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Aberrant metabolic processes
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microenvironment in
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Introduction: Multiple myeloma (MM) is still an incurable plasma cell

malignancy. The efficacy of immunotherapy on MM remains unsatisfactory,

and the underlying molecular mechanisms still are not fully understood.

Methods: In this study, we delineated the dynamic features of immune cell in

MM bone marrow (BM) along with elevated tumor cell infiltration by single-cell

RNA sequencing (scRNA-seq), and investigated the underlying mechanisms on

dysfunction of immune cells associated with myelomagenesis.

Results: We found that immune cells were activated in those patients with low

infiltration of tumor cells, meanwhile suppressed with elevated infiltration of

MM cells, which facilitated MM escaping from immune surveillance. Besides

PD-1, abnormal expression of PIM kinases, KLRB1 and KLRC1 were involved in

the defect of immune cells in MM patients. Importantly, we found aberrant

metabolic processes were associated with the immunosuppressive

microenvironment in MM patients. Disordered amino acid metabolism

promoted the dysfunction of cytotoxicity CD8 T cells as well as lipid

metabolism disorder was associated with the dysregulation of NK and DCs in

MM. As metabolic checkpoints, PIM kinases would be potential effective

strategies for MM immunotherapy.

Discussion: In summary, redressing the disordered metabolism should be the

key points to get promising effects in immune-based therapies.
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Introduction

Multiple Myeloma (MM) remains an incurable plasma cell

malignancy (1–3). The development of MM has been classically

viewed as a multistage process (4). However, the common

initiating events, including multiple cytogenetic aberrant, with

immunoglobulin heavy chain translocation and hyperdiploidy

are insufficient to cause MM occurrence, as MGUS/SMM

patients commonly harbor these abnormalities and show no

clinical symptoms of MM (5, 6). Intra-clonal heterogeneity has

been observed at all stages of MM. Mounting evidences suggest

that disease occurrence and progression may be induced by

inter-subclone competition and external microenvironment of

the fittest of these subclones (7).

Avoiding immune destruction is a hallmark of cancer (8).

Immunotherapy has proven to be very encouraging in the

therapy of cancers especially in hematological malignancy,

including MM (9). However, the efficacy of immunotherapy

on MM remains far from satisfactory. The immunosuppressive

microenvironment interferes the efficacy of immunotherapies,

but the underlying molecular mechanisms remain largely

unknown. The complicated cell-cell interaction between tumor

and immune cells (10–15), as well as cytokines and chemokines

by autocrine or paracrine by tumor cells, promotes the

immunosuppressive tumor microenvironment (iTME) (16,

17). Recent researches elucidated that the impaired metabolic

flexibility associated with tumor cells could result in an

ineffective anti-tumor immune response and involved in

tumor progression (18–20). The abnormal energy metabolism

was also associated with the pathogenesis and outcomes of MM

patients (21). However, few study delineated the immune

responses, interactions and metabolic states of immune cells at

the same space-time dimension in myeloma microenvironment.

Further understanding the landscape of the dysfunction of

immune cells as well as the underlying molecular mechanisms

are necessary for us to identify more efficient therapeutic targets

for future clinical intervention. Recently, there were several

studies investigated the iTME in MM via scRNA-seq (22–25).

Most of the reports analyzed the iTME of MM patients based on

risk stratification of patients, such as the Revised International
Abbreviations: MM, Multiple myeloma; BM, bone marrow; scRNA-seq,

single-cell RNA sequencing; BMNCs, bone marrow mononuclear cells;

HD, healthy donors; NDMM, newly diagnosed MM; SR, standard risk;

HR, high risk; UMI, unique molecular identifier; GO, Gene ontology;

DCs, dendritic cells; ISS, International Staging System; R-ISS, the Revised

International Staging System; PIs, proteasome inhibitor; EDTA,

ethylenediaminetetraacetic acid; HSPC, hematopoietic stem and

progenitor cells; del, deletion; MHC, major histocompatibility complex;

APCs, Professional antigen-presenting cells; cDCs, conventional DCs;

pDCs, plasmacytoid DCs; DEGs, differentially expressed genes; mTOR,

mammalian target of rapamycin.
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Staging System (R-ISS) and the mSMART 3.0 classification.

Those data help us to comprehend the effect of genotypic

milieu on immune response in MM patients. However, the

metabolic restriction in immune cells caused by tumor cells is

more relevant to the accumulation of tumor cells but not the

genotypic milieu. To investigate the effect of metabolism on

immune response in MM patients, we segregated the MM

patients enrolled in our study according to the infiltration of

MM cells in the bone marrow.

