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VSA-1 is a semisynthetic saponin adjuvant prepared from naturally occurring

Momordica saponin and capable of stimulating antigen-specific humoral and

cellular immune responses. Its immunostimulating activity in enhancing the

immune responses induced by the clinical glycoconjugate pneumococcal

vaccine PCV13 is compared with QS-21 in female BALB/c mice. Both VSA-1

and QS-21 boosted IgG and opsonic antibodies titers against seven selected

serotypes, including serotypes 3, 14, and 19A that are involved in most PCV13

breakthroughs. Since VSA-1 is much more accessible and of lower toxicity than

QS-21, it can be a practical saponin immunostimulant to be included in a new

glycoconjugate pneumococcal vaccine formulation.
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Introduction

Streptococcus pneumoniae is a leading cause of bacterial pneumonia and meningitis,

accounting for an estimated 660,000 lower respiratory tract infection-related deaths and

9,600 meningitis-related deaths in adults aged >50 years of age globally each year (1).

Mortality rates are high especially in the very young, elderly, and immunocompromised

individuals. Vaccines can be an effective way to prevent infections by S. pneumoniae,

including drug-resistant strains. There are two types of clinical pneumococcal vaccines:

pneumococcal polysaccharide vaccine (e.g., PPV23, composed of purified pneumococcal

capsular polysaccharides (CPS) of 23 serotypes of S. pneumoniae) and pneumococcal

glycoconjugate vaccine (e.g., PCV13, composed of purified CPS of 13 serotypes of S.

pneumoniae individually conjugated to diphtheria toxin protein carrier CRM197) (2, 3).

However, both vaccines have limitations (2–8), for example, PPV23 is not effective in

children younger than 2 years old, and only 60-70% effective against invasive disease (9). The

use of PCV13 substantially reduced invasive pneumococcal disease (IPD) caused by PCV13
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vaccine serotypes in all age groups, but the reductions of IPD in

each of the 13 vaccine serotypes of PCV13 varied among serotypes.

PCV13’s effectiveness against serotype 3 was not significant (10),

and most vaccine breakthroughs in children involve serotype 3 (4,

11–13), and there are also cases involving serotypes 14 and 19A

(14–17). In addition, immunosenescence is a noticeable issue with

current pneumococcal vaccines; PCV13 is 75% effective against

IPD in adults older than 65 years. It is therefore desirable to

improve the efficacy of glycoconjugate vaccines.

A viable way to potentiate humoral and cellular immune

responses is to add an immunostimulating adjuvant to the

vaccine (18). Adjuvants constitute an indispensable element of

modern vaccines. They (a) enhance the ability of a vaccine to

elicit strong and durable immune responses, especially in

immunological ly compromised individuals such as

immunologically immature neonates, the aged, and immune

suppressed individuals; (b) reduce antigen dose and the number

of immunizations; and (c) modulate the nature of immune

response (19). There are only a few adjuvants (e.g., alum,

AS04, MF59, AS03, CpG, and AS01b) approved by the FDA

for human use (20–24). PCV13 contains alum (various

aluminum salts), the most used adjuvant; however, alum is a

weak adjuvant and primarily enhances Th2 humoral immune

responses without Th1 help.

QS-21 is a saponin adjuvant known for its capacity of

inducing both Th1 and Th2 immune responses. It was

recently approved as a component of adjuvant AS01b (25, 26)

used in GlaxoSmithKline’s (GSK) shingles vaccine, Shingrix®,

one of the most successful vaccine launches in recent years (25,

27). The protection offered by QS-21 vaccines is highly durable.

QS-21 vaccines are effective for broad use across age groups:

Shingrix® is highly effective in older individuals (≥70 years) (28);

and the GSK ’s QS-21 containing malaria vaccine ,

MOSQUIRIX®, has been used to protect pediatric populations

(29). However, QS-21 has its own limitations. It is a natural

product isolated from the tree bark of Quillaja saponariaMolina

(QS), an evergreen tree native to temperate central Chile. It has a

severe supply issue; the current global supply of natural QS-21
SCHEME 1

Preparation of VSA adjuvants from natural Momordica saponins.
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may not be sufficient for widespread clinical use for various anti-

infection vaccines (30, 31). Its limited supply, along with

chemical instability, dose-limiting toxicity, and laborious and

low-yielding purification, hinder its wider use (30, 31).

