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Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an

attractive research field in tumor immunotherapy. While CAR is genetically

engineered to express certain molecules, it retains the intrinsic ability to

recognize tumor cells through its own receptors. Additionally, NK cells do

not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some

differences to CAR-T cells in terms of more precise killing, numerous cell

sources, and increased effectiveness in solid tumors. However, some problems

still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection

efficiency, and storage issues. Immune checkpoints inhibit immune cells

from performing their normal killing function, and the clinical application of

immune checkpoint inhibitors for cancer treatment has become a key

therapeutic strategy. The application of CAR-T cells and immune checkpoint

inhibitors is being evaluated in numerous ongoing basic research and clinical

studies. Immune checkpoints may affect the function of CAR-NK cell therapy.

In this review, we describe the combination of existing CAR-NK cell technology

with immune checkpoint therapy and discuss the research of CAR-NK cell

technology and future clinical treatments. We also summarize the progress of

clinical trials of CAR-NK cells and immune checkpoint therapy.
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1 Introduction

Innate immunity, also known as non-specific immunity, is a

natural immune defense function that was gradually formed

during the long-term development and evolution of the body. As

an innate immune cell type, natural killer (NK) cells actively

participate in the first line of defense against invasion by

pathogenic microorganisms (1).

In the past few years, research into chimeric antigen receptor

(CAR)-modified NK cell therapy has increased. CAR-modified

NK cell therapy, similar to CAR-T cell therapy, involves the

expression of synthetic receptors by genetically modified

immune cells; these immune cells are redirected to tumor

surface antigens for tumor clearance through the cytotoxicity

of immune cells (2, 3). Researchers have used NK cells from

different sources with various modular CAR designs against a

variety of target antigens (4–6). CAR-T cell therapy and CAR-

NK cell therapy have many advantages, but they also have

common disadvantages. Such as Immune exhaustion caused

by immune checkpoints may be one of the common problems to

be solved in clinical treatment (7).

Immune checkpoint molecules are immunosuppressive

molecules that are expressed on immune cells and regulate the

degree of immune activation (8). Upon activation, immune

checkpoint molecules maintain the immune system within

normal levels, so that the immune system is not overactivated,

preventing autoimmunity. In the tumor microenvironment,

tumor cells express immune checkpoint inhibitory ligands,

thereby stimulating the downstream signaling pathway of
Frontiers in Immunology 02
immune cells, leading to immune exhaustion and providing a

more suitable environment for tumor cell survival (9). Immune

checkpoint immunotherapy is currently used to regulate the

activity of T cells and NK cells to kill tumor cells through a series

of pathways such as co-inhibition or co-stimulation signals (8,

10, 11).

Previous studies have explored the combination of CAR-T

cells with immunotherapy targeting programmed cell death

protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1)

(12). However, studies on the combination of CAR-NK cell

with immune checkpoints therapy are limited (13). This review

describes the current research on the combination of CAR-NK

and immune checkpoint therapies with the aim of providing

insights for clinical and basic research for cancer treatment.
2 NK cells

2.1 Human NK cells

NK cells are mainly present in lymph nodes, bone marrow,

peripheral blood, lungs, spleen, and liver (14). These cells

develop from CD34+ hematopoietic progenitor cells. After

developing into lymphoid progenitor cells, the cells gradually

downregulate CD34 and upregulate CD56 and then develop into

NK cells (Figure 1). CD56-expressing cells are divided into

CD56bright and CD56dim subsets, defined on the basis of

density of CD56 expression. More than 90% of NK cells

subtype in the body is CD56dim NK cells (15–17), which play
FIGURE 1

Development of NK cells in humans.
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an important roles in tumor immunotherapy (Figure 2).

CD56bright NK cells are immature NK cells and either function

as progenitor cells of CD56dim NK cells or as effector cells.

Compare to CD56dim NK cells, CD56bright NK cells exert less

cytotoxic effects and secrete certain cytokines, growth factors,

and chemokines to play immunomodulatory roles. CD56dim NK

cells exhibit weak cytokine secretion activity, but these cells show

natural cytotoxicity and antibody-dependent cell-mediated

cytotoxicity, with more lethality compared with CD56bright

cells (18–21). Their main target cells are tumor cells, virus-

infected cells, and parasites, and these cells initiate and

participate in the adaptive immune response. They also show

good therapeutic effects in rheumatoid arthritis (22, 23).
2.2 NK cells target and kill tumor cells

Tumor development is caused by abnormal cell

proliferation. Tumor progression involves metastasis from the

primary site to other sites and invasion of vital organs and organ

failure, resulting in patient death (24, 25). The body has various

strategies to prevent tumor development through checks by the

immune system (26). Therefore, the mechanisms by which NK

cells find and kill tumor cells require elucidation to potentially

identify new strategies to improve outcome of cancer patients.

Tumorcellshave reducedexpressionofmajorhistocompatibility

complex class I (MHC-I) early during tumor growth to avoid

surveillance by the immune system. However, tumor cells with low

MHC-I expression could stimulate NK cells, allowing NK cells to

detect andkill tumor cells at an early stage (27, 28).NKcells eliminate

tumor cells through fourpathways.One is killing targeted tumor cells

by releasing perforin and granzyme-containing cytoplasmic

granules, leading to apoptosis of tumor cells. Granzymes are

released into the intracellular space in a calcium-dependent
Frontiers in Immunology 03
manner (29, 30). Perforin in cytoplasmic granules induces cell

membrane perforation, allowing granzyme to enter tumor cells,

which leads to cell death receptor–mediated apoptosis (31).

Second, NK cells can secret tumor necrosis factor (TNF)

superfamily members, such as FasL and TNF-related apoptosis-

inducing ligand (TRAIL),which canbind to their receptors to induce

apoptosisof target cells (32, 33).The thirdpathway is to induce tumor

cell apoptosis by limiting tumor angiogenesis and enhancing

adaptive immunity by releasing effector molecules with anti-cancer

properties, such as interferon-g (IFN-g) (29, 34). Stimulating

cytokines, such as interleukin(IL)-2, IL-12, IL-15, and IL-18 and

cytokines leading to IFNproduction, enhance theanti-tumoreffectof

NK cells (29, 35). NK cells also produce chemokines to recruit

macrophages, dendritic cells, and T cells to cooperate in suppressing

tumor growth (36, 37). Fourth, Fc receptor (CD16) is expressed and

mediates the antibody-dependent cell-mediated cytotoxicity

(ADCC) effect (38) (Figure 3).
2.3 Immune escape of tumor cells

Although NK cells play an important role in immune

surveillance, tumor cells also could escape immune

surveillance by NK cells through various mechanisms (39).