In this study, we utilized single-cell RNA sequencing

(scRNA-seq), an unbiased technology to comprehensively

categorize cell types for a deeper dissection of immune cell

features in newly diagnosed MM (NDMM) patients compared

with healthy donors (HDs). The pathophysiology features of

immune cell populations in myeloma microenvironment were

dissected, and the impact of tumor cells on immunosuppressive

microenvironment was investigated as well. Our study proved

that the state of immune response was dynamic along with the

elevated tumor cells. Such ecosystems were orchestrated byMMs

through disordered metabolism induced program.
Methods

Clinical samples

Bone marrow mononuclear cells (BMNCs) were obtained

from 7 HDs and 12 NDMM patients (Figure 1A). The clinical

and biological characteristics of 12 NDMM patients are listed in

Figure 1B. BMNCs were isolated by Ficoll density-gradient

centrifugation. This study was approved by the Institutional

Ethics Review Boards from the Institute of Hematology and

Blood Diseases Hospital, Chinese Academy of Medical Sciences.

Written informed consents were obtained from patients and

healthy donors before sample collection.
Single-cell RNA library preparation and
sequencing

3’-biased 10× Genomics Chromium was applied (26). The

libraries were sequenced on an MGISEQ-2000 sequencer as 150

bp paired-end reads by Novogene Co., Ltd (Novogene,

Beijing, China).
scRNA-seq data processing

The Seurat was used for dimension reduction, clustering,

and differential gene expression (27). Cell Ranger Software Suite

was applied to perform genome alignment, barcode processing,

and unique molecular identifier (UMI) counting. The
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FIGURE 1

Cell identification in myeloma microenvironment at single cell resolution (A). Flow chat of the study. BMNCs from 7 HDs and 12 NDMM patients were
subjected to single-cell RNA sequencing on 10× Genomics platform. A total of 42,936 cells were analyzed after quality control. (B). Form shows the
detailed characteristics and clinical information of MM patients. (C). Seventeen cell clusters were identified by t-SNE analysis of BMNCs from HD and MM
patients. Each dot represents a single cell; colors indicate cell clusters with numbered labels. (D). Bubble chart shows the expression of marker genes of
distinctive cell type. The cluster number are presented in the bottom of the figure. (E).t-SNE plot shows the distribution pattern of the BMNCs cell types.
Colors represent different cell types. (F). Bar charts show the proportions of distinctive cell type from HD and different MM groups. The cell types in right
correspond to the ones in (E). (G). The correlation of proportion of T/NK and MM cells in MM patients. (H). Heatmap shows the expression profile of top
20 signature genes for T/NK clusters from HD and different MM groups. The top bars label the HD and MM groups. tSNE, T-distributed stochastic
neighbor embedding; BMNCs, Bone marrow mononuclear cells; MM, multiple myeloma; NDMM, newly diagnosed MM; HD, healthy donors; T/NK,
T cells and NK cells; B, B cells; PC/MM, plasma cells and multiple myeloma cells; Ery, erythroidblast; HSPC, hematopoietic stem and progenitor cells.
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identification of cell clusters was defined based on marker genes,

as described in previous reports (28–31).
Functional enrichment analysis

The metabolic pathways among HD and MM patients were

calculated for each cell using the GSVA software package (32).

Differential pathway analysis between clusters was done with the

limma R software package (33). Gene Ontology (GO) analysis

was performed with cluster Profiler4 (34).
Cell function analysis based on
scRNA-seq

The cytotoxic score and exhausted score for T cells and

active score for dendritic cells (DCs) were defined by

AddModuleScore (27). The signature genes for the estimation

of cytotoxic/exhausted score and active score were respectively

listed in Supplementary Tables 1 and 2. CellPhoneDB was used

to estimate cell-cell interactions as described in the previous

report (35).
Mouse model and flow cytometry
analysis

C57BL/KaLwRij 5TGM1 murine myeloma model

(purchased from Harlan Laboratories Inc., Netherlands) were

utilized according to the protocol reported (36, 37). BMNCs

were collected 5 weeks after 5TGM1 mouse MM cell injection,

and flow cytometry was performed to analyze the composition in

bone marrow cells. Flow cytometry for BMNCs was performed

on Canto flow cytometer, and the data were analyzed by Flowjo

V10 software. The detailed information with the antibodies

utilized is listed in Supplementary Table 3.
Evaluation to the function of CD8 T cells
in MM patients and mouse in vitro

BMNCs from MM patients were isolated by Ficoll density-

gradient centrifugation. BMNCs were treated with Cell

Activation Cocktail (with Brefeldin A) (Biolegend, USA) for 5

hours. Flow cytometry was performed to analyze expression of

surface markers and cytokines in T cells.

