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Infiltration of CD8+ T cells and their spatial contexture, represented by

immunophenotype, predict the prognosis and therapeutic response in breast

cancer. However, a non-surgical method using radiomics to evaluate breast

cancer immunophenotype has not been explored. Here, we assessed the CD8+

T cell-based immunophenotype in patients with breast cancer undergoing

upfront surgery (n = 182). We extracted radiomic features from the four phases

of dynamic contrast-enhanced magnetic resonance imaging, and randomly

divided the patients into training (n = 137) and validation (n = 45) cohorts. For

predicting the immunophenotypes, radiomic models (RMs) that combined the

four phases demonstrated superior performance to those derived from a single

phase. For discriminating the inflamed tumor from the non-inflamed tumor,

the feature-based combination model from the whole tumor (RM-wholeFC)

showed high performance in both training (area under the receiver operating

characteristic curve [AUC] = 0.973) and validation cohorts (AUC = 0.985).

Similarly, the feature-based combination model from the peripheral tumor

(RM-periFC) discriminated between immune-desert and excluded tumors with

high performance in both training (AUC = 0.993) and validation cohorts (AUC =

0.984). Both RM-wholeFC and RM-periFC demonstrated good to excellent

performance for every molecular subtype. Furthermore, in patients who

underwent neoadjuvant chemotherapy (n = 64), pre-treatment images

showed that tumors exhibiting complete response to neoadjuvant

chemotherapy had significantly higher scores from RM-wholeFC and lower

scores from RM-periFC. Our RMs predicted the immunophenotype of breast
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cancer based on the spatial distribution of CD8+ T cells with high accuracy. This

approach can be used to stratify patients non-invasively based on the status of

the tumor-immune microenvironment.
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Introduction

According to recent cancer statistics, breast cancer is the

most common type of cancer in women (1). Breast cancer is a

heterogenous entity with diverse biological characteristics

associated with prognosis and therapeutic response (2).

Although breast cancer has been known to exhibit less

immunogenic potential, the prognostic and predictive

significance of tumor-infiltrating lymphocytes (TILs) has been

suggested (3); a higher TIL infiltration was associated with better

response to neoadjuvant chemotherapy (NACT) and longer

patient survival (4). The level of TILs was recently reported to

be a strong predictor of response to immunotherapy in the basal-

like subtype of breast cancer (5, 6).

Among TILs, CD8+ T cells have been known to play a crucial

role in the tumor-immune microenvironment. Breast cancer

with high number of TILs contained elevated number of tissue-

resident memory CD8+ T cells, which were associated with

improved survival and thought to play local anti-tumor

activity (7, 8). Also, the infiltration of CD8+ T cells is

reportedly correlated with longer survival (9–11). Gruosso

et al. showed that the spatial distribution of CD8+ T cells,

evaluated in both tumor core and invasive margins, was

related to distinct biological and prognostic features (12). The

spatial contexture of CD8+ T cells within the breast cancer

tissues was also correlated with differential response to anti-PD-

1 treatment, suggesting therapeutic implications of the

immunophenotype (13). However, in real-world clinics, the

spatial distribution of CD8+ T cells cannot be assessed until

tumors are surgically resected.

Radiomics utilizes numerous quantitative features extracted

from medical images to determine clinical and prognostic

outcomes. Based on the image data, radiomic models (RMs)

that predicted survival, lymph node metastasis, or molecular

subtypes of breast cancer have been developed (14–16). Since

dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) is usually acquired for the initial diagnosis of breast cancer,