Tumor cells can down regulate ligands recognized by NK cell

receptors through metalloproteinase mediated cleavage and

other mechanisms, leading to immune escape (40, 41). Second,

during tumor development, tumor cells and factors in the tumor

microenvironment release a variety of immunosuppressive

factors to escape immune surveillance by NK cells (42). Third,

NK cells are inhibited by immunosuppressive cells after immune

escape of tumor cells (43).
FIGURE 2

Distribution of NK cells in humans.

FIGURE 3

NK cell-mediated killing of tumor cells.
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3 Combined applications of
CAR-NK cells and immune
checkpoint inhibitors

Multiple studies have linked cancer and the immune system

(44–46). Similar to organ transplantation, studies have shown

that the immune system can recognize and respond to tumors.

Therefore, research has focused on developing anti-tumor

strategies by activating the immune system (47, 48). Tumor

immunotherapy, including adoptive cell therapy and immune

checkpoint therapy, are likely to revolutionize the treatment of

malignant tumors (49). NK cell immunotherapy mainly includes

adoptive NK cell therapy and NK cell–based ADCC functional

antibody therapy. Adoptive NK cell therapy could exploit the

intrinsic anti-tumor potentials of NK cells (50). Besides, NK cells

can also be modified by gene editing (49, 51–53). However, these

NK cell immunotherapies also have some limitations, such as

life-threatening toxicity, insignificant efficacy in solid tumors,

and poor durability [55]. Therefore, we propose combining

CAR-immune cell therapy with other anti-tumor therapies to

help improve the anti-tumor effect, inhibit toxicity, and improve

the prognosis of patients (7, 12, 54–56).

3.1 CAR-NK cells

CAR-based gene modification of immune cells to express

synthetic receptors redirects immune cells to tumor surface

antigens for tumor clearance through immune cell cytotoxicity

(57, 58). CAR molecules expressed on NK cells contain an

extracellular domain, a transmembrane region, and one or

more intracellular signaling domains (56, 59). The extracellular

domain includes a signal peptide and an antigen-recognizing

single-chain antibody fragment, which mainly recognizes tumor

associated antigens (TAAs) on tumor cells. A hinge region

connects this structure to the transmembrane region, which is

also connected intracellularly to the intracellular domain

containing the activation signal. The hinge assembly connects

the ectodomain to the transmembrane domain. The

transmembrane domain, a hydrophobic a-helix, crosses the

membrane between the spacer and domain at end of the signal

peptide. The inner domain (signaling domain) is relatively

complex and is a functional component of CAR-immune cells

that controls their activation, proliferation, and survival (60–62).

Successful CAR design is achieved by a combination of careful

design and functional testing. The inner domain of the CAR

transmits costimulatory signals to immune cells in response to

antigen recognition by the outer domain, enabling them to

initiate cytotoxic functions (63). Similar to CAR-T cell

therapy, several generations of CAR-NK cells have been
Frontiers in Immunology 04
developed. First-generation CAR-NK cells, similar to CAR-T

cells, contain only CD3z signals. The CAR construct has been

fine-tuned to induce a more potent anti-tumor response,

increase antigen affinity, and prolong in vivo persistence using

multiple genetic engineering technologies . Various

costimulatory elements have been studied, such as second- and

third-generation CAR-NK cells, which carry one or two

additional costimulatory signals, respectively. Costimulatory

molecules are derived from the immunoglobulin superfamily

(CD28 and inducible costimulator), TNF receptor superfamily

(4-1BB, OX40, CD40, and CD27), SLAM-related receptor family

(2B4), and other domains including CD40L and Toll-like

receptor (3, 56, 64–66). Compared with early CAR-NK

constructs, which are mainly based on the costimulatory

domain involved in T cell activation, NK cell–specific signal

adapters become valuable due to their increasingly powerful

functions (67, 68). In a preclinical study investigating CD19-

directed CAR-NK cells, the addition of DAP10, a physiological

adapter of NKG2D, resulted in enhanced anti-tumor potency

compared with constructs using CD3z signals alone (4, 68, 69).

Other studies have reported that the addition of DAP12 to

prostate stem cell antigen–targeted CAR constructs and 2B4 to

mesodermin-targeted CAR-NK cells amplifies anti-tumor effects

(70, 71).

The structural design of the first three generations of CARs

depended on the immune cell receptor domain, which has some

limitations in cellular immunotherapy. Most current CAR

constructs rely on the CD3z chain signaling domain, and

strong activation signals are important to induce effective anti-

tumor responses but they may also lead to rapid exhaustion of

effector cells. Thus, a combination of costimulatory domains can

be used to calibrate the desired immune cell response. Compared

with 4-1BB-based CARs, CD28-based CARs have faster effector

features and induce higher expression of IFN-g, granzyme B, and

TNF-a. However, this strong costimulatory signal also leads to

activation-induced cell death. Conversely, 4-1BB-CD3z
signaling preferentially induces memory-related genes and

sustains anti-tumor activity. The reason may be that the 4-1BB

domain ameliorates NK cell depletion induced by the CD28

domain (68, 70, 72, 73).

Fourth-generation constructs, termed armed CARs, are

more effective and incorporate molecular payloads that confer

additional features and functions to CAR-modified immune

cells that are not present in any physiological immune cell

receptor. This approach enables engineering of the CAR

structure. Current clinical trials of CAR-NK cells are

investigating second- and third-generation CAR-NK

constructs that eliminate all circulating adoptive NK cells by

inducing IL-15 expression to enhance caspase 9 activity to

prevent adverse toxicity (13, 74, 75).
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3.2 Advantages of CAR-NK cells

CAR-NK cells have the potential to be applied in other

medical fields. These cells may be safer than CAR-T cells

because cytokines secreted by activated NK cells are safer

and usually suppress the proinflammatory cytokines such as

TNF-a, IL-1, and IL-6 released by CAR-T cells. Additionally,

CAR-NK cells reduce the risk of GVHD because they are not

restricted to MHC (51, 76). CAR-NK cells may also have

various cytotoxic effects as they recognize and kill targets

through engineered killing capabilities and natural cytotoxic

receptors (77). Interestingly, Clinical trials CAR-NK cells can

recognize and kill the residual tumor cells after long-term

treatment. because CAR-NK cells contain CAR-dependent

and CAR-independent target recognition and killing

capabilities, the incidence of tumor escape in CAR-NK

therapy is less (59, 78, 79). In addition, mature NK cells have

a short lifespan in blood, which reduces the risk of cellular

memory responses and cellular defects resulting from targeted/

non-tumor effects (80). What is more, a large number of NK

cell lines are available for CAR modification. Because of the low

risks of alloreactivity and graft-versus-host disease (GVHD),

allogeneic CAR-NK cells can be obtained from various sources

including PB, UCB, iPSCs, hESCs, and NK-92 cells (13, 76, 81).