C57BL/6J mouse (purchased from Vital River Laboratories,

Beijing, China) were utilized according to the protocol as

follows: Spleens were collected and homogenized using a steel

mesh. Red blood cells were lysed using Red Blood Cell Lysis

Buffer (Solarbio Science & Technology Co.,Ltd., Beijing, China)

for 4 min at room temperature. Washing the splenocytes with
Frontiers in Immunology 04
PBS for 3 times. Splenocytes were activated by anti-mouse CD3/

CD28 (2ug/ml) combined with PIM kinase inhibitor AZD1208

(1ug/ml) or DMSO for 72 hours. Flow cytometry (Canto flow

cytometer, BD) was performed to analyze expression of surface

markers and cytokines in T cells, and the data were analyzed by

Flowjo V10 software. The detailed information with the

antibodies utilized was listed in Supplementary Table 3.
Statistical analysis

Data are shown as either mean or median ± SEM or SD. The

statistical significance was determined by two-tailed Student’s t-test,

one-way or two-way ANOVA tests. Data analyses were performed

with R language and SPSS 18.0. In all instances, p< 0.05 was

considered significant, * p < 0.05, ** p < 0.01 and *** p < 0.001.
Results

Cell identification in myeloma
microenvironment at single cell
resolution

Here we utilized scRNA-seq to integrate and delineate the

cellular components of BM microenvironment in MM patients

compared with HDs. The flowchart of the study was presented in

Figure 1A. Twelve NDMM patients and seven 7 HDs were

included in this study. Detailed clinical and pathological

information, including stage of diseases, cytogenetic aberrant

and tumor infiltration, were summarized in Figure 1B. The 9/12

patients were International Staging System (ISS) stage III, and 6/

12 patients were Revised ISS (R-ISS) stage III. According to

mSMART3.0 (2, 38), 4/12 patients were identified as cytogenetic

standard risk, and 8/12 were high risk. 4/12 patients exhibited t

(4, 14), and one patient was 17p deletion. Genetic features of five

patients (MM4, MM5, MM15, MM24, and MM25) were

considered double-hit myeloma. The treatment of the patients

grouped: 1) proteasome inhibitor (PIs) based or 2) PIs in

combination with immunomodulatory drugs (IMiDs) for those

with high-risk MM. Of note, among the eight patients with high-

risk genetic features, the overall survival of four cases (MM8,

MM12, MM15 and MM24) was inferior with less than 2 years,

while other HR patients could benefit from the therapy with

favorable outcome.

A total of 42,936 single cells from MM and HDs were

included in this analysis after quality control, and an average

of 7,939 UMI and 1,243 genes were generated per single cell

(Supplementary Figure 1A). t-SNE analysis identified and

visualized 17 distinct cellular clusters (Clusters 0-16) according

to their transcriptome profile (Figure 1C and Supplementary

Figure 1B). Compared to HD, Cluster 0, Cluster 1 and Cluster 12

mainly appear in MM patients, especially Cluster 0 and Cluster 1
frontiersin.org
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(Figure 1C).We annotated seven cell types based on the

expression of characteristic genes of these clusters:

hematopoietic stem and progenitor cells (HSPC) (CD34 and

AVP), T/NK cells (CD3E and KLRF1), myeloid (LYZ and CST3),

neutrophils (LYZ, CTS3, CSF3R, AZU1 and MPO), plasma/MM

cells (SDC1, TNFRSF17 and CD38), B cells (MA4A1, CD79A and

CD79B), Erythroidblast (ALAS2, AHSP and GYPA) (Figures 1D,

E). The characteristic genes for each cluster were referred to

previous reports (39–41). In particular, based on high level of

SDC1, TNFRSF17, MZB1, CD38 and low level of CD19 and

MS4A1, Cluster 0, Cluster 1 and Cluster 12 were defined as

SDC1+ cells, namely plasma cell in HD controls and tumor cells

in MM patient (Figure 1E and Supplementary Figure 1B). The

BM cellular composition in each MM patients was highly

heterogeneous (Supplementary Figure 1C). According to the

proportion of MM cells in BM aspiration defined by scRNA-seq

(Cluster 0, Cluster1 and Cluster 12), the MM patients could be

segregated into two groups, low infiltration group with less MM

cells (%MM cells<40%, mean value= 26%, n=6) and high

infiltration group (%MM cells>40%, mean value= 56%, n=6)

(Figure 1B). Interestingly, we noted that all six patients in high-

infiltration group corresponded to the cytogenetic high-risk

group according to the criteria of mSMART3.0, whilst two

patients with cytogenetic high-risk, MM1 and MM5, belonged

to low-infiltration group (Figure 1B). This finding suggests us

that except for cytogenetic aberrant of MM cells, tumor-extrinsic

local microenvironment was also involved in the determination

the tumor cell proliferation and survive. Therefore, it is essential

to dig out the underlying mechanisms of the biological

heterogeneity resulting in the extremely malignant clinical

features of MM.