In pursuit of practical alternatives to QS-21, Wang et al.

discovered VSA-1 adjuvant based on extensive structure-

activity-relationship studies (32–36). VSA-1 is a semisynthetic

saponin which can be synthesized in only one-step from

naturally occurring Momordica saponins (MS) isolated from

the widely available and inexpensive seeds of Momordica

cochinchinensis SPRENG (MC), a perennial vine (Synthesis of

VSA-1 from MS I is depicted in Scheme 1) (34). VSA-1 can

induce a strong antigen-specific, mixed Th1/Th2 immune

response mirroring QS-21 and it is much less toxic than

natural QS saponins (34). Recently, a split virus flu vaccine

showed that VSA-1 has similar/superior adjuvant activity to QS-

21 in terms of stimulating humoral and cellular immune

responses. Thus, it has the potential to be an effective and

inexpensive alternative to QS-21 for various high-volume

vaccination needs, especially for anti-infection vaccines.
Materials and methods

Commercial vaccines

Each human dose of PCV13 (trade name Prevnar 13 by

Pfizer) is available in 0.5 mL single-dose pre-filled syringes. It

contains 2.2 mg of polysaccharide (PS) from each of 12 serotypes

(i.e., 1, 3, 4, 5, 6A, 7F, 9V, 14, 19A, 19F, 18C, and 23F) and 4.4 mg
of polysaccharide from serotype 6B conjugated to CRM197,

along with 125 mg of alum adjuvant.
Semisynthetic vaccine adjuvant

Synthesis of VSA-1: The published general procedure of

synthesizing MS derivatives was used (34). Thus, MS I (120 mg,
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0.07 mmol) in ethanol (3.0 mL) and water (1.0 mL) was added

dodecylamine (50.0 mg, 0.27 mmol), N-methylmorpholine

(NMM) (91.0 mg, 0.90 mmol), hydroxybenzotriazole (HOBt)

(83.0 mg, 0.54 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride (EDC.HCl) (107.0 mg, 0.54 mmol)

at room temperature. The reaction mixture was stirred for 1 day,

and was then filtered. The filtrate was directly purified with

reverse-phase high performance liquid chromatography (RP

HPLC) by using a Prep C18, 250x10 mm, 5-micron column,

and H2O/acetonitrile (MeCN) gradients (90%-10% H2O over 45

minutes with a 3 mL/min flow rate). The product fraction was

concentrated on a rotary evaporator at room temperature to

remove MeCN, and the remaining water was then removed on a

lyophilizer to provide the derivative as a white solid.
Mice immunizations

BALB/c mice used in this study were purchased from the

Jackson Laboratory and maintained within an environmentally

controlled, pathogen-free animal facility at the University of

Alabama at Birmingham (UAB). Each human dose of PCV13

(trade name Prevnar 13 by Pfizer) is available in 0.5 mL single-

dose pre-filled syringes. QS-21 and VSA-1 were dissolved in

sterile distilled water to give their respective stock solution at 1.0

mg/mL. Each mouse dose contained 50 mL of PCV13 plus 20 mL
of QS-21 or 50 mL of VSA-1, diluted to a total volume of 200 mL
with 0.9% Normal Saline. Groups of female BALB/c mice (8-10

weeks of age, six per group) were immunized via the

subcutaneous route (s.c.) with 200 mL of saline, PCV13,

PCV13 plus QS-21, or PCV13 plus VSA-1 (two sites/mouse at

dorsal, 100 mL/site) on days 0, 14 and 28. Serum samples were

collected prior to the first and the third immunizations and at 2

weeks following the last immunization. Equal volumes of the six

sera in each group were pooled together to create serum pools

for each group. The serum was obtained after centrifugation and

stored at −20 °C until assayed. All studies were performed

according to National Institutes of Health guidelines, and

protocols were approved by the UAB Institutional Animal

Care and Use Committee.
ELISA

The World Health Organization (WHO)-approved ELISA

assay described for human pneumococcal antibodies (37, 38)

was adapted for mouse serum as described below. Briefly, each

well of a 96-well microtiter plate was coated with 100 mL of PBS

with a CPS at a pre-determined concentration. CPS of the seven

serotypes (3, 4, 6B, 9V, 14, 19A, 19F, and 22F) were from

American Type Culture Collection (ATCC). Plates were

incubated at 37 °C for 5 h in a humidified chamber, except

type 3 PS which was coated at room temperature for 2 hours.
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The coated plates were washed with Washing Buffer (TBS-0.1%