Finally, the cost of CAR-NK cells is lower than that of CAR-T

cells and thus CAR-NKmay have greater market potential. The

gradually improved technology makes it possible to store, thaw

and reinfuse these cells, and can also carry out genetic

engineering or genetic editing technology when needed

(78) (Figure 4).
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3.3 Disadvantages of CAR-NK cells

Despite the many advantages of NK cells, the application of

CAR-NK cells has several challenges. Expansion of NK cells in

vitro is the first limitation for CAR-NK cell immunotherapy. The

number of NK cells obtained from a single donor is insufficient

for treatment, which makes expansion and activation of NK cells

critical (64, 82). Second, because the location of CAR binding

epitope and its distance from CAR-NK cell surface affect its

ability to bind antigen and activate CAR-NK cells, the current

CAR used in NK cells has a structure that causes a first magnetic

resistance, reducing the ability of these cells to bind antigens

(83). Additionally, the production process of usually requires 2–

3 weeks to culture NK cells and produce cytokines (IL-2 alone or

in combination with IL-15 or an anti-CD3 monoclonal

antibody) (13, 84). NK cells do not survive in the absence of

cytokines. Therefore, exogenous cytokines must be provided to

allow infused NK cells to survive and proliferate in vivo (64, 85).

The source of NK cells is also an issue. Autologous NK cells need

to be frozen and thawed. However, this reduces their anti-tumor

effect and survival rate (86). Additionally, exogenous cytokines

may have adverse effects such as systemic toxicity (70, 78, 87).

Similar to CAR-T cells, NK cells lack effective gene transfer

strategies (88). Both viral and non-viral vectors have been used

to genetically engineer CAR-NK cells (89). While the

transduction efficiency of retroviral vectors is high, these

vectors may cause insertional mutations, carcinogenesis, and

other adverse effects (90). However, while lentiviral vectors have

a low incidence of insertional mutations, their transfection

efficiency in peripheral blood NK cells is as low as 20% (91).
FIGURE 4

Development and working principle of CAR-NK cells.
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mRNA transfection is also considered to be a safe and practical

transfection method for CAR-NK cells. In a xenograft tumor

model, receptor expression exceeded 80% at 24h after

electroporation of mRNA, and NK cells transfected with

mRNA exerted marked cytotoxicity (92). Studies have recently

shown that mRNA transfection avoids targeted non-tumor

toxicity, a major limiting factor in the clinical application of

CAR-modified cell immunotherapy (92, 93). However, the anti-

tumor effect of CAR-NK cells transfected with mRNA by

electroporation is temporary because the expression of CARs

does not exceed 3 days.
4 CAR-NK cell and immune
checkpoint therapies

CAR-NK cells have better targeting ability compared with other

immune cells. In addition to recognizing tumor surface antigens

through CARs, CAR-NK cells recognize tumor cells through

various receptors such as natural cytotoxic receptors NKp46,

NKp44, NKp30, NKG2D, and DNAM-1 (CD226) (13, 60, 94,

95). Despite the success of adoptive NK cell therapy, immune cell

depletion remains a therapeutic barrier. To develop the next

generation of CAR-NK cells, the negative regulator of NK cells

may be a potential new design direction (96–98). T cell immune

checkpoints affect CAR-T cell therapy. For example, PD-1 is an

immune checkpoint receptor expressed on the T cell surface. It

binds to PD-L1 expressed by target cells and sends an inactivating

signal to T cells, thereby inhibiting the immune activity of T cells

(12, 99, 100). However, many cancer cells express high levels of PD-

L1, leading to cancer cell survival after T cell engagement. This can

be overcome by targeted therapy. PD-1/PD-L1 axis inhibitors have

been proven to achieve good clinical effects (101). However, PD-1

expression on NK cells is very low. Additionally, there are immune
Frontiers in Immunology 06
checkpoint receptors on NK cells that may regulate the functions of

CAR-NK cells, such as T cell immunoreceptor with Ig and ITIM

domains (TIGIT), NKG2A, lymphocyte activation gene-3 (LAG-3),

and T cell immunoglobulin and mucin domain-containing protein

3 (TIM-3) (Figure 5) (95–97).
4.1 TIGIT

TIGIT, also known as WUCAM, Vstm3, and VSIG9, is a

member of the poliovirus receptor (PVR)/Nectin family and

immunoglobulin (Ig) superfamily (11, 102, 103). TIGIT is an

inhibitory receptor (104) that inhibits T and NK cell activation

(102). TIGIT is a transmembrane glycoprotein composed of three

domains, the extracellular Ig variable domain, type I

transmembrane domain, and short intracellular domain, and has

an immune receptor tyrosine-based inhibition motif (ITIM) and

immunoglobulin tyrosine tail-like phosphorylation motif

(104, 105).

Previous studies have shown that TIGIT is expressed in all types

of human NK cells (106). Poliovirus receptor (PVR, CD155), a

physical ligand of TIGIT, which can bind TIGIT and activate

immunosuppressive signal through the cytoplasmic ITIM domain

of TIGIT (98). CD155 also plays an important role in both NK- and

T cell-mediated immunity in humans and mice and is expressed on

T cells, B cells, macrophages, and dendritic cells (105, 107, 108).

CD155 is frequently overexpressed in humanmalignant tumors. As

an immunomodulatory molecule, CD226 is a costimulatory

molecule of T cells and NK cells, while TIGIT and CD96 are co

inhibitory molecules, which can competitively bind CD155 (109).

However, TIGIT has the highest affinity for CD155, and CD226 has

the lowest affinity for CD155, as evidenced by direct radioligand

binding analysis and competition experiments (110, 111).