To further investigate the association between tumor cell

infiltration and microenvironment non-malignant cells, the

proportion of each type of cells in patients with diverse clinical

characteristics were analyzed. As Figure 1F showed, the twelve

MM patients were discriminated into four groups with extent of

tumor cell infiltration, risk stratification (mSMART3.0) and

survival state, as following: High-HR-0 (high tumor

infiltration, high risk and survival, including patients MM4

and MM25), High-HR-1 (high tumor infiltration, high risk

and death, including patients MM8, MM12, MM15 and

MM24), Low-HR-0 (low tumor infiltration, high risk and

survival, including patients MM2, MM3, MM16 and MM27),

and Low-SR-0 (low tumor infiltration, standard risk and

survival, including patients MM1 and MM5). Of note,

immune cells, including T and NK cells were decreased in

patients with high level tumor cells, including High-HR-0 and

High-HR-1, compared with low level ones (Low-SR-0 and Low-

HR-0). Among patients with low level infiltration of tumor cells,

MM cells with high-risk cytogenetic features (Low-HR-0) did

not present superiority in proliferation compared with low-risk

ones (Low-SR-0). Moreover, in high level infiltration patients,

the immune cells remarkably reduced compared with low level
Frontiers in Immunology 05
tumor cell infiltration patients. The proportion of T/NK cell was

negatively correlated with the proportion of MM cells in BM

milieu (R=-0.69, p=0.013, Figure 1G). These findings supported

that the proliferation of tumor cells was not only dependent on

the characteristics of MM cells, but tumor microenvironment,

especially immune microenvironment, which played pivotal

roles in the process. Our further analysis confirmed the

heterogeneity of T/NK cells among diverse tumor cell

infiltration groups of patients. The transcription of T/NK cells

was similar in normal BM and Low-SR-0 group patients, and

high-HR-0 was similar with high-HR-1. The low-HR-0 fell in

between (Figure 1H).
The fluctuation of CD8 T sub-clusters in
MM patients with different infiltration of
tumor cells

T cells are the major players in anti-tumor immune

response. Here we further analyzed the T cells subpopulations

in BM of MM patients based on single-cell transcriptome data.

tSNE clustering analysis showed that twelve subpopulations of T

cells could be further discriminated based on the expression of

classical markers (sub-clusters 0 to 11, Figure 2A) including

seven sub-clusters of CD8+ T cells and five sub-clusters of CD4+

T cells. All of the T cell subpopulations could be found both in

HD and MM patients in different proportions. They were CD8-

Naïve (sub-cluster 2), CD8-GNLY (sub-cluster 0), CD8-XCL2

(sub-cluster 6), CD8-S100A8 (sub-cluster 8), CD8-mucosal-

associated invariant T cells (CD8-MAIT, sub-cluster 9), CD8-

COTL1(sub-cluster10), CD8-MZB1 (sub-cluster 11), CD4-

Naïve (sub-cluster 1), CD4-NR4A2 (sub-cluster 3), CD4-

GPR183- FOXP1 (sub-cluster 4), CD4-AQP3 (sub-cluster 5)

and CD4-Treg (sub-cluster 7) (Figures 2B, C). Based on the

description of previous reports (29–31), we further defined the

sub-clusters. In detail, sub-cluster 2 was defined as CD8-Naïve T

cells with high levels of CCR7, SELL, LEF1 and low levels of

effector genes. CD8-XCL2 was memory CD8+ T cells that

characterized by expression STMN1 and CD69 (Supplementary

Figure 2A). CD8-COTL1 was defined as exhausted CD8 T cell

due to the higher level of immune checkpoint TIGIT than other

T cell subpopulations (Supplementary Figure 2A). CD8-GNLY

T cells were characterized as effector T cells with high expression

of cytotoxic genes, including GNLY, GZMB, TNF and IFNG

(Figure 2C and Supplementary Figure 2A). CD8-S100A8 were

transitional CD8 effector T cells with expression of GZMK

(Supplementary Figure 2A). Sub-cluster 9 was defined as CD8-

MAIT with the expression of SLC4A10. Within the CD4+ T cell

compartment, CD4-Naïve (sub-cluster 1) expressed SELL, CCR7

and LEF1, the common naive cells marker genes. CD4-NR4A2

(sub-cluster 3) was identified as effector CD4 T cells by

expressing genes which were induced early after activation,

such as JUNB, FOS, ATF3 and DNAJB1 (Figure 2C and
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https://doi.org/10.3389/fimmu.2022.1077768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.1077768
A B

