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Correlates of protection are key for vaccine development against any

pathogen. In this paper we summarize recent information about correlates

for vaccines against dengue, Ebola, influenza, pneumococcal, respiratory

syncytial virus, rotavirus, shigella, tuberculosis and Zika virus.
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Introduction

A correlate of protection (CoP) is an immune function that correlates with and may

be biologically responsible for vaccine-induced efficacy. The literature on this subject has

grown considerably since it was identified as an important issue in vaccinology (1–5).

The importance of CoP with regard to vaccines against SARS-2, the coronavirus causing

COVID-19, needs no emphasis, and numerous papers have been published on that

subject (6). However, not so much has been published recently about vaccines against

other diseases. This paper is an effort to summarize recent findings in a number of

important examples.

It should be acknowledged that the subject of CoP has become more complex due

to increasing knowledge concerning Fc Effector antibody mediated functions and T cell

mediated functions (7, 8). However, while it is evident that CoPs are often multiple and

synergistic, their utility depends on identifying responses that are major and

measurable. The fact that immune responses are often synergistic does not negate

the value of identifying the main immune function that correlates with the protection

generated by vaccination.

The SARS-2 novel coronavirus has been with us for only the last two years, but much

work has been expended on defining a CoP, as recently summarized (6). The chief CoP is

clearly neutralizing antibodies, with a gradual increase in efficacy as the titer increases.

Although T cell responses and Fc effector antibodies are important in modifying the
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results of infection, antibodies play the major role in preventing

infection in the first place (9–11). However, antibodies must be

specific for the variant virus, as the neutralizing epitopes differ

between strains (12).
Dengue viruses

The correlates of protection against the four serotypes of

dengue virus remain debatable, despite the development of

several vaccines that have demonstrated some degree of efficacy

(13–17). That efficacy has been influenced by age of the

vaccinated population and serotype of the circulating dengue

virus. It appears that efficacy is related to the induction of

homotypic antibodies, whereas heterotypic antibody may

actually enhance disease caused by other serotypes. The

Dengvaxia vaccine is licensed only for those aged 9 years or

above, and is most effective against dengue serotype 4, against

which it induces homotypic specific antibodies. However, in a

trial conducted in subjects aged 9 to 16 years with evidence of

prior infection with a single serotype, efficacy was 67%, 67%,

80% and 89% respectively against types 1, 2, 3, and 4. Thus,

homotypic neutralizing antibodies was the best correlate of

protection against infection, but once an individual had

infection by one serotype the Dengvaxia vaccine gave efficacy

against other serotypes (18, 19). A live attenuated vaccine

developed by Takeda was shown to induce that type of

response (20). FC effector antibody functions may have a role

in protection (21), and antibodies to NS1 reduce severity of

disease (14) although no absolute correlate is available.

However, at this point the best correlates of protection

appears to be type-specific neutralizing antibodies (19).
Ebola virus

Vectored vaccines against the Ebola filovirus have been highly

successful in controlling outbreaks of the disease in Africa. All of

the vaccines are able to induce antibodies to the glycoprotein that

is present in quantity on the elongated virus particle. However, the

CoP is more complex than antibodies alone, and there is strong

evidence that CD8+ T cells reacting against Ebola virus are

necessary for high efficacy. Thus, Ebola is an example of where

both arms of the immune system must respond in order for a

vaccine to optimally prevent disease (22–28).

The functions of immune responses induced by successful

Ebola vaccines are multiple, involving antibodies to the

glycoprotein but also T cell responses (29). The role of the

latter in protection appears to depend on the host species, being

more important in infections occurring in primates (30). Study

of vaccinated subjects also suggests important synergies between

antibody and cellular immune functions. Moreover, the selection

of adjuvant influences the mechanism of protection (31). For
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example, a CpG adjuvant stimulating the TLR-9 receptor gave

superior survival. In summary, IgG antibody to the viral

glycoprotein is the major CoP for Ebola, but is influenced by

the type of adjuvant used. In addition, the sheer quantity of

glycoprotein on the elongated virus particle may influence the

quantity of responses correlated with protection (22, 32–38).
Influenza

The CoP for influenza that is commonly accepted for

influenza is a 1/40 hemagglutinin-inhibition titer, which is

credited with signifying a 50% protective ability. This is an

oversimplification and ignores many other immunological

functions that contribute to the efficacy of influenza vaccines

(24, 39). Age of the vaccinee and the type of immunogen also

influence the CoP. The widely used HAI titer of 1/40 corresponds

to about 50% efficacy in young adults who have had immunologic

priming by prior influenza infections. However, that titer conveys

lower efficacy in older adults. The single radial hemolysis assay of

>25 mm corresponds to about 70% efficacy in adults. In children

who have not had prior infection or vaccination an HI titer of 110

gives 50% protection. In any case, in adults protection rises with

HI titers, but protection is not guaranteed at higher titers nor

absent at lower titers (24, 40).