Therefore, the balance between the three competitively binding
FIGURE 5

Combination of CAR-NK cells and immune checkpoint inhibitors.
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CD155 may play an important role in maintaining NK cells

immune functions (112).

TIGIT interference has been shown to restore NK cell

function and inhibit tumor growth in ovarian and breast

cancer (113, 114). Notably, 58% sequence homology is found

between human and mouse TIGIT; while the ITIM sequence in

the cytoplasmic tail of TIGIT is the same in mice and humans

(11, 107, 115). Similar to the inhibitory effect of human TIGIT,

murine TIGIT also inhibits the cytotoxicity of mouse NK cells.

Because of the cross-species specificity of the protein, human

and mouse TIGIT have different binding properties. Human

TIGIT binds more ligands to play an inhibitory role in

immunity (104, 116).
4.2 NKG2A

NKG2A, an immunosuppressive receptor, is an attractive

target for immunocheckpoint therapy. Approximately half of

human peripheral blood NK cells express NKG2A (117). It is

mainly expressed in CD56bright NK cells and gradually

decreases during NK cell maturation (118). NKG2A is a one-

way type II integral membrane glycoprotein containing

cytoplasmic, transmembrane, and extracellular lectin-like

domains. NKG2A has two types of ITIM, which are mainly

involved in immunosuppressive regulation (119–121).

The NKG2 protein is a C-type lectin that dimerizes with

CD94 on the cell surface (122, 123). The non-classical MHC class

I molecule human leukocyte antigen-E (HLA-E) is the main

ligand of NKG2A/CD94, and its expression is approximately 25

times lower than that of classical MHC class I molecules. It is

expressed in most normal tissues, and the interaction between

NKG2A and HLA-E inhibits NK and T cell activation (97, 124,

125). Binding of NKG2A/CD94 receptors to peptide-presenting

HLA-E leads to phosphorylation of ITIMs in NKG2A.

Phosphorylated ITIMs are responsible for the recruitment and

activation of intracellular phosphatases SHP-1 and SHP-2,

thereby inhibiting the activation signals generated by activating

receptors in NK cells (119, 126). HLA-E expression is generally

increased in tumor cells (125), which provides NKG2A with more

opportunities to inhibit NK cell activation. Similar to other

immune checkpoint molecules, NKG2A is used by tumor cells

for immune evasion. Therefore, disruption of the interaction

between NKG2A and its ligands may enhance the anti-tumor

immune response (127, 128). Previous studies have shown that

blocking of inhibitory checkpoints in NK cells may also be

effective for some metastatic carcinomas (129, 130). NKG2A is

also involved in the pathological processes of immune-mediated

diseases such as autoimmune diseases, inflammatory diseases,

parasitic infections, and transplant rejection. These findings

suggest that NKG2A is a novel therapeutic target for various

immune-mediated diseases (131, 132).
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4.3 LAG-3

Lymphocyte activation gene-3 (LAG-3), also known as

CD223, is a 503 amino acid protein encoded by the LAG3

gene. LAG-3 is an immune checkpoint receptor protein localized

in the cell membrane (133). The extracellular portion of the

molecule consists of four immunoglobulin-like domains (D1–

D4), which shows rigidity between D1 and D2 as well as D3 and

D4 and relative flexibility between D1 and D2 as well as D3 and

D4 (134). The human LAG3 gene is located on chromosome 12

(12p13), a similar location as the gene for CD4 (12p13.31).

While LAG-3 and CD4 share only approximately 20% identical

at the protein level, they have a highly homologous protein

structure (135, 136). The cytoplasmic tail of LAG-3 has three key

elements: a serine phosphorylation site, a KIEELE motif, and a

glutamic proline dipeptide repeat. The KIEELE motif is highly

conserved and may be involved in the transduction of the

downstream inhibitory signal of LAG-3 because LAG-3

protein lacking this structure cannot exert an inhibitory effect

on T cells (137). LAG-3 is selectively transcribed in activated T

and NK cells. LAG-3 is mainly expressed in activated T, NK, B,

and plasma cell dendritic cells. LAG-3 is expressed on NK cells,

invariant NK T cells, Treg cells, and CD4+ and CD8+ subsets of

T lymphocytes activated by antigens (138–141).

The role of LAG-3 in regulating NK cell functions is unclear,

but similar to CD4, LAG-3 binds to major histocompatibility

complex II (MHC-II) molecules. Compared with CD4, LAG-3

has a higher affinity for MHC-II (approximately 100 times)

because LAG-3 enhances the interaction with MHC-II, and this

interaction occurs through a ring structure composed of 30

amino acids in its D1 domain (138, 140, 142, 143). LAG-3

selectively binds to the stable antigen peptide–MHC-II

molecular complex (pMHC-II) . Therefore , LAG-3

preferentially inhibits the activation of CD4+ T cells with

stable pMHC-II (143, 144). In NK cells, an increase in LAG-3

protein expression correlates with time post-infection and white

pulp localization. One study suggested that upregulation of NK

cells by LAG-3 causes the surrounding MHC-II+ cells to send

inhibitory feedback signals, thereby terminating inhibition of T

cells by NK cells (145). NK cells from LAG-3-deficient mice are

defective in killing specific cancer cells (146). Considering of the

effect of LAG-3 on the NK cell effector function, targeting LAG-3

may be useful in immunotherapy (147).
4.4 TIM-3

TIM-3 protein is a type I membrane protein also known as

hepatitis A virus cell receptor 2 (HAVCR2), which is a negative

regulator of anti-tumor immunity (148). It is a member of the TIM

family that contain eight members, TIM1–TIM8. Among the

protein family, TIM1, TIM3, and TIM4 are expressed in humans
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(149). TIM-3 was discovered in 2002 (150). TIM-3 includes three

regions: the extracellular, transmembrane, and intracellular regions.

The extracellular region consists of the N-terminal extracellular

immunoglobulin variable (IgV) domain with an FG-CC loop and

N-linked glycan, the mucin domain containing O-linked

glycosylation sites, and the stalk domain containing N-linked

glycan. The intracellular region consists of a cytoplasmic tail with

five tyrosine residues (151, 152). TIM-3 is expressed on terminally

differentiated CD4+ T cell subsets, such as Th1, Th17, and Tregs

cells, and type 1 CD8+ T cells, but not on Th2 cells. It is also

expressed on B cells, macrophages, dendritic cells, natural killer

cells, mast cells, and monocytes (153, 154).

