the first 3 h
after myocardial IR

Considering the signal enhancement detected by T2W imaging,

histopathology and flow cytometry did not reveal any infiltration of

inflammatory cells during the first 3 h after reperfusion. Therefore, we

turned our attention to myocardial edema. Firstly, the cross-sectional

area of cardiomyocytes at the ischemia zone was determined by WGA

staining, and the 3 h IR group showed a marked cardiomyocyte
A

B

D E FC

FIGURE 3

T2-weighted imaging sequence detect inflammation signal in the mouse heart during the first week post-IR. (A), one mouse equipped with ECG (☆) and
respiratory (◇) are being prepared to scan under 7.0 T MRI. (B), real-time ECG and respiratory rate in a mouse. (C), the typical T2W images from the
same mouse before and after IR. (D), quantitative the mean T2W signal intensity of the LV myocardium in each group, (n = 5). *p < 0.05 VS. Sham, ** p <
0.01, *** p < 0.001.
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expansion compared with the sham group (Figures 6A, F). And the

myocardial water content in 3 h group was higher than sham group

(Figure S7). Subsequently, we evaluated the cardiac tissues at the

ultrastructural level at 3 h after reperfusion. In the sham group, the

section transverse to cardiomyocytes showed normal myofilament
Frontiers in Immunology 07
architecture and mitochondria (Figure 6B-1). In contrast to the

normal myocardial tissue, the cardiomyocytes in the 3 h IR group

were severely affected with disintegrating myofilaments and

mitochondria (Figure 6B-2). At the same time, the blood vessels

appear to be damaged and contained many large vacuoles
A B

D

E

C

FIGURE 5

Liner correlation between myocardial T2W signal and inflammation mediator. (A-D), scatter plot of myocardial T2W signal and IL-1b (A), TNF-a (B), TGF-
b (C) and Arg-1 (D). (E), heat map of neutrophils, MI macrophages, M2 macrophages and macrophages among myocardial T2W signal, ** p < 0.01, *** p
< 0.001.
A

B D EC

FIGURE 4

Characterization of temporal dynamic of the macrophages and neutrophil in the heart after IR. (A), gating strategy for cardiac macrophages, M1
(CD11b+F4/80+Gr1-CD206-) and M2 (CD11b+F4/80+Gr1-CD206+) macrophages at indicated time point after myocardial IR injury. Represent flow
cytometric images of M1 and M2 macrophages in the post-IR heart. (B-E), the percentages of macrophages (B), M1 (C), M2 (D) and neutrophils (E) were
determined in the hearts of sham group and reperfusion groups (n = 5-6, each). *p < 0.05 VS. Sham, ** p < 0.01, *** p < 0.001.
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(Figure 6B-3). Moreover, extravasated red blood cells were present in

the interstitium (Figure 6B-5), which apparently escaped from the

nearby vessels. The vascular endothelial growth factor (VEGF), first

described as the “vascular permeability factor”, likely contributes to the

development of myocardial edema (21), and VEGF-mediated Src

signaling had been proved to be involved in disease progression

following MI (22). To further explore the possible mechanism of IR-

induced edema, we evaluated the expression of VEGF-mediated Src

signaling pathway. As shown in Figures 6C-E, in comparison with the

sham group, both VEGF and phosphorylated Src proteins were

markedly expressed in the 3 h IR group. These data showed that

edema obviously appear at 3 h post-IR, and was probably mediated by

the VEGF-Src signaling pathway.
Frontiers in Immunology 08
3.7 No cell apoptosis occurs at 3 h post-IR

Myocardial cell apoptosis has been reported to contribute

significantly to IR-induced myocardial injury, which motivated us

to determine whether apoptosis occurs at the very early stage of

injury. Firstly, detection of apoptosis by TUNEL staining was

performed in ischemic tissue sections. Little TUNEL positive cells

were found in the 3 h IR group. On the contrary, the number of

TUNEL positive cells in the day 1 IR group was significantly

increased when compared with that of the sham group (Figure 7B

and Figure S8). Subsequently, the extracts of cleaved-caspase 3

apoptin isolated from the ischemic zone in the three groups were

examined viaWestern blotting analysis. As shown in Figures 7C, D,
A

B

D E F

C

FIGURE 6

Myocardial IR induced edema at 3 h post-IR. (A), WGA staining cardiomyocyte hypertrophy, (n = 3) (Bar=400 mm, 50mm). (B) (1-6), ultrastructural
changes in mouse myocardium. (1), sham group ventricular myocardium showing normal myofilament architecture and mitochondria (Bar=2mm). (2),
anomalous myofilaments and mitochondria are displayed after IR 3 h (Bar=2mm). (3-4), Vessel with no apparent gaps, but several large vacuoles apparent
(Bar=2mm, 500nm). (5-6), section transverse to myocardium showing an RBC in the extracellular space (Bar=2mm, 500nm). (C), western blotting detect
VEGF and p-Src protein expression, (n = 3). Quantitative of VEGF protein (D), p-Src protein (E) and cardiomyocytes area (F). RBC, red blood cell; VEGF,
vascular endothelial growth factor; p-Src, phosphor-Src, *p < 0.05 VS Sham, ***p < 0.001.
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the cleaved-caspase 3 protein in the 3 h IR group has similar