Although neutralization is clearly an important function of

antibodies, Fc effector functions such as antibody-dependent

cellular cytotoxicity (ADCC) and antibody-dependent

phagocytosis (ADP) play a role in protection. In addition,

influenza vaccines contain neuraminidase, though often

unmeasured, which contributes to protection (25, 26).

Neuraminidase concentration may vary between strains (41).

Finally, cell-mediated immunity has not received enough

attention and probably contributes to controlling virus

replication (42). In summary, multiple antibody functions

contribute to influenza vaccine efficacy (43–46).
Pneumococci

The vaccines against pneumococcal disease are composed of

pneumococcal capsular polysaccharides conjugated chemically

with proteins to increase immunogenicity, especially in children.

For many years an antibody response measured by ELISA with a

level of 0.35 micrograms/ml was accepted as a CoP. However, a

seminal paper has demonstrated that the protective level is very

much dependent on serotype, with type 3 being the most

resistant; types 1, 7F, 19A, and 19 F requiring high antibody

levels; and types 6A, 6B, 18C and 23F being less resistant (47).

Thus, 0.35 mcg gives only a general estimate of a CoP with little

precision. For type 3 relatively high levels of antibody are

needed, estimated to be 2.83 mcg/ml. This means that the

efficacy of conjugated pneumococcal polysaccharide vaccines
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will vary with the epidemiology of serotypes, and that vaccines

will vary in efficacy depending on the composition of serotypes

and the sites of infections. The variability of CoPs for different

serotypes was recently confirmed by the results of a study in

African toddlers that gave 0.26 mcg/ml as CoP for type 14 but

1.93 mcg/ml as CoP for type 23F (28). The conclusion must be

that the CoPs for pneumococcal serotypes are variable and must

be determined individually.
Respiratory syncytial virus

Protection against RSV lower respiratory illness is complex:

There are two distinct syndromes, one occurring in young

infants who have only transplacental neutralizing antibodies to

RSV, and a second occurring in the elderly, in whom the

pathogenesis of disease is more complex. Antibodies having

high neutralizing function are clearly protective in the very

young, as shown by the correlation between antibody titer and

protection, as well as the prophylactic value of administered

monoclonal antibodies (23, 43, 44). A group A RSV inhibitory

titer of 1/239 and a group B RSV inhibitory titer of 1/60 were

associated with protection against disease (45). Antibodies

against the prefusion form of the F protein are those that

correlate best with protection. However, Fc effector as well as

neutralizing functions of antibody are important, particularly in

the lower respiratory tract (23, 34, 46, 47).

On the other hand, pathogenesis of RSV disease is less clear

in seropositive elderly adults, in whom administration of

antibodies is less effective. In part this may be due to the need

to direct antibodies against other antigens of the virus and to

elicit functions other than neutralization, particularly T cell

functions (35). Antibodies and T cell responses against the

small hydrophobic (SH) protein appear to be more important

in adult infections. Thus, the problem of RSV vaccine

development is less for infants, in whom monoclonal

antibodies are protective. The level of neutralizing antibodies

in infants predict protection from RSV (45) and thus the

problem of vaccine development in infancy could be solved by

developing a vaccine based on the prefusion form of the F

protein (36, 37). Previously, numerous attempts to develop an

RSV vaccine for the elderly have failed to give high levels of

protection, despite the use of many strategies including

nanoparticle, subunit, live-attenuated and vector-based (36–38,

48). However, the use of prefusion forms of the fusion protein

rather than the post-fusion form has recently given encouraging

immune responses in adults (49). Although it is uncertain as to

whether the efficacy relates to serum or mucosal antibody

responses. In addition, cell-mediated immunity may be

important for protection of adults (50). However, a

monoclonal antibody against prefusion F was successful in

preventing RSV disease in children (51).
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Rotavirus

Rotavirus vaccination has been spectacularly successful in

high-income countries, though less so in poor countries where

children are exposed to many pathogens soon after birth. Over

the years since introduction of rotavirus vaccines, an intestinal

IgA response and its surrogate, serum IgA, has been considered

to be the principal CoP (52–54). A level of more than 20U/ml

has been proposed as the protective level (55). However, other

studies have not found serum IgA to be a convincing CoP,

particularly in low-income countries (56, 57). A thorough

review by Clarke and Desselburger (57) concluded that VP6

antibodies may be a better correlate. VP6 is part of the capsid of

rotaviruses, and although it does not induce neutralizing

antibodies, non-neutralizing antibodies to VP6 develop after

infection or vaccination and thus may be a good correlate for

protection. However, attempts to develop parenteral vaccines

against rotavirus have so far failed, and it appears that secretory

responses at the level of the intestine are the best correlates.