TIM-3 has been shown to inhibit tumor growth in various

preclinical cancer models. The IgV domain contains binding sites

for its ligands. Phosphatidylserine, carcinoembryonic antigen-

associated cell adhesion molecule, and high mobility group

protein 1 bind to the FG-CC loop, while Gal9 binds to N-linked

glycans (151, 155). TIM-3 binds to its ligand galectin-9 to induce

Th1 cell depletion (148, 156). The interaction of TIM-3 with its

ligands also causes peripheral immune tolerance, and blocking

TIM-3 eliminates the development of Th1 cell tolerance (148,

157). Although TIM-3 is a marker of T cell exhaustion (153), its

expression is not associated with NK cell dysfunction in healthy

donors. TIM-3 is also expressed in NK cells, the cytolytic activity of

TIM-3+ NK cells from healthy humans is higher than that of TIM-

3- NK cells, and the TIM-3+ NK cells can kill K562 cells by releasing

IFN-g (158–160).
Cytokine stimulation increases the expression of TIM-3 on

CD56dim and CD56bright NK cell subsets (161). TIM-3 expression

on peripheral blood NK cells is increased in many cancer patients

compared with healthy individuals. The expression of TIM-3 on

NK cells increased with the development of disease stage. It has

been reported that the survival rate of lung adenocarcinoma

patients decreases with the increase of TIM-3+ NK cell percentage

(155, 161, 162). Moreover, an study in esophageal cancer reported

that tumor-infiltrating TIM-3+ NK cells showed a reduction in

IFN-g production and degranulation capacity compared with TIM-

3+ counterparts (163). It has been reported that TIM-3 blockade

can enhance the function of immune cells in multiple myeloma and

melanoma (164, 165). Therefore, TIM-3 is expressed on fully

functionally mature and/or activated NK cells and may function

as an inhibitory receptor to inhibit NK cell functions similar to killer

cell inhibitory receptor (KIR) and NKG2A.
5 Combination of CAR-NK cells
therapy and immune checkpoint
therapies for various tumors

Despite the remarkable success of adoptive NK cell therapy,

immune cell depletion remains a barrier for therapeutic efficacy

(166). To develop the next generation of CAR-NK cells, the
Frontiers in Immunology 08
identification of negative regulators of NK cell immune functions

is required. Some checkpoint receptors, such as PD-1, LAG-3, TIM-

3, TIGIT, and killer cell lectin-like receptor subfamily G member 1

(KLRG1), are upregulated in exhausted NK cells (96, 98). NKG2A is

one of the most prominent inhibitory NK cell receptors, and its

gene deletion is associated with increased NK cell cytotoxicity

against tumors (117). Blocking TIGIT prevents NK cell depletion

(102, 105, 107). Additionally, cytokine-inducible Src homology 2-

containing (CIS) protein, which is an important cytokine

checkpoint upstream of IL-15 signaling, is induced by the

addition of cytokines, achieving enhanced metabolic fitness and

effector functions in CAR-NK cells (70, 167). Other studies have

revealed the positive effects of PD-1/PD-L1 and CTLA-4 blockade

on NK cells (168).

CAR-NK therapy combined with immune checkpoint therapy

showed better therapeutic effects compared with single therapy in

clinical treatment (13). CAR-NK cell therapy has shown preliminary

clinical significance. In addition to being effective against

hematological and lymphoid tumors, NK cells have been used as

an important treatment strategy for solid tumors (169, 170). For

example, a phase I/IIa trial of CAR-NK cell therapy in 11 patients

with relapsed/refractory non-Hodgkin’s lymphoma (NHL) or chronic

lymphocytic leukemia (CLL) was recently reported (NCT00505245).

Of the 11 patients in the trial, 8 patients (73%) were treated, and 7

patients had a complete response to the treatment with no evidence

of disease at a median follow-up of 13.8 months. Most patients had a

significant response within 30 days after receiving cell infusion,

showing a progressive response, and the durability of the treatment

was confirmed up to 1 year after infusion.

The safety of CAR-NK cell infusion has been shown by the

absence of serious adverse events during patient treatment and

follow-up (clinicaltrials.gov, accessed on January 1, 2020). While

some patients in remission experienced disease relapse or required

additional anti-cancer therapy, cytokine release syndrome (CRS),

immune effector cell-associated neurotoxicity syndrome (ICANS),

or GVHD of any grade has not been reported. Engineered hiPSC-

derived allogeneic NK cells are expected to be a safe and effective off-

the-shelf cell therapy drug (171). The function of transgenicNK cells

is significantly enhanced and they have a significant killing ability for

hematological and solid tumors. As ofOctober 2022, 39 clinical trials

of CAR-NK therapy have been registered, mainly in the United

States, China, and European countries (clinicaltrials.gov). Most

targets of CAR-NK therapy are in hematological tumors, but also

in solid malignancies such as pancreatic, ovarian, and prostate

cancers. Most clinical trials use allogeneic NK cells, mainly from

healthy donors, or NK cell lines such as NK92 (Table 1).

A cytotoxic T-lymphocyte-associated protein 4 (CTLA4)

inhibitor, ipilimumab, has been used to treat patients with

advanced gastric cancer in a phase II clinical study

(NCT01585987). Tremelimumab was evaluated in a phase II trial

as a second-line treatment for patients with metastatic gastric

adenocarcinoma. Pembrolizumab, a PD1 inhibitor, was approved

by the FDA as a third-line treatment for patients with PD-L1-
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TABLE 1 Clinical trial summary of CAR-NK cell therapies.

Cancer Type Type of
malignancy

NK Source Title Interventions Statue Phase NCT Number

Neoplastic
Hematologic
Disorder

Lymphoma B-cell Non Hodgkin Lymphoma b cord blood Clinical Study of Cord Blood derived CAR-NK Cells
Targeting CD19 in the Treatment of Refractory/
Relapsed B-cell NHL

Biological: anti CD19 CAR-NK Recruiting Phase 1 NCT05472558

B-cell Non Hodgkin Lymphoma b unpublished Clinical Study of HLA Haploidentical CAR-NK Cells
Targeting CD19 in the Treatment of Refractory/
Relapsed B-cell NHL

Biological: anti CD19 CAR-NK Recruiting Phase 1 NCT04887012

NHL unpublished Anti-CD19 CAR NK Cell Therapy for R/R Non-
Hodgkin Lymphoma.

