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Derivation and external
validation of dendritic cell-
related gene signatures for
predicting prognosis and
immunotherapy efficacy in
bladder urothelial carcinoma

Bingzheng An1†, Zhaoxin Guo1†, Junyan Wang1, Chen Zhang1,
Guanghao Zhang2 and Lei Yan1*

1Department of Urology, Qilu Hospital of Shandong University, Jinan, China, 2Department of
Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
Background: In the regulation of tumor-related immunity, dendritic cells (DCs)

are crucial sentinel cells; they are powerful to present antigens and initiate

immune responses. Therefore, we concentrated on investigating the DC-

related gene profile, prognosis, and gene mutations in bladder urothelial

carcinoma (BLCA) patients to identify sensitivity to immunotherapy of patients.

Methods: According to DC infiltration, BLCA patients were divided into two

subgroups, and differentially expressed genes (DEGs) were obtained. Patients

were classified by unsupervised clustering into new subgroups. The least

absolute shrinkage and selection operator (LASSO) regression analysis and

Cox regression were used to develop a DC-related risk model. CIBERSORT,

xCell, and GSEA were used to infer immune cells’ relative abundance separately

and enriched immune pathways.

Results: A total of 29 prognosis-related DEGs were identified from the

unsupervised cluster. Among them, 22 genes were selected for constructing

the DC-related risk model. The dendritic cell-related risk score (DCRS) can

accurately distinguish patients with different sensitive responses to

immunotherapy and overall survival outcomes. Furthermore, patients with

ryanodine receptor 2 (RYR2) mutation had a better prognosis.

Conclusions: The DCRS played an essential part in immunity pathway and

formation of TME diversity. Our study indicated that RYR2 mutation combined

with DCRS is useful for predicting the prognosis and discovering appropriate

patients for immunotherapy.

KEYWORDS

bladder urothelial carcinoma, immunotherapy efficacy, somatic mutation analysis,
dendritic cells-mediated immune, RYR2 mutation
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Introduction

Bladder urothelial carcinoma (BLCA) is one of the most

common cancer types of the genitourinary tract, with an

increased incidence in younger age (1). The latest statistics

reveal that the incidence and mortality rates of BLCA are 80.5/

100,000 and 32.9/100,000, respectively (2). Surgical resection is

the main therapy for BLCA treatment, but the patients after

surgery still have a poor prognosis with recurrence, including

biochemical recurrence (BCR) and distant metastases. In recent

years, immunotherapy such as PD-1/PD-L1 and CTLA4

immune checkpoint inhibitors (ICIs) has been applied in

clinic, which brings hope for cancer patients (3). A sound

performance of anti-tumor activity was manifested by the ICIs

in the therapy of most solid tumors, such as melanoma, kidney

cancer, lung cancer, and liver cancer (4). However, the low

effectiveness of immunotherapy is a challenge in the clinical

treatment of bladder cancer. A series of biomarkers have been

confirmed to predict the effectiveness of ICI treatment, including

the expression level of TMB and PD-L1, neoantigens, intestinal

flora, and immune cell status. In fact, the immune status of

cancer predicts the effect of immunotherapy. Therefore, we

constructed an immune signature to predict the response to

immunotherapy in BLCA patients.

The mechanisms of immunotherapy mainly included

restarting and maintaining the immune cycle and restoring the

anti-tumor immune response in the body (5). The tumor

microenvironments consist of malignant tumor cells,

fibroblasts, glial cells, and especially immune cells that were a

key part in influencing response to immunotherapy. For

example, dendritic cells (DCs) activate the release of damage-

associated molecular patterns (DAMPs) by delivering,

processing, and presenting tumor-associated antigens (TAAs)

on the DC surface. Induced by DAMP release, chemokines,

cytokines, and interferons (IFNs) are driven to stimulate

immune response, which play a crucial role in promoting this

process of immunogenic cell death (ICD) (6, 7). DCs are one of

the most important immune modulatory cells (8) and a sentinel

of the immune system with a unique ability to activate T

lymphocytes (9). DCs can drive the activation and

development of immunity or immune tolerance. However, the

specific functions of these DCs in immune tolerance or

development of immunity are unclear (10, 11).