D

E F

C

FIGURE 2

The fluctuation of CD8 effector T cells and accumulation of CD8 memory T cells in MM patients with different tumor burden (A). t-SNE shows
the T cell sub-clusters in HD and MM patients. Cells with a high level of CD3 (CD3E, CD3G and CD3D) expression were T cells. Each dot
represents a single cell; colors indicate cell clusters with numbered labels. (B).t-SNE plot show the expression and distribution of classical cell
markers of T cell sub-clusters. Color intensity indicates expression level of selected genes. (C).Violin charts show the expression of classical cell
markers of T cell sub-clusters. The sub-cluster numbers in (c) bottom correspond to the ones in (A). Sub-C0: CD8-GNLY (effector T cells); sub-
C1: CD4-Naïve; sub-C2: CD8-Naive; sub-C3: CD4-NR4A2; sub-C4: CD4-GPR183_FOXP1; sub-C5: CD4-AQP3; sub-C6: CD8-XCL2 (memory T
cells); sub-C7: CD4-Treg; sub-C8: CD8-S100A8; sub-C9: CD8-MALT; sub-C10: CD8-COTL1; sub-C11: CD8-MZB1; (D). Bar charts show the
proportions of T cell sub-clusters from HD and different infiltration groups of MM patients. (HD: n=7; Low: n=6; High: n=6) (E). Flow cytometry
analysis shows the proportions of CD8+ T cell sub-populations in HD and MM patients. (HD: n=23; Low: n=15; High: n=3) CD8-Naive:
CD3+CD8+CD45RA+CD62L+; CD8-Effector: CD3+CD8+CD45RA+CD62L-; CD8-Central memory: CD3+CD8+CD45RA-CD62L+; CD8-Effector
memory: CD3+CD8+CD45RA-CD62L-; (F). Flow cytometry analysis and bar charts show the proportion of CD8 T and CD4 T cells in Control and
5TGM1 MM mouse model (Control: n=7; MM: n=8). In all instances, p < 0.05 was considered significant, * p < 0.05 and *** p < 0.001.
ns, no significance.
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Supplementary Figure 2A). Sub-Cluster 7 was identified as CD4-

Treg by co-expressing Foxp3 and CTLA4.

Notably, the composition of T cell sub-clusters was

heterogeneous across the patients with MM (Supplementary

Figure 2B). The proportion of effector CD8+ T cells (CD8-

GNLY) significantly increased in BM of patients with low

MM cell infiltration compared to HD controls and patients

with high infiltration ones (Figure 2D). Meanwhile, the

fraction of CD8-Naïve cells decreased along with the

infiltration extent of MM cells (Figure 2D). CD8-XCL2

cells, as memory CD8 T cells, were increased in BM of all

patients whether tumor cell infiltration extent compared with

that in HD BM (Figure 2D). In particular, we found a slightly

increase of the exhausted T cell cluster (CD8-COTL1) and

CD4-Treg in BM of patients with high MM cell infiltration

although there was no statistic difference (Figure 2D). We

further confirmed the variations in T cell proportions induced

by MM cells in BM by flow cytometry using another panel of

primary MM patient samples and 5TGM1 murine MM

model. Our findings supported that CD8-effector cells

increased and CD8-naïve cells decreased in patients with

low tumor infiltration (MM %<40%, Figure 2E). In MM

mouse model with high tumor infiltration (MM %> 40%),

we consistently found that the proportion of CD8+ T cells

significantly decreased in their BM, whereas CD4+ T cells

remained stable (Figure 2F). These finding indicated that the

differentiation of cytotoxicity CD8 T cells from naïve CD8 T

cells were interfered by MM cell infiltration, which caused the

immunosuppressive microenvironment.
Dysfunction of CD8 T cells associated
with aberrant PIM kinases and KLRB1
expression as well as the abnormal
metabolism mediated by MM

Except for the amount of immune cell, the dysregulation of

immune cells is more important in tumorigenesis. To further

investigate the dysfunction of CD8+ T cells in myeloma

microenvironment, the cytotoxicity and exhaustion score in

each CD8 T cell sub-cluster were evaluated. The cytotoxicity

associated genes (GZMA, GZMB, GZMH, GZMK, GNLY,

TYROBP, IFNG, TNF, PRF1, KLRD1, NKG7, and FCGR3A)

and classical exhausted marker genes (PDCD1, CTLA4, VSIR,

SLAMF6, CD160, LAG3, TIGIT, HAVCR2, and BTLA) were

involved in the calculation. CD8-GNLY, as effector CD8 T

cells, exhibited the highest cytotoxicity score among CD8 T cell

sub-clusters (Figure 3A). Of note, the cytotoxicity of CD8-

GNLY effector T cells in MM patients was lower than that in

HD meanwhile it significantly decreased in MM patients in a

tumor cell dependent manner (Figure 3A). The differentially

expressed genes (DEGs) analysis showed that the cytotoxicity

associated genes of CD8-GNLY effector T cells displayed
Frontiers in Immunology 07
different expression patterns in HD, low infiltration group