Biological: anti CD19 CAR NK Not yet
recruiting

Early
Phase 1

NCT04639739

Refractory B-Cell Lymphoma unpublished Study of Anti-CD22 CAR NK Cells in Relapsed and
Refractory B Cell Lymphoma

Biological: Anti CD22 CAR NK Cells Unknown
status

Early
Phase 1

NCT03692767

Refractory B-Cell Lymphoma unpublished Study of Anti-CD19 CAR NK Cells in Relapsed and
Refractory B Cell Lymphoma

Biological: Anti CD19 CAR NK Cells Unknown
status

Early
Phase 1

NCT03690310

Non Hodgkin Lymphoma unpublished Anti-CD19 CAR-Engineered NK Cells in the
Treatment of Relapsed/Refractory B-cell Malignancies

Biological: CAR NK-CD19 Cells Recruiting Phase 1 NCT05410041

Refractory B-Cell Lymphoma unpublished Study of Anti-CD19/CD22 CAR NK Cells in Relapsed
and Refractory B Cell Lymphoma

Biological: Anti CD19/CD22 CAR NK Cells Unknown
status

Early
Phase 1

NCT03824964

Non Hodgkin's Lymphoma cord blood Cord Blood Derived Anti-CD19 CAR-Engineered NK
Cells for B Lymphoid Malignancies

Biological: Anti CD19/CD22 CAR NK Cells Recruiting Phase 1 NCT04796675

•Lymphoma •Non_x005fHodgkin •Large B-cell
Lymphoma •Mantle Cell Lymphoma •Indolent
Lymphoma •Small Lymphocytic •Lymphoma
Aggressive •Lymphoma •Large-cell Lymphoma

peripheral
blood

NKX019, Intravenous Allogeneic Chimeric Antigen
Receptor Natural Killer Cells (CAR NK), in Adults
With B-cell Cancers

Biological: NKX019 Recruiting Phase 1 NCT05020678

•Follicular Lymphoma •Mantle Cell Lymphoma
•Diffuse Large Cell Lymphoma

unpublished PCAR-119 Bridge Immunotherapy Prior to Stem Cell
Transplant in Treating Patients With CD19 Positive
Leukemia and Lymphoma

Biological: anti CD19 CAR-NK cells Unknown
status

Phase 1
Phase 2

NCT02892695

•Mantle Cell Lymphoma •Recurrent Diffuse Large B-
Cell •Lymphoma Recurrent Follicular •Lymphoma
Refractory B Cell Non-Hodgkin •Lymphoma
Refractory Diffuse Large B-Cell •Lymphoma Refractory
Follicular •Lymphoma

umbilical
cord blood

CAR.CD19-CD28-zeta-2A iCasp9-IL15-Transduced
Cord Blood NK Cells, High-Dose Chemotherapy, and
Stem Cell Transplant in Treating Participants With B-
cell Lymphoma

Procedure: Autologous Hematopoietic Stem
Cell Transplantation •Drug: Carmustine
•Drug: Cytarabine •Drug: Etoposide
•Biological: Filgrastim •Drug: Melphalan
•Biological: Rituximab •Biological: Umbilical
Cord Blood-derived Natural Killer Cells

Withdrawn Phase 1
Phase 2

NCT03579927

•Acute Lymphocytic Leukemia •Non-hodgkin
Lymphoma

cord blood Umbilical & Cord Blood (CB) Derived CAR-
Engineered NK Cells for B Lymphoid Malignancies

•Drug: Fludarabine •Drug: Cyclophosphamide
•Drug: Mesna •Biological: iC9/ CAR.19/IL15-
Transduced CB-NK Cells •Drug: AP1903

Active, not
recruiting

Phase 1
Phase 2

NCT03056339

•B-cell Lymphoma unpublished Natural Killer (NK) Cell Therapy for B-Cell
Malignancies

•Drug: QN-019a •Drug: Rituximab •Drug:
Cyclophosphamid •Drug: Fludarabine •Drug:
VP-16

Recruiting Phase 1 NCT05379647

•B-Cell Lymphoma unpublished Phase I/II Study of CAR.70- Engineered IL15-
transduced Cord Blood-derived NK Cells in
Conjunction With Lymphodepleting Chemotherapy for

•Drug: Cyclophosphamide •Drug: CAR.70/
IL15- transduced CB-NK cells •Drug:
Fludarabine phosphate

Not yet
recruiting

•Phase
1
•Phase
2

NCT05092451

(Continued)
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TABLE 1 Continued

Cancer Type Type of
malignancy

NK Source Title Interventions Statue Phase NCT Number

the Management of Relapse/ Refractory Hematological
Malignances

•Indolent Non Hodgkin Lymphoma •Aggressive Non-
Hodgkin Lymphoma

unpublished A Study of CNTY-101 in Participants With CD19-
Positive B-Cell Malignancies

•Biological: CNTY-101 •Biological: IL-2 •Drug:
Lymphodepleting Chemotherapy

Not yet
recruiting

Phase 1 NCT05336409

Leukemia •Acute Myeloid Leukemia unpublished Study of Anti-CD33/CLL1 CAR NK in Acute Myeloid
Leukemia

•Biological: NKG2D CAR-NK92 cells Recruiting Early
Phase 1

NCT05215015

•Leukemia, Myeloid, Acute unpublished Anti-CD33 CAR NK Cells in the Treatment of
Relapsed/ Refractory Acute Myeloid Leukemia

•Biological: anti CD33 CAR NK cells •Drug:
Fludarabine •Drug: Cytoxan

Recruiting Phase 1 NCT05008575

•Acute Lymphocytic Leukemia •Chronic Lymphocytic
Leukemia

unpublished Anti-CD19 CAR-Engineered NK Cells in the
Treatment of Relapsed/Refractory B-cell Malignancies

•Biological: CAR NK-CD19 Cells Recruiting Phase 1 NCT05410041

•Acute Lymphocytic Leukemia •Chronic Lymphocytic
Leukemia

cord blood Cord Blood Derived Anti-CD19 CAR-Engineered NK
Cells for B Lymphoid Malignancies

•Drug: Fludarabine + Cyclophosphamide +
CAR-NK-CD19 Cells

Recruiting Phase 1 NCT04796675

•Relapsed/ Refractory AML •AML, Adult unpublished NKX101, Intravenous Allogeneic CAR NK Cells, in
Adults With AML or MDS