Tumor mutation burden (TMB) was recognized as a

potential biomarker related to response to immunotherapy

(12). In fact, it has been proven that TMB is more significantly

correlated with response rate than PD-L1 expression in

immunohistochemistry (13). Tumor protein P53 (TP53) and

ataxia telangiectasia and Rad3-related (ATR) mutations related
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to genomic instability can result in an elevated mutation rate in

the tumor genome (14, 15). In addition, tumor-specific

neoantigens caused by somatic mutations can also be used as a

biomarker named tumor neoantigen burden (TNB) to predict

the efficiency of immunotherapy (16). However, only a few

tumor mutation burden will generate immunogenic

neoantigens and only a few mutant peptides on cell surface are

capable of eliciting an immune response (17–19). Consequently,

this research for new TMB may further help predict the efficacy

of immunotherapy.

In this article, the degree of DC infiltration was evaluated.

Based on TCGA-BLCA and GEO data containing the expression

files and clinical information of BLCA samples, we constructed a

dendritic cell-related risk score (DCRS) model through Cox

regression and least absolute shrinkage and selection operator

(LASSO) regression analysis. This gene signature has the

potential to predict immunotherapy susceptibility in BLCA

patients. Furthermore, we explored the alterations in TMB

among patients with varying DCRS and combined TMB and

DCRS to choose suitable patients for ICI treatment

more accurately.
Method

DC data acquisition

In this study, a database of 404 patients with BLCA RNA-seq

(level 3) data with clinical data were obtained from The Cancer

Genome Atlas (TCGA; https://cancergenome.nih.gov);

additionally, GSE32894 (n = 224), which was used to verify

the DC-related risk model, was collected from the GEO database

(http://www.ncbi.nlm.nih.gov.geo). The mutation data consisted

of 404 BLCA patients obtained from TCGA, and the mutation

information of two DCRS group subsets was analyzed by the

maftools package (20). All data were freely available from the

online website.
Immune cell infiltration

xCell and CIBERSORT were used to calculate the abundance

of infiltrating immune cells in TME. CIBERSORT was based on

support vector regression and achieved accurate deconvolution

of complex cellular mixtures (21). xCell can calculate the degree

of infiltration of 64 immune cells using a set of 10,808 genes (22).

Compared with the CIBERSORT algorithm, the activation state

of DC cells in the tumor immune microenvironment can be

further accurately distinguished.
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Development and verification of a DC-
related signature

To better evaluate the immune pathway and immune

infiltration pattern of BLCA, a DCRS was established using

immune function clusters and different immune infiltration. The

constructional procedure of DCRS was as follows: According to

the median degree of DC infiltration calculated by xCell, BLCA

patients were divided into the DC infiltration degree high (DCH)

group and the DC infiltration degree low (DCL) group. The

limma package was used to identify differentially expressed

genes (DEGs) from the DCL group and the DCH group with

false discovery rate (FDR)< 0.05 and logFoldChange > 2.

Univariate Cox regression was used to analyze the prognosis

of DEGs, with the limiting condition of p-value< 0.01. The

BLCA patients were divided into two new subgroups, Cluster 1

and Cluster 2, using the ConsensusClusterPlus package. DEGs

from Cluster 1 and Cluster 2 were identified using the limma

package with |logFC| > 1 and FDR< 0.05. Then, univariate Cox

regression was used to identify the prognosis-related DEGs, with

the limiting condition of p-value< 0.01. Afterward, the

expression level of each gene and the corresponding coefficient

were assembled using LASSO regression analysis to calculate the

DCRS, and the formula was as follows:

DCRS  ¼  oðCoefDEGs � ExpDEGsÞ
where CoefDEGs represents the LASSO coefficients and