expression levels with that of the sham group, although an

obviously higher expression level was observed in the day 1 IR

group. Likewise, caspase 3 mRNA expression in the 3 h group

displayed no obvious difference with sham group (Figure S9). In

addition, we found that collagen was gradually deposited in the

ischemia myocardium post-IR (Figure 7A and Figure S10). The

trend is similar to the performance of inflammatory cytokines,

implying that IR-induced inflammatory response may be involved

in the tissue healing processes.
4 Discussion

Characterization of the time course of the myocardium IR-

induced inflammation and its determinants is critically important

for the development of diagnostic and therapeutic applications. In the

present longitudinal experiment study, we explored the inflammatory

response of myocardial post-IR and the possible underlying

mechanisms by performing a comprehensive histopathological

cellular and advanced MRI serial analysis using a widely used small

animal model.

MRI allows in vivo myocardial characterization and cardiac MRI

has been identified as a promising imaging modality (15). T2W

imaging techniques have been widely used to detect edema and are

potentially specific for myocardial inflammation (17). Recently, our

team has demonstrated that cardiac MRI could help detect

inflammation in the remote myocardium in MI porcine models

(23). In this study, we first utilized a 7.0 T magnetic resonance

T2W imaging sequence to detect post- myocardial IR inflammation

in a widely used small animal model. As expected, the T2W signals
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were positively correlated with inflammatory cytokines and cells. We

found that the T2W signals were abnormal at 3 h of perfusion and

then increased gradually, suggesting that myocardial edema or

inflammation had started very early.

Macrophages and neutrophils secrete pro-inflammatory cytokines

in the early stage of MI, which leads to sustained inflammation and

myocardial injury (24). The neutrophils peak shifted from day 3 to day

1, while the macrophages infiltration peak switched from day 7 to day 3

in mice IR model, compared with permanent ligation MI (25).

Reperfusion temporally shifted the innate immune cell to an earlier

time point, indicating that timely reperfusion may benefit from

ischemic myocardial recovery by preventing the transition from acute

to persistent inflammation. Macrophages are composed of two

populations, including pro-inflammatory M1 and reparative M2

macrophages. The M1 macrophages predominate at the early stage

after myocardial IR, followed by a gradual increase of the M2 subset

(26). Macrophages undergo a rapid shift to an M1 subset and elicit

inflammatory cytokine secretion, lowering the CD206 expression. At 7

days after reperfusion, the M2 subset became the predominant

macrophage. The pro-inflammatory M1 macrophages showed

moderate correlation with the T2W signals rather than the anti-

inflammatory M2 macrophages combined with our MR imaging

results, suggesting that T2W imaging may tend to reflect pro-

inflammatory cell infiltration.

Interestingly, there was no infiltration of inflammatory cells,

including neutrophils and macrophages, at 3 h post-reperfusion. A

previous study reported that the neutrophils in the myocardium

subjected to 45 minutes of ischemia followed by 4 h of reperfusion

significantly increased in comparison with the normal myocardium

from the same hearts (27). Thus, we speculate that 3 h may be the

critical time point for inflammatory cells to reach ischemic
A

B

D

C

FIGURE 7

No cell apoptosis happens after 3 h IR. (A), Masson staining of heart sections was performed for each time point (Bar 100 mm). (B), cell apoptosis was
measured by TUNEL assay (Bar =200 mm, 50mm) and Western blotting (C) in sham group and 3 h, 1 day after IR induction. Quantitative of cleaved-
caspase 3 protein expression level (D), (n = 3). **p < 0.01 VS. Sham.
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myocardium. It is reported that IL-6 expression is obvious after

reperfusion 3 h (28). Indeed, we also detected IL6 changed

obviously after 3 h reperfusion in the heart (Figure S5). This is

consistent with our ELISA and T2W results that detected

inflammation at 3 h reperfusion. After carefully examining our flow

cytometry data, we found that the resident macrophages had already

become M1 phenotype at 3 h post-reperfusion (Figure S11), despite

the absence of infiltration of inflammatory cells, which not only

contribute to the source of inflammatory cytokines (such as IL-1b and
IL-6) but partly explain the enhancement of T2W signal. The changes

in the phenotype of resident macrophages preceded the infiltration of

inflammatory cells, suggesting that they may play a vital role in the

initiation of myocardial reperfusion-induced injury. Owing to the

abundance and phenotypic plasticity of macrophages, they are well fit

for mediating the repair response after IR. Most of the previous

studies have made great progress in the treatment of IR-induced

injury by regulating the recruited macrophage polarization (29).