RMs using the DCE-MRI can be clinically used. Although a few

studies have predicted the level of TILs using RMs (17–19),

radiomics has not been applied to discriminate the spatial

contexture of the tumor-immune microenvironment.
02
Here, we developed MRI-derived RMs to predict breast

cancer immunophenotype based on the spatial distribution of

CD8+ T cells. The combined data from each phase of DCE-MRI

were used to improve the predictive performance. Our results

may provide a non-invasive tool for stratifying patients based on

the intratumoral immune response.
Materials and methods

Study population

This study analyzed two cohorts of patients with breast

cancer: 1) upfront surgery and 2) NACT cohorts. The surgery

cohort consisted of 182 patients who underwent curative

surgery between January 2016 and February 2020 with the

following criteria: (1) without distant metastasis at diagnosis;

(2) no use of neoadjuvant therapy; (3) surgical specimens

available for the evaluation of tumor immunophenotypes; (4)

MRI scans at initial diagnosis available according to the

institution’s protocol. Then, the surgery cohort was randomly

divided into training and validation cohorts in a 3:1 ratio. The

NACT cohort included 64 patients who underwent NACT

followed by surgery between March 2013 and March 2022 with

the following criteria: (1) no distant metastasis at diagnosis; (2)

MRI scans available according to the institution’s protocol. The

baseline characteristics of each cohort are described in

Supplementary Tables 1, 2. NACT was considered in selected

cases: 1) inoperable disease status, such as bulky or matted ≥

cN2 and cT4 tumors; 2) multifocal or large primary tumor

relative to breast size, which makes breast conservation

difficult; and 3) HER2-positive or basal-like with ≥cT2 and/

or cN+ status. The NACT regimens for HER2-negative cases

included doxorubicin/cyclophosphamide (AC; n = 1), AC

followed by weekly paclitaxel (n = 40), and AC followed by

docetaxel every 3 weeks (n = 7). For HER2-positive cases, AC

followed by paclitaxel/trastuzumab (n = 6) or docetaxel/

carboplatin/trastuzumab/pertuzumab (n = 12) regimen was

considered. The study protocol of this study was reviewed and

approved by the Institutional Review Board of Kyung Hee

University Hospital (2020-12-014).
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Pathologic preparation

We used formalin-fixed and paraffin-embedded tissue

samples of breast cancer pathologically confirmed after

surgical resection. Hematoxylin and eosin (H&E)-stained

slides were examined by two pathologists with expertise in

breast cancer (S-WK and KN) to confirm the histological

tumor diagnosis and select the appropriate representative

slides for subsequent analyses. Only samples with greater than

10% tumor cellularity were used for further analysis.

Immunohistochemical (IHC) staining was performed using 4-

mm-thick sections prepared from whole-section blocks and

carried out on a Bond-III immunostainer (Leica Biosystems,

Newcastle, UK) according to the manufacturer’s instructions.

Tissue sections were deparaffinized, antigen-retrieved, and then

incubated for 15 min at ambient temperature with a monoclonal

antibody against CD8 (1:400, M7103, Dako, Carpinteria, CA).

The nuclei were counterstained with hematoxylin. Tonsil tissue

was used as external positive control.
Immunophenotype assessment and
quantification of lymphocytes

The density and spatial distribution of CD8+ TILs were

evaluated using IHC-stained whole-sectioned slides. The tumor

center (TC) and invasion front (IF) of the breast cancer lesions

were separately evaluated. The IF was defined as the most

progressed cancer cells on the advanced edge of the tumor. The

hotspots in the TC and IF were selected at low magnification,

individually marked on H&E slides, and transferred on IHC-

stained whole-sectioned slides. Then, the CD8-stained slides were

scanned using an AperioScanScope (Aperio Technologies, Vista,

CA). Scanned whole-slide images were analyzed using the open

access image analysis software QuPath as previously described

(20). Briefly, the Simple tissue detection tool was used to create an

annotation of the tissue region to be analyzed, and the tumor

border of each sample was manually outlined using the Polygon

tool, creating three different regions: outer margin and inner

margin (referred to as IF), and TC. Next, the Cell detection tool

using a built-in cell segmentation algorithm and the Add

smoothed features (25 µm) tool calculated a new measurement

by taking a weighted average of cell measurements within the 25-

µm range, whereby the image was segmented homogeneously.