ExpDEGs represents the expression levels. All BLCA samples

were divided into DC-related risk score high (DCRS > median

value, DCRSH) and DC-related risk score low (DCRS< median

value, DCRSL) groups.
Predicting the response to
immunotherapy

The immunophenoscore (IPS) data were collected from The

Cancer Immunome Atlas. The quantitative score named IPS can

represent tumor immunogenicity and was scored from 0 to 10

points. The response to ICI treatment that was positively correlated

with tumor immunogenicity can also be predicted by IPS (23).
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used to identify

obvious signaling pathways between the DCRSL group and the

DCRSH group; the C5 GO ALL gene set collection was

downloaded from the molecular signatures database (MSigDB,

v7.5.1). Additionally, gene set variation analysis (GSVA) was

used to identify obvious signaling pathways between the BLCA

DCH group and the DCL group.
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Statistical analysis

All statistics were accomplished using the R software

(version 4.2.1). Time‐dependent receiver operating

characteristic (ROC) curve was built using the survival

package. LASSO regression analysis was performed using the

glmnet package. Univariate Cox regression analysis was

calculated using the Survival package. Kaplan–Meier curves of

overall survival (OS) were calculated between the two groups

using the Survival package and the SurvMiner package. RNA-seq

and mutation data were processed by limma and maftools

packages. If there are no additional instructions, a p-value<

0.05 was considered to be statistically significant for all.
Results

Identification of DC-related
differentially expressed genes
associated with BLCA prognosis

The immune infiltration score was calculated for each BLCA

sample in the TCGA dataset through xCell methodology. Then,

the median enrichment score of DC cell infiltration was

determined to divide BLCA samples into two groups (DCL

and DCH) (Figure 1A). Additionally, the ESTIMATE package

was used to estimate immune score, estimate score, tumor

purity, and stromal score. We found that immune score,

estimate score, and stromal score and the extent of infiltrating

immune cells were obviously higher in the DCH group than in

the DCL group, and tumor purity was obviously lower

(Supplementary Figures S1A–D). In addition, samples in the

DCH group correspond to favorable survival outcome

(Figure 1B). The result of difference analysis of transcription

data showed that 396 DEGs were upregulated (n = 339) or

downregulated (n = 57) in BLCA (Figure 1C). Moreover, using

univariate Cox regression analysis with p< 0.01 as criteria, a total

of 13 DEGs were obtained as the prognostic factors (Figure 1D).

Based on the above results, we speculated that the 13 DEGs are

significant factors associated with prognosis and DC. These

DEGs were subjected to BLCA patients divided into two new

subgroups using the ConsensusClusterPlus package: Cluster 2

(n = 294) and Cluster 1 (n = 110) (Supplementary Figures S2A–

L). Survival analysis showed that the prognosis of Cluster 1 was

significantly better than that of Cluster 2 (Figure 2A). Based on

GSVA analysis, we found that DC-associated immune signaling

pathways were enriched in Cluster 1, such as the positive

regulation of innate immune response, the T-cell receptor

signaling pathway, the NK T-cell activation, and the

immunological memory process (Figure 2D). DCs are essential

mediators of the innate immune system (24) and sentinel cells

specialized in controlling T-cell function (25), suggesting that
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FIGURE 1

Investigation of the DC infiltration-associated expression change in bladder urothelial carcinoma (BLCA). (A) Heatmap showing the degree of
infiltration of 64 immune cell types in the TCGA-BLCA cohort (n = 404) using xCell based on a set of 10,808 genes. (B) Survival analysis
indicated that patients assigned to the two clusters [DC High (n = 202) and DC Low (n = 202)] had significantly different survival outcomes in
the TCGA-BLCA cohort. (C) Volcano map shows 396 differentially expressed genes between DC High and DC Low. Green dots indicate
upregulation and yellow dots indicate downregulation. (D) Univariate Cox regression analysis was used to screen genes associated with clinical
prognosis with a p-value< 0.01 in the TCGA-BLCA cohort.
B

C
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FIGURE 2

Construction of a DC-related risk model to predict BLCA prognosis. (A) Survival analysis of Cluster 1 (n = 110) and Cluster 2 (n = 294). (B)
Volcano map shows 429 genes differentially expressed between Cluster 1 and Cluster 2. Green dots indicate upregulation and yellow dots
indicate downregulation. (C) Univariate Cox regression analysis was used to screen genes associated with clinical prognosis with a p-value< 0.01
in the TCGA-BLCA cohort. (D) Gene set variation analysis (GSVA) enrichment analysis of the activation states of biological pathways between
Cluster 1 (n = 110) and Cluster 2 (n = 294). These biological processes are shown in the heatmap. Yellow represents the activated pathway, and
green represents the inhibited pathway.
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the unsupervised cluster contributed to distinct DC-related

immune signaling pathways.
Construction and validation of a
DC-related risk model to predict
BLCA prognosis