and high infiltration group. Consistently, CD8-GNLY effector

T cells in high infiltration patients expressed low level of IFNG,

GMZB, KLRF1, GZMK, GZMH, GZMM and KLRD1 compared

to HD and low infiltration group (Figure 3B). Meanwhile this

CD8 T cell sub-clusters in low infiltration group expressed

high level of GZMK, GZMH and GZMM and low level of IFNG,

GMZB, KLRF1 and KLRD1.However, we did not find variation

of exhaustion scores of CD8+ T cell sub-clusters across the

groups except to exhaust CD8-COTL1 (Figure 3A). The levels

of classical immune checkpoint genes in CD8-GNLY effector T

cells were comparable among groups (Figure 3C). The flow

cytometry results from MM patients confirmed these findings

(Figure 3D and Supplementary Figure 2C). In line with this, we

didn’t observe the difference on the expression of PD1 and

LAG3 in CD8 T cells and CD4 T cells from MM mouse model

(Supplementary Figure 2D). CD8-COTL1 exhausted T cell

expressed higher immune checkpoint PDCD1, especially in

myeloma microenvironment with high tumor infiltration

(Supplementary Figures 2E, F). These results indicate

that the dysfunction of CD8-GNLY effector T cells is

associated with tumor infiltration but not classical T cell

exhaustion genes.

To clarify the underlying molecular mechanisms of dysfunction

of CD8-GNLY effector T cells in myeloma microenvironment, the

transcript profile of CD8-GNLY effector T cells was further

analyzed. We found that CD8-GNLY effector T cells in high

tumor infiltration group displayed increasing level of the serine/

threonine kinase PIM family (PIM2 and PIM3), NR4A2/3, KLF4/6,

BCL2, GPR183 andCOTL1 compared to the ones fromHD and low

tumor infiltration group (Figure 3B). KLRB1 was notably increased

in CD8-GNLY effector T cells both in MM patients with high and

low tumor infiltration, which was confirmed by flow cytometry in

primary MM patient samples (Figure 3E). We further confirmed

that KLRB1high CD8 T cells from MM patients displayed lower

IFN-g abundance than KLRB1low CD8 T cells when they were

activated in vitro, which supported the weakened cytotoxicity of

CD8 T cells high tumor infiltration group (Figure 3F). Moreover,

inhibiting PIM kinases by AZD1208, a pan-inhibitor of PIM

kinases, could promote the cytotoxicity of CD8 T cells in vitro

(Supplementary Figure 2G). Of note, GO analysis showed that

dysfunction of CD8-GNLY effector T cells in MM accompanied by

the cellular response to changes of external environment, evidenced

by disturbed biological processes including “response to hydrogen

peroxide’, “mitochondrial translational termination”, “cellular

response to hypoxia” and “response to reactive oxygen species”

(Figure 3G). Hypoxia and reactive oxygen species are the hallmarks

of tumor microenvironment. “Mitochondrial translational

termination” indicated the metabolism process of CD8-GNLY

effector T cells in MM patients was interfered. PIM kinases

PIM2/3 and KLRB1 overexpression as well as abnormal

metabolism process in BM microenvironment were involved in

the dysfunction of CD8-GNLY effector T cells in MM.
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FIGURE 3

Dysfunction of CD8 T cells in high tumor burden group was associated with PIM kinases and KLRB1 as well as the abnormal metabolism
mediated by MM (A). Bar charts shows the cytotoxicity scores and exhaustion scores of CD8+ T cells from HD and MM patients in different
infiltration groups (HD: n=6; Low: n=6; High: n=6). (B). Heatmap shows the DEGs in CD8-GNLY among HD and MM patients in different
infiltration groups (HD: n=6; Low: n=6; High: n=6). (C).Violin plots display gene expression of classical immune checkpoints in CD8-GNLY
cell clusters from HD and different MM conditions (HD: n=6; Low: n=6; High: n=6). (D). Flow cytometry analysis shows the expression of
PD1 on bone marrow CD8+T cells and CD4+T cells from HD and MM patients (HD: n=18; Low: n=8; High: n=2). (E). Flow cytometry plots
and bar chart show the proportion of KLRB1+CD8+-Effector T cells in CD8-Effector cells from HD and MM patients (HD: n=6; Low: n=6).
CD8-Effector: CD3+CD8+CD45RA+CD62L-; (F). Flow cytometry plots and dot plot show the correlation between KLRB1 expression and IFN-
gexpression in CD8 T cells from MM patients activated by Cell Activation Cocktail (with Brefeldin A) in vitro. (n=6) (G). Scatter plot of Gene
Ontology (GO) Enrichment statistics shows the enriched GO terms in DEGs of CD8-GNLY among HD and MM groups. The y-axis indicates
different GO terms and the x-axis indicates the Fold Enrichment. The color and size of the dots represent the range of the –log10 (p value)
and the number of DEGs mapped to the indicated pathways, respectively. DEGs, Differentially expressed genes. In all instances, p < 0.05 was
considered significant, * p < 0.05 and *** p < 0.001. ns, no significance.
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PIM1, KLRC1 and abnormal metabolic
processes were involved in defective NK
cells induced by high tumor infiltration