The Intensity feature in the Detection classifier was used to

distinguish between positively and negatively stained cells. The

density of CD8+ TILs was automatically enumerated in three

hotspots from each TC and IF, defined as the number of positively

stained lymphocytes/mm2. Based on the distribution pattern of

the CD8+ TILs, tumor immunophenotype was defined as

mentioned previously (21), which was classified into immune-

desert (no immune cell infiltration in invasive tumor margin),

immune-excluded (immune cells aggregating only in invasive
Frontiers in Immunology 03
tumor margin) and inflamed (prominent immune infiltrates in

the tumor core through invasive tumor margin) subtypes

(Figures 1A–C).

Stromal TILs were also separately counted from the hotspots in

each case. The stromal TIL was defined as a dispersed lymphocyte in

the stroma between the cancer cells, but without direct contact with

cancer cells (Figure 1D) (21). The QuPath results for all samples

were confirmed independently by two pathologists (S-WK and KN),

who ensured the software’s accuracy, and the QuPath results were

then used for quantitative analysis.
MRI and region of interest (ROI)

All MRI scans were acquired with a 3-T scanner (Achieva;

Philips Healthcare, Best, the Netherlands) using a breast coil

(SENSE-Breast 7TX, Philips Healthcare, Best, the Netherlands)

in the prone position. Axial 3-dimensional DCE-MRI was

obtained using the following parameters: FOV = 496 x 316 mm,

TR/TE = 4.3/2.25 msec, flip angle = 12°, spatial resolution = 0.6 x

0.6 x 2 mm, section thickness = 4 mm. Gadobenate dimegumine

(0.1 mmol/kg; Multihance, Bracco Imaging, Milan, Italy) was

injected, and pre-contrast and four consecutive post-contrast

images with 74-second intervals were acquired (hereafter

referred to as DCE1, DCE2, DCE3, and DCE4). The tumor ROI

was delineated on the subtraction images, obtained by subtracting

the pre-contrast images from the second post-contrast images on

a pixel-by-pixel basis, by a radiologist specializing in breast

imaging for 10 years (MS). The tumor periphery was defined as

the inner 2-mm rim of the whole tumor.
Image preprocessing and radiomic
feature extraction

After image preprocessing, 64 texture features calculated from

the first-order statistics, gray level co-occurrence matrix (GLCM),

gray level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), and neighbor gray tone difference matrix (NGTDM)

were obtained from the whole tumor or peripheral ROI. The

mathematical definitions of the 64 texture features are detailed in

Supplementary Material. In addition, the preprocessed images

were wavelet-transformed with the following wavelet filters to

generate 12 transformed images: Daubechies 2 (ratio = 1/2, 2/3,

3/2, or 2), Coiflets 1 (ratio = 1/2, 2/3, 3/2, or 2), and Symlets 4 (ratio

= 1/2, 2/3, 3/2, or 2). The 64 texture features were extracted from

each wavelet-transformed image.
Filtering of radiomic features

Each radiomic feature group (RFG) comprised 833 radiomic

features (tumor volume, 64 texture features, and 768 wavelet
frontiersin.org
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features) extracted from either whole tumor or peripheral ROI

on a single MRI sequence. The RFGs extracted from DCE1,

DCE2, DCE3, and DCE4 were termed RFG1, RFG2, RFG3, and

RFG4, respectively. In addition to the aforementioned original

ROIs, a radiation oncologist (SHJ) segmented tumors from 20

randomly selected patients to select stable radiomic features.