•Biological: NKX101 - CAR NK cell therapy Recruiting Phase 1 NCT04623944

•B-cell Acute Lymphoblastic Leukemia •Waldenstrom
Macroglobulinemia •Chronic Lymphocytic Leukemia

peripheral
blood

NKX019, Intravenous Allogeneic Chimeric Antigen
Receptor Natural Killer Cells (CAR NK), in Adults
With B-cell Cancers

•Biological: NKX019 Recruiting Phase 1 NCT05020678

•Acute Lymphoblastic Leukemia unpublished Anti-CD19 CAR-Engineered NK Cells in the
Treatment of Relapsed/Refractory Acute Lymphoblastic
Leukemia

•Biological: CAR NK-CD19 Cells Recruiting Phase 1 NCT05563545

•Acute Myelogenous Leukemia •Acute Myeloid
Leukemia •Acute Myeloid Leukemia With Maturation
•Acute Myeloid Leukemia Without Maturation •ANLL

NK-92 cell
line

CAR-pNK Cell Immunotherapy for Relapsed/
Refractory CD33+ AML

•Biological: anti CD33 CAR-NK cells Unknown
status

•Phase
1
•Phase
2

NCT02944162

•Acute Lymphocytic Leukemia •Chronic Lymphocytic
Leukemia •B-cell Prolymphocytic Leukemia

unpublished PCAR-119 Bridge Immunotherapy Prior to Stem Cell
Transplant in Treating Patients With CD19 Positive
Leukemia and Lymphoma

•Biological: anti CD19 CAR-NK cells Unknown
status

•Phase
1
•Phase
2

NCT02892695

•Acute Lymphoblastic Leukemia •Chronic
Lymphoblastic Leukemia

cord blood Universal Chimeric Antigen Receptor-modified AT19
Cells for CD19+ Relapsed/Refractory Hematological
Malignancies

•Drug: Fludarabine + Cyclophosphamide +
CAR-NK-CD19 Cells

Recruiting Phase 1 NCT04796688

•Acute Lymphocytic Leukemia •Chronic Lymphocytic
Leukemia

unpublished Umbilical & Cord Blood (CB) Derived CAR-
Engineered NK Cells for B Lymphoid Malignancies

•Drug: Fludarabine •Drug: Cyclophosphamide
•Drug: Mesna •Biological: iC9/ CAR.19/IL15-
Transduced CB-NK Cells •Drug: AP1903

Active, not
recruiting

•Phase
1
•Phase
2

NCT03056339

•B-cell Acute Lymphoblastic Leukemia unpublished Natural Killer (NK) Cell Therapy for B-Cell
Malignancies

•Drug: QN-019a •Drug: Rituximab •Drug:
Cyclophosphamid •Drug: Fludarabine •Drug:
VP-16

Recruiting Phase 1 NCT05379647

•Acute Myeloid Leukemia (AML) cord blood Phase I/II Study of CAR.70- Engineered IL15-
transduced Cord Blood-derived NK Cells in
Conjunction With Lymphodepleting Chemotherapy for

•Drug: Cyclophosphamide •Drug: CAR.70/
IL15- transduced CB-NK cells •Drug:
Fludarabine phosphate

Not yet
recruiting

•Phase
1
•Phase
2

NCT05092451
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TABLE 1 Continued

Cancer Type Type of
malignancy

NK Source Title Interventions Statue Phase NCT Number

the Management of Relapse/ Refractory Hematological
Malignances

Myeloma •Multiple Myeloma, Refractory unpublished Anti-BCMA CAR-NK Cell Therapy for the Relapsed
or Refractory Multiple Myeloma

•Biological: Anti BCMA CAR-NK Cells •Drug:
Fludarabine •Drug: Cytoxan

Recruiting Early
Phase 1

NCT05008536

•Multiple Myeloma unpublished Clinical Research of Adoptive BCMA CAR-NK Cells
on Relapse/Refractory MM

•Biological: BCMA CAR-NK 92 cells Unknown
status

•Phase
1
•Phase
2

NCT03940833

•MDS •Refractory Myelodysplastic Syndromes unpublished NKX101, Intravenous Allogeneic CAR NK Cells, in
Adults With AML or MDS

•Biological: NKX101 •CAR NK cell therapy Recruiting Phase 1 NCT04623944

•Multiple Myeloma •Myeloma peripheral
blood

FT576 in Subjects With Multiple Myeloma •Drug: FT576 (Allogenic CAR NK cells with
BCMA expression) •Drug: Cyclophosphamide
•Drug: Fludarabine •Drug: Daratumumab

Recruiting Phase 1 NCT05182073

Solid Tumor •Stage IV Ovarian Cancer •Testis Cancer Refractory
•Endometrial Cancer Recurrent

peripheral
blood

CLDN6-CAR-NK Cell Therapy for Advanced Solid
Tumors

•Biological: Claudin6 targeting CAR-NK cells Recruiting •Phase
1
•Phase
2

NCT05410717

•Refractory Metastatic Colorectal Cancer NK-92 cell
line

NKG2D CAR-NK Cell Therapy in Patients With
Refractory Metastatic Colorectal Cancer

•Drug: NKG2D CAR-NK Recruiting Phase 1 NCT05528341

•Relapsed/ Refractory Solid Tumors NK-92 Cell
line

NKG2D-CAR-NK92 Cells Immunotherapy for Solid
Tumors

•Biological: NKG2D CAR-NK92 cells Recruiting Phase 1 NCT05528341

•Advanced Solid Tumors unpublished Study of Anti-5T4 CAR-NK Cell Therapy in Advanced
Solid Tumors

•Biological: Anti CAR-NK Cells Recruiting Early
Phase 1

NCT05194709

•Epithelial Ovarian Cancer peripheral
blood

Study of Anti-Mesothelin Car NK Cells in Epithelial
Ovarian Cancer

•Biological: anti Mesothelin Car NK Cells Unknown
status

Early
Phase 1

NCT03692637

•Solid Tumours peripheral
blood

Pilot Study of NKG2D-Ligand Targeted CAR-NK Cells
in Patients With Metastatic Solid Tumours

•Biological: CAR NK cells targeting NKG2D
ligands

Unknown
status

Phase 1 NCT03415100

•SCLC, Extensive Stage unpublished Study of DLL3-CAR-NK Cells in the Treatment of
Extensive Stage Small Cell Lung Cancer