Brij-35 solution) and blocked with PBS containing 0.5% BSA,

0.05% Tween 20 and 0.02% NaN3. To the PS-coated microtiter

plates, was loaded 50 mL of the serum pool diluted as below. The

serum pools were made by mixing equal volume of individual

mouse serum in each group. The resulting serum pools were

initially diluted 1:50 and then 3-fold serially diluted in Antibody

Buffer (PBS with 0.1% BSA, 0.05% Tween-20 and 0.02% NaN3)

with 5 mg/ml of teichoic acid (the Statens Serum Institute in

Denmark) and 5 mg/ml 22F capsule (ATCC). The two

absorbents were added to neutralized non-specific binding of

irrelevant antibodies (38). The plates were incubated overnight

at room temperature in a humidified box. After washing five

times, 100 mL of diluted alkaline phosphatase-conjugated goat

mouse immunoglobulin (Southern Biotech, Birmingham, AL) in

Antibody Buffer was added to each well. After another 1-h

incubation, the plates were washed five times, and 100 mL of

the substrate solution containing p-nitrophenyl phosphate

(Sigma) was added to each well. After a 1-h incubation at

room temperature, the optical density (OD) was measured at

405 nm and at 690 nm. The detailed protocol of the WHO

ELISA can be found at our website (http://www.vaccine.uab.

edu) (38).
Opsonophagocytosis assay

Opsonophagocytosis assay for serotypes 3, 4, 6B, 9V, 14,

19A, and 19F was performed using the 4-fold multiplexed

opsonization assay (39). Briefly, 10 mL of bacterial suspension

(∼0.5 × 105 CFU/ml of each serotype) and 20 mL of serially

diluted antiserum were incubated in a microtiter plate for 30 min

at RT with shaking. Then 10 mL of 3- to 4-week-old rabbit serum
as the complement source (PelFreeze Biologicals, Rogers, AK)

and 40 mL of differentiated HL60 cells (4 × 105 cells) were added

to each well and the plates were incubated at 37°C in 5% CO2

with shaking for 45 min. An aliquot of the final reaction mixture

(10 mL) was spotted onto four different Todd Hewitt Broth with

yeast extract (THY) agar plates (39), and overlay agar containing

one of the four antibiotics (optochin, spectinomycin,

streptomycin, or trimethoprim) was applied to each THY agar

plate. After an overnight incubation at 37 °C, the number of

bacterial colonies was enumerated. Opsonic indices were

determined as the interpolated serum dilution that kills 50% of

bacteria. A detailed protocol can be found our website (http://

www.vaccine.uab.edu).
Results and discussion

Herein we report our results of comparing VSA-1 and QS-21

in enhancing the immune responses induced by the clinical

glycoconjugate pneumococcal vaccine PCV13. Each human dose
frontiersin.org
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of PCV13 (trade name Prevnar 13 by Pfizer) is available in 0.5

mL single-dose pre-filled syringes. It contains 2.2 mg of

polysaccharide from each of 12 serotypes (i.e., 1, 3, 4, 5, 6A,

7F, 9V, 14, 19A, 19F, 18C, and 23F) and 4.4 mg of polysaccharide
from serotype 6B conjugated to CRM197, along with 125 mg of

alum adjuvant. Thus, groups of female BALB/c mice (8-10 weeks

of age, six per group) were immunized via the subcutaneous

route (s.c.) with saline (group A, negative control), PCV13

(group B), PCV13 plus QS-21 (20 µg) (group C), or PCV13

plus VSA-1 (100 µg) (group D) on days 0, 14 and 28. We used

one tenth of one human dose of PCV13 for each mouse dose.

Serum samples were collected prior to the first and the third

immunizations and at 2 weeks following the third

immunization. Equal volumes of the six sera in each group

were pooled together to create serum pools for each group.

ELISA was used to assess the antibody activity toward seven

PCV13 serotypes, i.e., 3, 4, 6B, 9V, 14, 19A, and 19F (Figure 1A–

G) (40).

The serum samples collected from all the four groups prior

to the first immunization and the serum of saline control post

the two or three immunizations (Days 28 and 42) showed no

antigen-specific antibody titers (Figure 1 and Table 1). PCV13

induced significant antibody responses to the seven tested

serotypes on Days 28 and 42, and inclusion of a saponin

adjuvant to PCV13 enhanced antigen-specific antibody

responses to all seven serotypes compared with the PCV13

control group. When comparing the dilutions that gave OD of
Frontiers in Immunology 04
6x background (i.e., antibody titers), VSA-1 and QS-21 showed

similar adjuvant activities for serotypes 3, 6B, 9V, 19A, and 19F,

but VSA-1 was superior to QS-21 for serotypes 4 and 14 on Day

42 (Table 1).