Informative radiomic features with an intraclass correlation

coefficient (ICC) lower than 0.8 were filtered out from each

RFG, as previously described (22). Next, the area under the

receiver operating characteristic curve (AUC) value for each

radiomic feature was calculated to predict tumor

immunophenotype; the top 50 radiomic features with the

highest AUC values were selected as informative features. For

RFGs with less than 50 stable radiomic features, all stable

radiomic features were used to develop RMs.
Development and validation of RMs

Two types of RMs were developed in this study; the first

one was to discriminate inflamed tumors from immune-desert

or excluded tumors using RFGs from the whole tumor (RM-
Frontiers in Immunology 04
whole), and the second one was to discriminate immune-desert

tumors from immune-excluded tumors using RFGs from the

tumor periphery (RM-peri). For both modeling types, least

absolute shrinkage and selection operator (LASSO) regression

was used to select the radiomic features and build score-based

models from the training cohort with 5-fold cross-validation.

The tuning parameter (l) with the minimum cross-validation

error was selected. The regression was performed using the R

package glmnet with the following parameters: alpha = 1 and

maxit = 104. The radiomic score was defined by the linear

combination of the selected radiomic features and their

respective coefficients. We combined the RMs to increase the

prediction power using LASSO regression with the two

methods. The score-combined model (SC) was developed

using scores from the four individual RMs as input. On the

other hand, the feature-combined model (FC) utilized the

entire radiomic features selected in the four RMs for the

combination. The parameters of the LASSO regression were

the same as the primary modeling parameters. All RMs were

developed from the training cohort and tested using the

validation cohort. Additionally, the developed RMs were

tested to evaluate the correlation with pathologic response in
FIGURE 1

Representative whole slide images of CD8+ T cell spatial immunophenotypes in breast cancer; (A) immune-desert, (B) immune-excluded, and
(C) immune-inflamed. (D) In high power view, intratumoral tumor-infiltrating lymphocytes (TILs) (arrows) and stromal TILs (open arrows) are
noted. The blue color is the hematoxylin counterstain. Original magnification, A-C, scanning view D, ×200; inset, A, C, ×400, B, ×200.
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the NACT cohort. The overall flow of this study is represented

in Figure 2.
Clinical outcomes

Overall survival was defined as the time duration from

surgery to death due to any cause. Disease-free survival was

defined as the duration from surgery to clinical detection of

recurrence. Pathologic complete response (ypCR) to NACT was

defined as no residual tumor on the surgical specimens of the

primary tumor and lymph nodes.
Frontiers in Immunology 05
Statistical analyses

The ICC values for inter-rater variability were calculated

using a two-way random effects model. Kaplan-Meier curves

were compared using the Cox proportional hazards model. AUC

values of the models were calculated using the pROC R package

and compared using Delong’s test. The association between two

continuous variables was assessed using the Pearson’s

correlation test. The continuous variables were compared

using Student’s t-test or one-way analysis of variance

(ANOVA) followed by post-hoc Tukey’s test, as appropriate.

The optimal cutoff values were determined to maximize the sum
FIGURE 2

The study workflow for developing radiomic models and their validation. NACT, neoadjuvant chemotherapy; MRI, magnetic resonance imaging;
DCE, dynamic contrast enhanced; RFG, radiomic feature group; RM, radiomic model.
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of sensitivity and specificity of each model. For multiple

comparisons, P-values were adjusted using Holm’s method. All

statistical analyses were performed using R software version

4.1.0 (https://www.r-project.org).
Results

Association between immunophenotype
and clinical parameters

In the upfront surgery cohort, 67 (36.8%), 30 (16.5%), and 85

(46.7%) had immune-desert, excluded, and inflamed

phenotypes, respectively. As expected, inflamed tumors

exhibited a remarkably higher stromal CD8+ cell density at the

TC than other immunophenotypes (Supplementary Figure 1A),

and immune-desert tumors showed a significantly lower stromal

CD8+ cell density at the tumor periphery than others

(Supplementary Figure 1B). The proportion of the inflamed

phenotype was higher in HER-2 enriched and basal-like

subtypes than in luminal subtypes (Supplementary Figure 2).