To better explore the potential mechanism for the difference

of immune status between the two clusters, we compared the

expression profiles of two clusters. A total of 429 DC-related

DEGs (164 upregulated genes and 265 downregulated genes)

were under the conditions of |logFC| > 1 and FDR< 0.05

(Figure 2B); subsequently, a list of 29 DC-related DEGs was

identified as prognostic factors affecting BLCA prognosis (p<

0.01) using univariate Cox regression (Figure 2C). A

comprehensive and effective DC-related risk model was

established to predict prognosis and sensit ivity to

immunotherapy; the LASSO regression analysis was performed

for the 29 DC-related DEGs. When the number of variables

(prognostic DEGs) was 22, the likelihood of deviation was

minimized (Supplementary Figure S1E). The regression

coefficients of the 22 variables were calculated by the LASSO

model (Supplementary Figure S1F). Finally, a 22 DC-related

signature was conducted, composed of KCNE4, EPHA3, IL12A,

RBP7, UBD, KRTDAP, IGFL2, DMKN, NLRP12, C11orf16,
Frontiers in Immunology 05
MFAP5, COMP, FNDC1, APOL1, DPT, CLEC4G, SUSD2,

RTP4, CBLN4, NXPH3, LRP1B, and MMP9. Results showed

that this DCRS was significantly higher in patients with

advanced TNM stage (Supplementary Figure S1G). We

defined the DCRSH and DCRSL according to the median

value of DCRS. Samples in DCRSH correspond to favorable

overall survival (Figure 3A). The ROC curves of the DC-related

risk model showed a favorable performance of predicting

prognosis. The AUC values of 1 year, 3 years, and 5 years

were 0.705, 0.667, and 0.685, respectively, all of which were

higher than 0.6 (Figure 3B). In addition, we utilized the

SURVRM2 package to assess the restricted mean survival time

(RMS time, the mean survival time of patients at a specific time t

or the life expectancy of t year) for BLCA patients during the

follow-up period (Figure 3C). The RMS time was 3.59 years for

the DCRSH group and 6.11 years for the DCRSL group, which

further illustrated the favorable prognosis of the DCRSL group.

The DC-related risk model was further verified in the

validation dataset (GSE32894). A total of 224 BLCA samples

in GSE32894 were separated into the DCRSH group (n = 181)

and the DCRSL group (n = 43) by using the same cutoff

standard. An analogous outcome was shown in the validation

cohort in that the adverse prognosis corresponded to DCRSH

group (Figure 3E). The AUC values for 1-year, 3-year, and 5-

year OS rates were 0.650, 0.584, and 0.540, respectively

(Figure 3F). The RMS time of the DCRSH and DCRSL groups
B C D

E F G H

A

FIGURE 3

DC-related risk score was constructed in the training set and verified in the validation set. (A) Survival analysis of the DCRSL group (n = 202) and
the DCRSH group (n = 202) in the training set. In these two groups, the Kaplan–Meier curve with a log-rank p-value< 0.001 showed significant
survival differences. (B) Time-dependent receiver operating characteristic (ROC) curve analysis of the DCRS in the training set. The 1-, 3-, and 5-
year area under curves (AUCs) were 0.705, 0.667, and 0.685, respectively. (C) The restricted mean survival (RMS) curve for the DCRS was plotted
in the training set. The green part represents the RMS time, and the yellow part represents the restricted mean time lost (RMTL). (D, H) The
relative probabilities of anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) and anti-programmed cell death protein 1 (PD-1)/programmed
death-ligand 1 (PD-L1) treatment between the DCRSL and DCRSH groups in the training set. The asterisks indicate statistical p-values (***<0.001).
(E) Survival analysis of the DCRSL (n =43) group and the DCRSH (n = 181) group in the validation set. In these two groups, the Kaplan–Meier
curve with a log-rank p-value of 0.039 showed significant survival differences. (F) Time-dependent ROC curve analysis of the immune score in
the validation set. The 1-, 3-, and 5-year AUCs were 0.650, 0.584, and 0.540, respectively. (G) The RMS curve for immune scores was plotted in
the validation set. The green part represents the RMS time, and the yellow part represents the restricted mean time lost (RMTL).
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was 3.41 years and 4.33 years, respectively (Figure 3G). The