The ELISA results provided evidence of antibody responses

to the different vaccine formulations; however, these data do not

indicate the ability of the antibodies to opsonize and kill bacteria,

thus do not provide direct evidence of immune protection.

Vaccine-induced immune protection against encapsulated S.

pneumoniae is primarily mediated by opsonic antibodies that

bind CPSs (41, 42). Opsonophagocytosis assay (OPA) is an

important tool to evaluate the capacity of sera to kill the bacteria

(40, 42, 43). OPA for serotypes 3, 4, 6B, 9V, 14, 19A, and 19F was

performed using the 4-fold multiplexed opsonization assay for

samples obtained on days 0 and 42 (39). Opsonic titers are

defined as the reciprocal of the interpolated serum dilution that

kills 50% of the bacteria. The OPA data show that inclusion of a

saponin adjuvant in PCV13 enhance opsonic titers for all

serotypes (Table 2). With QS-21, PCV13-induced opsonic

titers increased in the range of 1.9-4.9 fold for serotypes 3, 4,

6B, 9V, 19A, and 19F, and a 14.9-fold increase for serotype 14.

VSA-1 improved opsonic titers against serotype 14 even more,

with an 18.2-fold increase, and a 2.1-4.1 fold increase for other

serotypes except for serotypes 9V (x 0.8) (Table 2), even though

it increased IgG response against 9V by 2.5 fold compared with

PCV13 alone (Table 1). Comparison between VSA-1 and QS-21

shows that VSA-1 was superior to QS-21 in enhancing opsonic
B

E F

C D

G

A

FIGURE 1

Serum antibody activity to seven serotypes on Day 42, (A) 3, (B) 4, (C) 6B, (D) 9V, (E)14, (F) 19A, and (G) 19F. BALB/c mice (8-10 weeks of age,
six per group) were immunized via the subcutaneous route (s.c.) on days 0, 14 and 28. Serum samples were collected prior to the first
immunization and at 2 weeks following the last immunization. The pooled serum samples of each group were analyzed by ELISA. The Y-axis
shows the bound antibody (OD405-OD690) at various serum dilutions (X-axis). The serum pool from the mice immunized with saline had very
small amounts of antibodies for all serotypes and its data were plotted close to the horizontal axis. Similarly, the data from pre-immune serum
samples showed undetectable antibody for all serotypes (data not shown).
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titers for serotypes 4, 6B, 14, and 19A, by 1.8, 2.0, 1.2, and 1.1

fold respectively. QS-21 was superior to VSA-1 for serotypes 3,

9V, and 19F, by 1.3, 2.4, and 1.2 fold, respectively.

The ELISA and OPA data suggest that adding saponin

adjuvant VSA-1 to PCV13 is a viable way to boost antibody

responses and increase opsonic antibodies induced by PCV13.

Both VSA-1 and QS-21 boosted IgG and OPA titers against the

tested serotypes, including serotypes 3, 14, and 19A that are

involved in most PCV13 breakthroughs, especially serotype 3.

VSA-1 and QS-21 are known for stimulating antigen-specific

humoral and cellular immunity. They can potentially enhance

the serotype-specific immune memory and help to reduce

number of immunizations of PCV13 while maintaining a high

level of protection. The adjuvants’ capability in stimulating

cellular immune responses can also help to overcome

immunosenescence and improve efficacy of glycoconjugate

pneumococcal vaccine in elderly (44), which is important

given that PCV13 is 75% effective against IPD in adults older

than 65 years. Since VSA-1 is much more accessible and of lower

toxicity than QS-21, it can be a practical saponin

immunostimulant to be included in a new glycoconjugate

pneumococcal vaccine formulation. However, development of

a new adjuvant requires studies in different animal species and in
Frontiers in Immunology 05
human. For future development, we plan to perform additional

studies in different animal models and optimize the adjuvant

doses and immunization regimens.
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34. Wang P, Ding X, Kim H, SŠkalamera Đ, Michalek SM, Zhang P. Vaccine
adjuvants derivatized from momordica saponins I and II. J Med Chem (2019)
62:9976–82. doi: 10.1021/acs.jmedchem.9b01511
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