The immune-excluded phenotype was associated with a higher

rate of larger tumor size (P = 0.003), lymphatic invasion (P =

0 .019) , and higher h i s to log i c grade (P < 0 .001)

(Supplementary Table 3).

Next, we examined the relationship between stromal TIL

density and CD8+ T cell-based immunophenotype. The stromal

TIL density was positively associated with both central and

peripheral stromal CD8+ cell densities (Supplementary

Figures 3A, B). The stromal TIL density was lowest (0% except

for one case) in cases with the immune-desert phenotype, while

there was no significant difference in the stromal TIL density

between immune-excluded and inflamed phenotypes

(Supplementary Figure 3C). The immune-excluded feature was

associated with worse progression-free and overall survival (P =

0.03 and 0.04, respectively) (Supplementary Figures 4A, B).

However, the stromal TIL density was not significantly

associated with survival outcomes (Supplementary Figures 4C,

D). These data suggest that the spatial contexture of CD8+ TILs

may provide additional clinical value to the stromal TIL density.
Discrimination between inflamed and
non-inflamed phenotypes using whole-
tumor radiomics

Using radiomic features from the whole tumor, we first

developed RMs to predict whether the tumor has an inflamed or

non-inflamed phenotype (immune-desert or excluded). Using a

single RFG, the regression model selected 4–7 radiomic features

(Supplementary Table 4). The performance of the model was

highest for RM-whole1 (training, AUC = 0.659; validation, AUC

= 0.671) and lowest for RM-whole4 (training, AUC = 0.592;
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validation, AUC = 0.576) (Figures 3A–D). For the RM developed

using scores from the four RMs (RM-wholeSC), the AUC values

were 0.803 and 0.811 in the training and validation cohorts,

respectively (Figure 3E). Of note, the RM developed using

features selected from the four RMs (RM-wholeFC) resulted in

AUC values of 0.973 and 0.985 in the training and validation

cohorts, respectively (Figure 3F). The selected features in the

combined models are presented in Supplementary Table 5. The

AUC value of RM-wholeFC in the entire upfront surgery cohort

was significantly higher than that in any of the individual RMs

and RM-wholeSC (P < 0.05 for all comparisons; Figure 3G). In

addition, the central density of stromal CD8+ cells was positively

corre lated with the score from RM-wholeFC (P <

0.001; Figure 3H).
Discrimination between immune-desert
and excluded phenotypes using tumor
periphery radiomics

The two non-inflamed immunophenotypes, immune-desert

and excluded phenotypes, differ in the extent of CD8+ T cell

infiltration in the tumor periphery. Therefore, we developed

models to further discriminate the two immunophenotypes

using the radiomic features obtained from the tumor

periphery. The models with single RFGs selected 2 to 13

radiomic features (Supplementary Table 6), with the highest

AUC value in RM-peri1 (training, AUC = 0.864; validation,

AUC = 0.866) and the lowest AUC value in RM-peri4 (training,

AUC = 0.763; validation, AUC = 0.750) (Figures 4A–D). The

score-based combination (RM-periSC, training, AUC = 0.982;

validation, AUC = 0.976) and feature-based combination (RM-

periFC, training, AUC = 0.993; validation, AUC = 0.984) resulted

in excellent performance (Figures 4E, F; Supplementary Table 7).

In the entire upfront surgery cohort, the RM-periFC showed a

significantly greater AUC value than models built from single

RFGs (P < 0.05 for all comparisons), but without significant

difference observed in comparison with RM-periSC (Figure 4G).

The stromal CD8+ cell density at the tumor periphery positively

correlated with the score obtained from RM-periFC (P <

0.001; Figure 4H).
Combination of the models to predict
the immunophenotype

Because the feature-based combination yielded the best

performance in both modeling types, we subsequently used

RM-wholeFC and RM-periFC to predict the immunophenotype.