above findings confirmed that the DCRSL group had a better

prognosis than the DCRSH group, which supported the idea that

the DC-related risk model had the potential to predict the overall

survival of BLCA patients.
Immune scores and response to ICI
treatment in BLCA

Due to the absence of data associated with immunotherapy

response in the TCGA database, we extracted two important IPS

data to replace patient’s response to immunotherapy from the

TCIA database (IPS-PD-1/PD-L1/PD-L2_POS and IPS-

CTLA4_POS). The relative probability of responding to anti-

CTLA4 and anti-PD-1/PD-L1 treatment was much higher in the

DCRSL group (Figures 3D, H). These consequences

demonstrated that patients in DCRSL had a higher potential

to benefit from immunotherapy.
Genomic features, molecular
functions, and mechanisms of
DCRSH and DCRSL groups

As the above findings demonstrated the accuracy of the DC-

related risk model, we tried to explore the biological difference

between two groups. To reveal the specific biological processes

associated with immunity, we performed GSEA GO analysis to

calculate the enrichment score of pathways and biological terms

in the DCRSH and DCRSL groups (Figure 4A). The results

showed that the immune pathway in the DCRSL group was

associated with the T-cell-mediated cytotoxicity pathway, MHC

protein complex, and regulation of CD8+ T-cell activation.

Therefore, we speculated that DCRS could distinguish the DC-

associated immune status and predict the prognosis.
Immune cell infiltration in different DC-
related risk groups

The CIBERSORT algorithm was able to calculate the

abundance of infiltrating immune cells and has been widely

applied in the preceding studies related to the tumor immune

microenvironment. Therefore, we used the CIBERSORT

algorithm to assess the infiltration levels of 22 immune cells.

The results with p-values less than 0.05 are shown in

Supplementary Figure S1H. In the DCRSL group, the

correlation among immune cells was higher (Figure 4B). M1

macrophages had a significantly negative correlation with DCs

activated in both the DCRSH and DCRSL groups. Furthermore,

in the DCRSL group, activated NK cells had the highest positive
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correlation with activated DCs. The infiltration levels of

immune cells between the DCRSH and DCRSL groups are

shown in Figure 4C. The estimated proportion of naive B cells

(p< 0.001) and M0 (p< 0.001) and M2 (p< 0.001) macrophages

was significantly higher in the DCRSH group, while CD8+ T

cells (p< 0.001), activated CD4+ memory T cells (p = 0.012),

follicular helper T cells (p< 0.001), activated mast cells (p =

0.005), resting DCs (p< 0.001), activated DC (p< 0.001), and

monocytes (p = 0.014) were significantly enriched in the

DCRSL group.