NK cell is another critical cytotoxicity immune cell

population. Here we investigated NK sub-populations in MM
Frontiers in Immunology 09
patients (except to MM25BM, in which no NK was detected).

The PTPRC+ KLRF1+ NK cells from HD controls and 11 MM

patients were analyzed, and they were divided into six sub-

populations by tSNE analysis (Figure 4A and Supplementary

Figure 3A). According to the marker gene signature as described

in previous reports (29, 42), they were identified as NK-
A B D
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FIGURE 4

PIM1, KLRC1 and abnormal metabolism processes were involved in defective NK cells induced by high tumor burden (A). t-SNE shows the
NK cell sub-clusters from HD and MM patients. Cells with high expression of PTPRC and KLRF1 were selected as NK/NKT cells. Each dot
represents a single cell; colors indicate cell clusters with numbered labels. (B).Violin plots show the expression and distribution of classical
cell markers of NK sub-clusters. The sub-cluster numbers in the graph bottom correspond to the ones in (A). Sub-C0: NK-FCGR3A-CCL3;
sub-C1: NK-FCGR3A-S100A8; sub-C2; NK-GZMK; sub-C3: NKT-S100A8; sub-C4: NK-NAÏVE; sub-C5; NKT-IFNG-CX3CR1 (C). Bar charts
show the proportion of NK cell sub-clusters from HD and MM patients in different infiltration groups (HD: n=7; Low: n=6; High: n=6). (D).
Bar charts show the cytotoxicity scores and exhaustion scores of NK cell sub-clusters from HD and MM patients in different infiltration
groups (HD: n=7; Low: n=6; High: n=6). (E). Heatmaps shows the DEGs of NK-FCGR3A-CCL3 and NK-S100A8 among HD and MM patients
in different infiltration groups. (F). GO Enrichment of DEGs in NK-FCGR3A-CCL3 between MM patients with high tumor burden and low
tumor burden. Each dot in the graphs represents a single gene from DEGs. Upregulated genes are indicated as red dots and downregulated
genes are indicated as blue dots. The color bar indicates the z-score of each pathway. In all instances, p < 0.05 was considered significant,
* p < 0.05, ** p < 0.01 and *** p < 0.001. ns, no significance.
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FCGR3A-CCL3 (sub-cluster 0), NK-FCGR3A-S100A8 (sub-

cluster 1), NK-GZMK (sub-cluster 2), NKT-S100A8

(sub-cluster 3), NK-Naïve (sub-cluster 4) and NKT-IFNG

(sub-cluster 5) (Figure 4B). Of note, the sub-population

composition of NK cell displayed biological heterogeneity

among MM patients (Supplementary Figure 3B). The

proportion of NK-FCGR3A-CCL3 cells in MM patients was

negatively correlation with tumor infiltration, which was similar

to that observed in effector CD8-GNLY T cells as described

above. It was the higher extent of tumor infiltration in MM

patients, the lower proportion of NK-FCGR3A-CCL3 cells

(Figure 4C). The proportion of NK-FCGR3A-S100A8

decreased along with tumor infiltration increase in myeloma

microenvironment (Figure 4C). Furthermore, cytotoxicity scores

analysis showed that NK-FCGR3A-CCL3 and NK-FCGR3A-

S100A8 presented higher cytotoxicity scores (Figure 4D), which

could be defined as cytotoxicity NK cells. In patients with high

tumor infiltration, the cytotoxicity of NK-FCGR3A-CCL3 and

NK-FCGR3A-S100A8 cells significantly decreased. Consistent

with cytotoxicity CD8 T cells, we did not observe the significant

increase of NK cell exhaustion as well (Figure 4D).