However, serum IgA serves as an indicator of IgA responses in

the intestine (52, 58).
Shigella

In a review published in 2007 Levine et al. (59) wrote that

“Identification of protection is arguably the most crucial catalyst

needed to accelerate the development of effective Shigella

vaccines,” but added that no clear correlate had been

identified. Multiple candidate vaccines against shigella

continue to be studied, including those containing the surface

O antigen, antibodies to which are one proposed correlate (60,

61). In a detailed analysis Clarkson et al. (62) conclude that there

are multiple CoPs, which may differ from one species to another.

It appears that both serum and mucosal responses may serve as

CoP depending on the challenge situation. This may simply

reflect a situation in which the shigella organism must first

replicate in the intestine by overcoming mucosal antibodies, but

then invade the intestine, where systemic antibodies may be

more important. Nevertheless, serum antibodies measured in

various ways correlate with efficacy of shigella vaccines (63).
Tuberculosis

Bacille Calmette-Guérin, an attenuated Mycobacterium

bovis, has been used for many years as a vaccine against TB,

but with efficacy largely confined to vaccination at birth. Many

attempts have been made to improve on BCG, for which

identification of a CoP would be key. Studies in cows

confirm that protective immunity correlates with a Th1 bias

and induction of interferon gamma producing T lymphocytes.
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The presence of central memory T cells also correlates

with protection (64). Intravenous BCG given to macaque

monkeys also protected against active tuberculosis, which

correlated with induction of T cells reacting to tuberculosis

antigens (65).

The search for an easily administered and more effective

vaccine against human tuberculosis continues. There is

agreement that T cells, both CD4+ and CD8+, are key to

protection particularly with regard to interferon secretion, but

Th17 cells may also play a role. Vaccine delivery by an aerosol

route might be preferable (66). A recent review concluded that

BCG is only effective in children (67). In any case, it is likely that

a T cell function that has not yet been identified will provide the

best correlate of protection against tuberculosis (68).
Zika

As Zika virus is transmitted by mosquito bite, it is not

surprising that antibodies in the blood stream are protective.
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In macaques neutral iz ing antibody titers of about

1/100 induced by inactivated virus vaccines were shown to

be highly protective (69, 70). However, cross-reactive

antibodies with other flaviviruses raise questions about

whether inducing Zika antibodies might enhance their

replication (71).
Summary

Knowledge concerning correlates of protection by vaccines is

critical to their application and continues to grow (5). In this

article we report some recent findings for selected vaccines.

Although from a biological point of view vaccines produce a

variety of protective functions, some are more important than

others, and are useful to predict efficacy. Table 1 lists correlates

of protection for some major vaccines.

Current interest in correlates has been raised by the SARS-2

new coronavirus vaccines. As discussed elsewhere (6), the

principal correlate of protection is antibodies measured by
frontiersin.o
TABLE 1 Selected correlates of protection after vaccination.

Vaccine Immune Function Protection Level

Anthrax Toxin Nt Ab, Anti-PA IgG 1/3000, 10 µg/mL

Diphtheria Toxin Nt Ab 0.01-0.1 IU/mL

H. influenzae conjugate ELISA Ab 0.15 ng/mL

Hepatitis A ELISA Ab 20 m1U/mLl

Hepatitis B ELISA Ab 10 mlU/mL

Influenza, inactivated HI Ab 1/40 = 50% protection
1/320 in children

NtAb 1/40 = 50% protection

Lyme ELISA Ab 1400 U/mL

Measles ELISA Ab ≥120 miU/mL

Meningococcal Bactericidal Ab ≥1/4

Pneumococcal, conjugated ELISA Ab 0.20-0.35 µg/mL

Polio, inactivated Nt Ab ≥1/8

Rabies Nt Ab ≥0.5 IU

Tetanus Toxin Nt Ab 0.01-0.1 IU/mL

Tick-borne encephalitis Nt Ab ≥1/10

Yellow Fever Nt Ab ≥0.7 LNI
rg
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neutralization or ELISA. However, although there is no

threshold value for protection, titers of approximately 1/100

give efficacy against disease better than 50%, whereas titers of 1/

1000 or more give efficacy over 90%.
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