The above results showed that the immune infiltration level

in the DCRSL group was significantly higher than that in the

DCRSH group. IFN-g is a cytokine that promotes the

differentiation of DCs (26). We observed an elevated

expression level of IFN-g in the DCRSL group. It is well

known that DCs consist of two states, resting state and

activated state. In the resting state, DCs express low levels of

MHC molecules and B7 molecules on the surface, which is not

beneficial when presenting antigens to T cells. In contrast,

activated DCs highly express MHC-II/I-like molecules and co-

stimulatory molecules (such as B7 and ICAM) (27). Although

activated DCs have a weak ability to uptake and process

antigens, they are powerful to present antigens and initiate

immune responses (28). Importantly, activated DCs can

regulate cellular differentiation and activation of T cells and

especially promote the recruitment and activation of CD8+ T

cells that were associated with the immunotherapy response. We

compared the expression of MHC molecules and cytokines

secreted from DCs in two groups. We found high expression

of MHC molecules in the DCRSL group. The expression of

CD40 and CD30L, which mediate central tolerance to Treg cells,

was also increased in the DCRSL group. These findings may

contribute to explain the better prognosis of the DCRSL

group (Figure 4D).
Comparison of somatic mutations in the
DCRSH and DCRSL groups

Subsequently, we analyzed somatic mutations to further

explore genetic differences between the DCRSH and DCRSL

groups. Waterfall plots showed the highly mutated genes in the

DCRSH (n = 200) and DCRSL groups (n = 202), where missense

mutation was the most common mutation type. Overall, the

DCRSH group exhibited a higher number of mutations than the

DCRSL group. The top five genes with mutation frequencies

were TTN, TP53, MUC16, ARID1A, and KMT2D in the

DCRSH group, and in the DCRSL group, the top five genes

were TTN, TP53, MUC16, PIK3CA, and RYR2. The most

common mutation type was missense mutation in both groups

(Figures 5A, B). The mutation frequency of the TP53 gene was

higher in the DCRSH group, while the mutation frequencies of
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PIK3CA, RYR2, and TTN genes were lower than those of the

DCRSL group. In the two cohorts, SYNE1-TP53 and SYNE1-

MACF1 showed significant co-occurrence (Figure 5C). This

phenomenon suggested that they may have synergistic effects.

Additionally, we detected the DEGs with p-value< 0.05 using

Fisher’s test (Figure 5D). Furthermore, we explored the impact

of these genes with high mutation frequencies on prognosis in

two cohorts. As a result, only the RYR2 mutation had a

significant effect on BLCA prognosis in the entire cohort

(Figure 6A). We further compared the association between

RYR2 mutation and prognosis in the DCRSH and DCRSL
Frontiers in Immunology 07
groups and found that RYR2 significantly affected the

prognosis only in the DCRSH group (Figures 6B, C).
Research of the RYR2 mutation pattern
in the DCRS cohort

RYR2 encodes Ca2+ release channels in sarcoplasmic

reticulum, which plays a central role in cardiac excitation–

contraction coupling (29). Traditionally, RYR2 mutations were

commonly considered to be associated with heart failure and
B

C

D

A

FIGURE 4

Gene set enrichment analysis (GSEA), immune cell infiltration, and cytokine expression in the DCRSL and DCRSH groups. (A) Gene ontology
(GO) enrichment analysis of the activation states of immune-related pathways in distinct DC-related risk score groups. (B) The relationship
between the abundance ratios of different tumor immune-infiltrating cells. (C) The horizontal axis and vertical axis represent tumor-infiltrating
immune cells and relative percentages, respectively. Yellow and green represent the DCRSL group and the DCRSH group. (D) The expression of
cytokines associated with DC between the DCRSL group and the DCRSH group. The upper and lower ends of the box indicate the interquartile
range of values. The line in the box indicates the median value, and the black dot indicates the outlier. The asterisks indicate statistical p-values
(*<0.05, **<0.01, ***<0.001).
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arrhythmias. However, current studies had revealed a

correlation of RYR2 mutation with immune cells and tumor

progression. The complex communication mechanism between

RYR2 and immune cells or immune-related molecules has been

identified (30). In addition, it has been proven that RYR2 was

associated with malignant progression of triple-negative breast

cancer. In the DCRSH group, the mutational frequency of RYR2

was less (10%) than that of the DCRSL group (21%).

Additionally, by calculating immune cell infiltration among

the DCRSH group, the whole sample group, and the DCRSL

group, we found that RYR2 mutation increased CD8+ T cells’

infiltration in the whole sample group and the DCRSH group

(Figure 6D). Coincidentally, survival analysis showed that the

prognosis of the RYR2 wild group was significantly better than

that of the RYR2 mutation group in the DCRSH group and the

whole sample group (Figures 6A-C). Furthermore, we used

GSEA to search the potential signaling pathway differences

between RYR2 mutants and the RYR2 wild group. RYR2

mutations were mainly enriched in type 1 IFN receptor

binding and the response to IFN-b. RYR2 wild type was
Frontiers in Immunology 08
mainly enriched in the glomerulus development and the

ovulation pathway (Figure 6E).
Discussion

With the expanded application of immunotherapy, the ICIs

are increasingly being studied in cancer treatment. However,

only 20%–30% of BLCA patients may benefit from

immunotherapy due to the complex regulatory mechanisms

among various immune cells in the TME. The current study

based on the CD8+ T cell-associated immune checkpoint was

still far from being adequate to accomplish the desired

therapeutic curative effect. In the regulation of tumor-related

immunity, DCs are crucial sentinel cells; they are powerful to

present antigens and initiate immune responses. DCs are

responsible for the delivery, processing, and presentation of

TAAs; activation of DAMP release; and promoting the

immune stimulative role of chemokines, cytokines, and IFNs.