According to our data, we believed that more attention should be

paid to resident macrophages.

As with most organs, water is the primary component of cardiac

tissues. In homeostasis, myocardial water is stable and nearly

intracellular, with only a little interstitial component. In the context

of MI, edema appears initially in the form of cardiomyocyte swelling

during the early stages of ischemia (30). Myocardial edema is then

obviously exacerbated upon reperfusion of blood flow to the ischemic

region. This increase is due to the enhancement of interstitial edema,

due to water permeability and protein leakage (31). Given that there

was no infiltration of inflammatory cells, but rather a clear signal was

detected on T2W imaging at 3 h post-reperfusion. We therefore shift

our focus on myocardial edema. As expected, myocardial water content

in the 3 h group was higher than sham group (Figure S7). Our results

indicated that early edema was partly due to cardiomyocyte swelling

and increased vascular permeability, while the intracellular and

extracellular edema were undetermined. A method based on MRI has

been developed to differentiate intracellular and extracellular

myocardial water compartments, but the intracellular water

distribution does not accurately reflect intracellular edema (32).

Further studies are needed to discriminate between intracellular and

extracellular edema. Notably, a comprehensive work has observed that

the myocardial edema after IR is not stable and follows a bimodal

pattern in the pig model (33). However, we did non see a drop in T2W

signal during the reperfusion in a small animal model. The absence of

bimodal in the mouse heart and the apparent presence of bimodal in

the pig heart after IR may be associated with species differences.

After MI, an increase in VEGF levels occurs and contributes to

detrimental myocardial edema (34). Genetics interferes with the

ability of VEGF to mediate the increased vascular permeability,

which is correlated with reduced LV edema in mice and improved

survival after MI (35). Src is implicated as the tyrosine kinase

responsible for phosphorylation of vascular endothelial-cadherin

and the elevated vascular permeability (36). Constitutive Src gene

inaction is accompanied by reduced edema and improved long-term

outcome after MI (22). We thus concluded that the VEGF/Src-

mediated pathway may be a key signal molecule in the very early

reperfusion stages; however, additional works are needed, in

particular, to assess whether a combined treatment of myocardium
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edema and inflammation can accelerate the recovery of

heart function.

It has been investigated that myocardial edema induced by

reperfusion may contribute to cell death. Cell apoptosis is obviously

initiated at 6 h reperfusion, which progressively progressed into

myocardial apoptotic cell death during the late phase of reperfusion

in a canine model (37). Gottlieb et al. (27), however found that

apoptosis was detected in the ischemia myocardium after 30 min of

ischemia and 4 h of reperfusion in a rabbit model. In the current

mouse model, we observed that there was no obvious cell apoptosis in

the ischemic myocardium at 3 h of reperfusion. Given that apoptosis

represents a potentially preventable form of cell death, identifying its

timing may help in developing potential treatment strategies for

alleviating myocardial IR injury by regulating apoptosis. Both

inflammatory cell infiltration and apoptosis are involved in the

early myocardial IR injury, and they greatly affect cardiac repair

and healing. The data presented here implicate that the first 3 h of

reperfusion, when inflammatory cell infiltration and apoptosis have

not been initiated yet, may be crucial to perform rescue procedures for

the ischemia myocardium.

In clinical practice, timely PCI is an essential step to rescue the

ischemic myocardium to restore reperfusion in patients with ischemic

cardiomyopathy. However, a substantial number of patients could

experience severe myocardial IR injury and these complications may

be associated with an increased risk of major adverse cardiac events

(MACE). Therefore, early identification and myocardial IR injury

intervention after PCI is an important reason for improving the

prognosis. Recent clinical guidelines suggest that cTn monitoring

should be performed at least once 3-6 h after PCI to determine the

myocardial injury extent and determine subsequent management

strategies (38). However, it remains a challenge for new treatment

or appropriate time window to reduce the risk of MACE. This study

comprehensively characterized the myocardial injury process after IR

in mice in vitro and in vivo. It is feasible to develop new strategies to

reduce the myocardial IR injury by targeting myocardial edema,

resident macrophages, apoptosis and inflammatory cell infiltration

collectively in the first 3 h after reperfusion. However, further

interventions and population cohort studies are needed to clarify

the importance of myocardial rescue within 3 h of IR injury due to the

differences in animal experiments and clinical scenarios.

We proved that the inflammatory response during the first week

after reperfusion gradually increase at 3 hours later, and before that, the

main manifestation was edema probably induced by the activation of

VEGF/Src signaling pathway. Meanwhile, the infiltrating inflammatory

cells and apoptosis are absent in the very early reperfusion stage. These

data reveals that the first 3 h of reperfusion may be the vital for ischemia

myocardial recovery, especially when developing anti-inflammatory

strategies. We investigated the critical time point for changes in cardiac

pathophysiology in IR myocardium, a finding with potentially important

implications for managing patients with reperfusion after MI.
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