By applying the optimal cutoff, scores from both models

discriminated the immunophenotype of each patient

(Figure 5A). In the validation cohort, the accuracy was 0.911

(Figure 5B), and the average F1 score was 0.950. The
frontiersin.org
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B C D

E F G H

A

FIGURE 4

Radiomic models to predict immune-desert versus excluded immunophenotypes on the basis of radiomic features from the peripheral tumor.
(A–F) The receiver operating characteristic curves of RM-peri1 (A), RM-peri2 (B), RM-peri3 (C), RM-peri4 (D), RM-periSC (E), and RM-periFC (F) for
discriminating between immune-desert and excluded tumors in the training (pink), validation (green), and entire cohorts (gray). (G) The
comparison of the AUC values of the six radiomic models derived from the peripheral tumor. (H) The correlation between the radiomic score
obtained from RM-periSC and the peripheral stromal CD8+ T cell density. Statistical analyses were performed using Delong’s test (G) and
Pearson’s correlation test (H). ***P < 0.001, ****P < 0.0001. RM, radiomic model; AUC, area under the receiver operating characteristic curve;
ns, not significant; sCD8, stromal CD8+ T cells.
B C D

E F G H

A

FIGURE 3

Radiomic models to predict immune-inflamed versus non-inflamed immunophenotypes on the basis of radiomic features from the whole
tumor. (A–F) The receiver operating characteristic curves of RM-whole1 (A), RM-whole2 (B), RM-whole3 (C), RM-whole4 (D), RM-wholeSC (E),
and RM-wholeFC (F) for discriminating between immune-inflamed and non-inflamed tumors in the training (pink), validation (green), and entire
cohorts (gray). (G) The comparison of the AUC values of the six radiomic models derived from the whole tumor. (H) The correlation between
the radiomic score obtained from RM-wholeSC and the central stromal CD8+ T cell density. Statistical analyses were performed using Delong’s
test (G) and Pearson’s correlation test (H). ****P < 0.0001. RM, radiomic model; AUC, area under the receiver operating characteristic curve;
sCD8, stromal CD8+ T cells.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2022.1080048
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jeon et al. 10.3389/fimmu.2022.1080048
measurements of model performance are l isted in

Supplementary Table 8.
Association between the models and
clinicopathological features

Next, we explored the association between radiomic scores

from the models and clinicopathological features. As expected,

the score from RM-wholeFC was significantly higher in HER-2

enriched and basal-like subtypes than in luminal tumors

(Supplementary Figure 5A). The score from RM-periFC was

significantly lower in the luminal A subtype than in other

subtypes (Supplementary Figure 5B). Regarding the close

relationship between the immunophenotype and molecular

subtype, we evaluated the performance of the models for each

single molecular subtype. Both RM-wholeFC and RM-periFC
displayed excellent performances with AUC values close to 1,

except for RM-wholeFC in the basal-like subtype (AUC = 0.867;

Supplementary Figures 5C, D). No other parameter, including

pathologic T/N stages, histologic grade, vascular invasion, and

lymphatic invasion, was associated with the scores from RMs,

except for the positive association between the histologic grade

and the score from RM-periFC (Supplementary Figure 6A, B).
Association between the models and
response to NACT

Since a higher level of CD8+ TIL infiltration is reportedly

associated with better response to NACT (23, 24), we tested our

models to predict the response to NACT in a discrete cohort (n =

64). The pre-treatment score from RM-wholeFC, which

positively correlated with the stromal density of CD8+ TILs at

the central tumor (as mentioned before; see Figure 3H), was

significantly higher in patients with ypCR than in those with
Frontiers in Immunology 08
non-ypCR (P = 0.015, Student’s t-test; Figure 6A), which was

consistent with previously reported results. Notably, the score

did not differ according to the molecular subtype (one-way

ANOVA, P = 0.24; Figure 6B), suggesting that a higher score

in the ypCR group might not be because of the predominance of

NACT-sensitive subtypes in that group. Intriguingly, we also

found that the pre-treatment score from RM-periFC positively

correlated with the stromal density of CD8+ T cells at the tumor

periphery (as mentioned before; see Figure 4H), which was

higher in the non-ypCR group than in the ypCR group (P =

0.006, Student’s t-test; Figure 6C), without significantly differing

according to the molecular subtype (one-way ANOVA, P = 0.68;