In this study, we aimed to construct a DC-related risk model and
B

C

D

A

E

FIGURE 5

Landscape of somatic mutations between the DCRSL and DCRSH groups. (A, B) Waterfall plot of tumor somatic mutations established by those
with low DC-related risk scores (n = 202) (A) and high DC-related risk scores (n = 200) (B). (C) The heatmap shows the mutual co-occurring and
exclusive mutations of the top 20 frequently mutated genes. The color or symbol of each cell represents the statistical significance of the exclusivity
or co-occurrence of each pair of genes, respectively. Green represents mutual co-occurrence, and brown represents exclusive mutation. Asterisks
indicate statistical p-values (*<0.05). (D) Forest plot of statistically significant mutant genes between the groups. Asterisks indicate statistical p-values
(*<0.05, **<0.01, ***<0.001). (E) The lollipop plot illustrates the differential distribution of variants for ryanodine receptor 2 (RYR2).
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identify DC-related genes associated with tumor mutation and

immune cell infiltration in TME and accurately identify suitable

patients who might benefit from immunotherapy.

In the present study, we used the xCell algorithm to calculate

the estimated proportion of immune cells for each BLCA

sample. Then, according to the median value of the DC

infiltration score, BLCA patients were divided into the DCH

and DCL groups. Comparing the DCH and DCL groups, we

identified DEGs that were considered as DC-related DEGs. Later

on, univariate Cox regression analysis was conducted to select

DEGs correlated to prognosis. Based on the expression profiles

of prognostic DC-related DEGs, BLCA patients were clustered

into two groups (Cluster 1 and Cluster 2) using the

ConsensusClusterPlus package. The overall survival of Cluster

2 was obviously reduced compared to that of Cluster 1; GSVA

revealed that DC-associated pathways were significantly

enriched in Cluster 1 such as the positive regulation of innate

immune response and the T-cell receptor signaling pathway.

These findings indicated that patients in different unsupervised

clusters have different DC-related immune status.

After that, we identified DEGs between Cluster 1 and Cluster

2 groups to better explore the potential mechanism for the

difference of immune status between Cluster 1 and Cluster 2,

followed by univariate Cox regression analysis to identify

prognostic DEGs. We constructed a DC-related risk model

using LASSO regression analysis and calculated the DCRS
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according to the LASSO coefficient. In this research, patients

from TCGA were stratified into two groups according to the

median value of DCRS and our findings were validated in the

GSE32894 cohort. The ROC curves showed that the AUC values

of 1 year, 3 years, and 5 years were 0.705, 0.667, and 0.685,

respectively, which were higher than 0.6. The higher RMS time

in the DCRSL group also proved the validity and the accuracy of

DC-related risk model to predict the prognosis of BLCA

patients. GSEA also revealed that immune-related pathways

were enriched in DCRSL. In conclusion, these discoveries

suggested that DCRS may be a promising prognostic indicator

of BLCA.

An intimate connection was found between the response to

immunotherapy and immune cell infiltration. M2 macrophages

had been shown to advance tumor development and were

linked to poor overall survival in BLCA patients, and M1

macrophages are capable of antigen presentation and

promoting inflammatory responses (31). An obvious rise in

degree of infiltrating M0 (p< 0.001) and M2 (p< 0.001)