•Biological: DLL3- CAR-NK cells Recruiting Phase 1 NCT05507593

•Solid Tumor unpublished Clinical Research of ROBO1 Specific CAR-NK Cells on
Patients With Solid Tumors

•Biological: ROBO1 CAR-NK cells Unknown
status

•Phase
1
•Phase
2

NCT03940820

•Gastroesophageal Junction (GEJ) Cancers •Advanced
HNSCC

unpublished Immunotherapy Combination: Irradiated PD-L1 CAR-
NK Cells Plus Pembrolizumab Plus N-803 for Subjects
With Recurrent/ Metastatic Gastric or Head and Neck
Cancer

•Drug: N-803 •Drug: Pembrolizumab
•Biological: PD-L1 t haNK

Recruiting Phase 2 NCT04847466

•Pancreatic Cancer unpublished Clinical Research of ROBO1 Specific BiCAR-NK Cells
on Patients With Pancreatic Cancer

•Biological: BiCAR NK cells (ROBO1 CAR-NK
cells)

Unknown
status

•Phase
1
•Phase
2

NCT03941457

(Continued)

Y
an

g
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

8
15

4
6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

11

https://doi.org/10.3389/fimmu.2022.1081546
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Continued

Cancer Type Type of
malignancy

NK Source Title Interventions Statue Phase NCT Number

•Malignant Tumor unpublished Clinical Research of ROBO1 Specific BiCAR-NK/T
Cells on Patients With Malignant Tumor

•Biological: BiCAR NK/T cells (ROBO1 CAR-
NK/T cells)

Unknown
status

•Phase
1
•Phase
2

NCT03931720

•Metastatic Castration-resistant Prostate Cancer unpublished Study of Anti-PSMA CAR NK Cell (TABP EIC) in
Metastatic Castration-Resistant Prostate Cancer

•Drug: TABP EIC •Biological:
Cyclophosphamide •Biological: fludarabine

Recruiting Early
Phase 1

NCT03692663

Others •Safety and Efficacy unpublished NKG2D CAR-NK Cell Therapy in Patients With
Relapsed or Refractory Acute Myeloid Leukemia

•Biological: CAR-NK cells Recruiting Phase 1 NCT05247957

•COVID-19 unpublished A Phase I/II Study of Universal Off-the-shelf NKG2D-
ACE2 CAR-NK Cells for Therapy of COVID-19

•Biological: NK cells,IL15-NK cells,NKG2D
CAR NK cells,ACE2 CAR-NK cells,NKG2D-
ACE2 CAR-NK cells

Recruiting •Phase
1
•Phase
2

NCT04324996
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positive advanced gastric cancer. Nivolumab is a Food and Drug

Administration (FDA)-approved drug as a third-line treatment for

patients with advanced gastric cancer. Tebotelimab, another PD-1

inhibitor, blocks PD-1 and LAG-3 checkpoint molecules

independently or synergistically. Additionally, durvalumab was

used in a phase I B/II clinical trial in patients with advanced

gastroesophageal cancer. In a phase III trial (NCT02625623),

avelumab was used as third-line therapy. The TIGIT inhibitor

tiragolumab is in a phase III trial and ociperlimab is in a phase II

trial. Relatlimab, a LAG-3 inhibitor, has also entered clinical

trials (Table 2).

The combination of CAR-T cells and nivolumab (anti-PD-1

antibody) has been used in the treatment of relapsed or refractory

classical Hodgkin’s lymphoma (CHL) (63). The PD-1/PD-L1 axis

inhibits the cytotoxicity of CAR-T cells, thereby protecting tumor
TABLE 2 Clinical trials of CAR-NK cell and immune checkpoint inhibitor the

Immune
checkpoints

Drug Number of CLINI-
CAL TRIALS

In combinat
with CAR-N

PD-1 Nivolumab
Pembrolizumab
Tislelizumab
Camrelizumab
Toripalimab

1271
3475
205
255
213

NO
YES
NO
NO
NO

PD-L1 Atezolizumab 570 NO

TIGIT Tiragolumab
Vibostolimab
Domvanalimab
Ociperlimab

Arcus

25
8
6
11
1

NO
NO
NO
NO
NO

CTLA-4 Zalifrelimab
BMS-986218
Quavonlimab
BMS-986249
AGEN1181
BMS-986288
ADG-116
HBM-4003
ONC-392
YH-001
ADG-126
XTX101
JS007
BA3071

5
4
4
1
4
1
3
5
2
6
2
1
1
1

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

NKG2A Monalizumab
BMS-986315

9
1

NO
NO

TIM-3 TSR-022
LY3321367

4
1

NO
NO

LAG-3 GSK2831781
IMP321

BMS-986016

3
13
8

NO
NO
NO

CD200R Samalizumab 2 NO

CD47 Magrolimab 20 NO

B7-H3 Enoblituzumab
MGA271

7
6

NO
NO

Frontiers in Immunology 13
cells from being killed (56), which poses a challenge for CAR-T

cell therapy. Therefore, the combination of CAR-NK cells therapy

and immunocheckpoint therapy may become a new potential

direction. CAR-NK will be developed into a safe, effective, and

“off-the-shelf” cancer immunotherapy. In addition, immune

checkpoint and CAR target can be designed together to

optimize NK cell activation and cytotoxicity to overcome tumor

suppression and escape.
6 Conclusion

In this review, we discussed CAR-NK therapy, preparation

of CAR-NK cells, clinical progress, and the advantages and

disadvantages of CAR-NK cells. Although CAR-NK cells have
rapies.

ion
K

NCT
Number

Conditions Interventions

NCT04847466 •Gastroesophageal
Junction (GEJ) Cancers
•Advanced HNSCC

•Drug: N-803
•Drug:
Pembrolizumab
•Biological: PD-L1
t_x005f haNK
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unique advantages, some challenges still exist, including the long

time and high cost of CAR-NK cell preparation, biological

toxicity, limited storage and transportation. The efficacy of

CAR-NK cells in the treatment of solid tumors is limited.

Regulatory challenges remain in terms of safety and clinical

efficacy. We also propose the combination of CAR-NK cell and

immune checkpoint therapies for future clinical applications.

Ongoing research may resolve the challenges of CAR-NK cells

and immune checkpoint therapies. Overcoming these issues will

help provide new breakthroughs in the treatment of tumors by

CAR modifications.
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