Figure 6D). This result suggests that the potential underlying

mechanisms of immune-exclusion may be associated with

resistance to NACT. Collectively, the use of our RMs was

verified in the different treatment settings.
Discussion

Despite accumulating evidence supporting the importance

of immunophenotype in breast cancer, non-surgical methods

are still unavailable to predict the immunophenotype. Here, we

developed RMs to discriminate the immune-desert, excluded,

and inflamed phenotypes of breast cancer. The models showed

excellent performances in the cohort of patients undergoing

upfront surgery, and their clinical use was also verified in

association with response to NACT. To the best of our

knowledge, this is the first study to build RMs predicting

CD8+ T cell infiltration and its spatial distribution, regardless

of the cancer type.

Several RMs based on MRI or mammography have been

reported to predict the infiltration of stromal TILs in breast

cancer (17–19, 25). Our data suggest that the immune-excluded

tumors showed worse survival outcomes than tumors with other

immunophenotypes, despite the similar level of stromal TILs
BA

FIGURE 5

Combination of RM-wholeFC and RM-periFC to predict the immunophenotype. (A) The scores obtained from RM-wholeFC and RM-periFC
according to the immunophenotype. The dashed lines indicate the optimal cutoff for each RM. (B) Confusion matrix for the combination of RM-
wholeFC and RM-periFC in the validation cohort.
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between immune-excluded and inflamed tumors. The immune-

excluded phenotype is characterized by the accumulation of T

cells at the tumor periphery but not inside the central portion,

which is associated with the immunosuppressive tumor

microenvironment formed due to mechanical and functional

barriers between the immune and cancer cells (26). Regarding

the non-uniform properties of immune infiltrates, estimating

stromal TILs alone may not provide sufficient information about

the immune contexture. Despite the clinical implications of

tumor immunophenotype (27), the use of RMs in

differentiating immunophenotypes has not been thoroughly

investigated. Accordingly, we suggest that our RMs predicting

the individual immunophenotype may be clinically useful to

decipher the underlying tumor-immune microenvironment in

patients with breast cancer.

RMs to predict outcomes considering the spatial

heterogeneity of tumors are lacking (28). Texture-based

radiomic features represent the spatial arrangement of gray

level pixel values; therefore, these features might be closely

associated with spatial characteristics reflecting intratumoral

heterogeneity. To select the corresponding ROIs, we separately

developed the RMs for the overall and peripheral infiltration of

CD8+ T cells. As a result, the models showed excellent

performances for predicting the pathological characteristics

represented by the spatial distribution of CD8+ T cells. Our

methodology can also be used in future investigations to develop

RMs to predict the spatial distribution of other immune cells and

immune-related markers that have not been examined in the

current analysis.

Our results demonstrated dissimilar performances of the

RMs built from a single phase of DCE-MRI. Most radiomics

studies for breast cancer have utilized the strongest enhanced

phase to build the models (29–31). Tang et al. reported that the

delayed phase of DCE-MRI provided better information
Frontiers in Immunology 09
regarding the amount of TIL infiltration (17); in contrast, our

findings suggested that RMs from the early phase showed the

highest AUC values in predicting both central and peripheral

CD8+ T cell density. Additionally, combining the radiomic

features from all phases significantly improved the

performance compared to using features from a single phase.

Therefore, this study indicates that features from the delayed

phases also contain non-redundant information regarding the

distribution of CD8+ T cells.