macrophages had been observed in the DCRSH group, which

was found to have a worse prognosis, while in the DCRSL

group, the abundances of infiltrating other immune cells were

greater, such as CD8+ T cells (p< 0.001), activated CD4+

memory T cells (p = 0.012), follicular helper T cells (p<

0.001), activated mast cells (p = 0.005), resting DCs (p<

0.001), activated DCs (p< 0.001), and monocytes (p = 0.014).
B

C

D

E

A

FIGURE 6

Changes between the RYR2 mutation group and the RYR2 wild group. (A-C) Kaplan–Meier curves show the independent relevance between the
overall survival time and RYR2 mutation in the DCRSL group (n = 202), DCRSH group (n = 200), and all cohorts (n = 402). (D) Effect of RYR2
mutation on tumor immune cell infiltrating in the DCRSL group (n = 202), DCRSH group (n = 200), and whole samples (n = 402) (p-value, *< 0.05,
**< 0.01, ns > 0.05). (E) Gene set enrichment analysis comparing the RYR2 phenotype between the mutation group and the wild-type group.
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Meanwhile, patients in the DCRSL group may have increased

sensitivity to immunotherapy. In addition, we also found a high

expression of MHC-related molecules in the DCRSL group.

Generally, MHC-related molecules’ high expression was

associated with the activation of antigen presentation in DC

cells and the initiation of immune response; these results may

explain the better prognosis of the DCRSL group. Collectively, it

may imply that the DCRS model might predict clinical response

to immune therapy. Although the DC-related risk model

showed an effective performance in predicting prognosis, the

degree of accuracy was not much higher, which may result from

the insufficient number of samples. The model’s accuracy may

be further enhanced by expanding the sample size and required

validation in a clinical trial with a large sample size.

The recent research illustrated that tumor mutations are

associated with the tolerance or response to immunotherapy;

therefore, comprehensive genomic mutation analyses must be

considered to accurately select patients who are suitable for

immunotherapy. The mutant landscape was compared in the

DCRSL and DCRSH groups. We found that the gene mutation

frequency was higher in the DCRSL group. TTN and TP53 had

higher mutation frequencies in both groups. It was discovered

that TP53 played a vital role in bladder cancer development (32).

However, except for RYR2, other genes with high mutation

frequencies were not associated with BLCA prognosis whether in

risk groups or the whole sample group. RYR2 was traditionally

considered to be associated with heart failure and arrhythmias,

but recently, some studies (28) have identified complex

communication mechanisms between RYR2 and immune cells

and immune-related molecules. Nevertheless, the immune

regulation mechanism of RYR2 was not clear. In the DCRSH

group, the mutational frequency of RYR2 was less than that of

the DCRSL group. By comparing the infiltration of immune cells

among the DCRSH group, the DCRSL group, and the whole

sample group, we found an increased infiltration of CD8+ T cells

in the DCRSH group and the whole sample group. RYR2

mutations were mainly enriched in the type 1 IFN receptor

binding pathway and the response to IFN-b pathway by GSEA.

IFN, produced primarily by DCs, has pleiotropic impacts on the

immune system (33). The mutation frequency of RYR2 was

lower in the DCRSH group. These results suggested that RYR2

mutations may participate in the induction and maintenance of

anti-tumor immune responses mediated by DCs. Therefore, we

believe that combining DCRS and RYR2 mutations could help to

screen BLCA patients who were suitable for immunotherapy.
Conclusion

In conclusion, our results indicated that patients with low

DCRS had a better prognosis and predicted benefit from

immunotherapy. These DC-related gene signatures may be

valuable for the prognostic stratification and patient selection
Frontiers in Immunology 10
of ICI before treatment. At the same time, it was expected that

the DCRS model would improve our understanding of TME and

the genomic features and guide immunotherapy and

combination therapy strategies.
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scores, immunity scores, and stromal scores between the DCL group and
the DCH group; the line in the box indicates the median value, and the

black dot indicates the outlier. The asterisks indicate statistical p-values
(***< 0.001). (E, F) The least absolute shrinkage and selection operator

(LASSO) Cox regression for the DC-related key differentially expressed
genes. (G) Immune cell abundance ratios in the BLCA cohorts. Each
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column represents a sample, and each column uses a different color and
height to indicate the abundance ratio of immune cells in the sample.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering grouping in BLCA. (A–J) Unsupervised clustering
algorithm in BLCA patients and consensus matrices for k = 2–9.
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