Tumor-infiltrating CD8+ T cells exhibit anti-tumor

immune responses in breast cancer (32). Hence, the non-

invasive prediction of CD8+ T cell distribution may be useful

in real-world clinics in the era of immunotherapy in

combination with radiotherapy and/or chemotherapy. For

breast cancer, immune checkpoint inhibitors have shown

improved clinical outcomes, especially in the basal-like

subtype (33–35); an increased baseline density of CD8+ T

ce l l s i s a s soc i a ted wi th a favorab l e r e sponse to

immunotherapy (36). In a phase III clinical trial, the benefit

of PD-L1 blockade in addition to chemotherapy was observed

only in tumors highly infiltrated with CD8+ T cells (37). A

recent single-cell RNA-sequencing analysis showed that the

abundance and expansion of tumor-infiltrating CD8+ T cells

with exhausted features were associated with a better response

to immune checkpoint inhibitors in the basal-like subtype of

breast cancer (38). Additionally, the spatial distribution of

CD8+ T cells also appears to be an important predictive

factor for using immunotherapy for breast cancer (13). The

mechanisms of immune escape and resistance to PD-1/PD-L1

inhibition involve immune-desert and excluded tumors,

whereas inflamed tumors exhibit favorable therapeutic

responses (26). Therefore, our RMs discriminating the

different immunophenotypes may be applied for stratifying

patients treated with immune checkpoint blockade.
B C DA

FIGURE 6

Association between the score from the radiomic models and the response to neoadjuvant chemotherapy. (A, B) The score obtained from RM-
wholeFC according to the pathologic response to neoadjuvant chemotherapy (A) and molecular subtype (B). (C, D) The score obtained from
RM-wholeFC according to the pathologic response to neoadjuvant chemotherapy (C) and molecular subtype (D). Statistical analyses were
performed using Student’s t-test (A, C) and one-way ANOVA with post-hoc Tukey’s test (B, D). *P < 0.05, **P < 0.01. ypCR, pathologic
complete response.
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When we applied the RMs in a discrete NACT cohort, the

scores remarkably differed according to treatment responses.

Several RMs have been developed to predict response to NACT

in breast cancer (30, 39–43); however, the biological backgrounds

of the models have not been studied well. In line with the reported

positive correlation between CD8+ T cell infiltration and response

to NACT (23, 24), this study demonstrated the link between RMs

and differential response to NACT, mediated by the infiltration of

CD8+ T cells. Notably, our results also showed that complete

responders to NACT may contain a significantly lower amount of

CD8+ T cells at the tumor periphery. The potential association

between the spatial distribution of immune cells and the

pathological response to NACT needs to be elucidated in future

studies.A major limitation of this study is that the subjects were

from a single institution with a uniform DCE-MRI protocol. The

performance of our modeling approach needs to be tested using

different protocols, and an additional analysis with an

independent external cohort is necessary for further validation

of our models. To facilitate clinical application in future studies, a

more spatially oriented analysis of the tumor and lymphocyte

populations will be helpful. More automated approaches to

analyze radiomic features and outcomes are also needed.

Nevertheless, in this study, the selected radiomic features were

highly stable to interobserver variability, and both radiomic

features and immunophenotype information were considered

reproducible. To expand the current point of view, combining

pathological and radiomic features may be useful for predicting

pCR. Regarding different biological characteristics and tumor

aggressiveness according to molecular subtypes, the

predictability of our models needs to be further validated for

each subset. Despite these things listed above, this is the first study

to establish a non-invasive imaging tool to decipher the tumor-

immune microenvironment, reflecting the heterogenous

contexture of immune cells within tumor tissues.

In summary, we developed DCE-MRI-based RMs to predict

the individual immunophenotype of breast cancer based on the

spatial distribution of CD8+ T cells. The models showed excellent

performance, which was associated with a favorable response to

NACT. In the contemporary era of cancer immunotherapy, our

proposed models can be used to stratify patients non-invasively

based on the status of the tumor-immune microenvironment.

Large-scale studies are needed to further validate our models.
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