In addition, the transcriptomic profiles showed that both the

NK-FCGR3A-CCL3 and NK-FCGR3A-S100A8 in BM with low

tumor infiltration expressed high level of CXCR4 compared to

the corresponding sub-clusters in HD and high infiltration

group (Figure 4E). This data hints us that up-regulation of

CXCR4 should be associated with the higher proportion of NK-

FCGR3A-CCL3 and NK-FCGR3A-S100A8 in MM patients with

low tumor infiltration. Of note, both of the NK sub-clusters from

the high tumor infiltration group expressed high levels of

KLRC1, a key inhibitory receptor for NK cells (Figure 4E),

which suggested that KLRC1 up-regulation may be a critical

factor in the dysfunction of NK cells. Interestingly, the level of

PIM1 significantly increased in NK-FCGR3A-CCL3 from both

high infiltration group and low infiltration group compared to

HD. These findings further supported that PIM family members

play key roles in immunosuppression induced by MM cells. GO

analysis based on DEGs of NK-FCGR3A-CCL3 across MM

patients indicated that NK-FCGR3A-CCL3 from high tumor

infiltration group displayed impaired “interferon-gamma

mediated signaling pathway”, “cellular response to decreased

oxygen levels” and “positive regulation of mitochondrion

organization” (Figure 4F). Meanwhile, NK-S100A8 from high

tumor infiltration group displayed enhanced “hydrogen

peroxide metabolic process”, “hydrogen peroxide catabolic

process” and “reactive oxygen species metabolic process” as

well as impaired “response to interferon-gamma” and

“regulation of superoxide anion generation” (Supplementary

Figure 3C). These results demonstrated that the defective NK

sub-clusters in myeloma microenvironment presented aberrant

metabolism patterns compared to the corresponding sub-
Frontiers in Immunology 10
clusters in HD, which should be the results of NK responding

to the extracellular environment.
Impaired antigen presentation of DCs
contributed to T cell dysfunction in MM

Professional antigen-presenting cells (APCs), including DCs

and macrophages, play critical roles in triggering anti-tumor

immunity by regulating the activity of T cells. Dysfunction of

APCs could result in the reduced anti-tumor activity of T cells.

To further clarify the role of APCs in the immunosuppression of

MM patients, LYZ+ myeloid cells were analyzed based on the

description of previous reports (28, 42). Sixteen sub-populations

were clustered according to the marker genes expression

(Figure 5A and Supplementary Figure 4A). There were four

DC sub-clusters with expression of CD1C, CLEC9A or LILRA4,

five monocytes sub-clusters with expression of LYZ and CST3,

and five macrophages sub-clusters with co-expression of LYZ,

CST3, CD68, and CD163 (Figure 5B). Interesting, we found that

sub-cluster 12 with co-expression of MMmarker gene SDC1 was

uniquely found in MM patient samples.

Conventional DC (cDC) plays central roles in the initiation

and maintenance of anti-tumor T cell immunity. Firstly, our

data showed that cDC-CD1C-AREG (sub-cluster 4) with high

level of CD1C was identified as type I cDC (cDC1) and cDC-

CD14 (sub-cluster 11) was identified as type II cDC (cDC2) with

expression of CLEC9A (Figure 5B), which was referred to

previous reports (40, 43). Compared to HD samples, the

proportions of cDC-CD14 were reduced in MM patients,

meanwhile there was no difference for cDC-AREG across HD

and patient groups (Figure 5C). To evaluate the function of DC,

the active scores of cDC sub-clusters (44) were calculated. The

activity of cDC-CD1C-AREG in low tumor infiltration group

was higher than that in HD and high tumor infiltration group

(Figure 5D). This was further supported by the high levels of

MHC I/II molecules (HLA–B, HLA-C, HLA-DRB1 and HLA-

DQA1) expressed in cDC-CD1C-AREG from low tumor

infiltration group as well as inflammatory cytokines and

chemokines (IL1B, VEGF and CCL4, etc.) (Figure 5E). And

cDC-CD1C-AREG sub-cluster in high tumor infiltration group

expressed low level of genes mentioned above, includingHLA–B,

HLA-C, HLA-DRB1, HLA-DQA1, IL1B, VEGF and CCL4, which

like the unstimulated cDC-CD1C-AREG in HD (Figure 5E).

These findings suggest that antigen presentation of cDC-CD1C-

CD1C-AREG was still efficiently triggered in low tumor

infiltration microenvironment, but suppressed along with the

increased tumor cells. Notably, the variation pattern of activity

of cDC-CD1C-AREG across HD and patient groups was

consistent with that in CD8-GNLY cells as we described

above. GO analysis revealed the significant variation of
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FIGURE 5

Impaired antigen presentation of DCs contributed to T cell dysfunction in MM (A). t-SNE plot shows the sub-clusters of myeloid cells derived
from HD and MM cells. Myelocyte (Cluster 4, 13 and 16 identified above) were selected for this analysis. Each dot represents a single cell; colors
indicate cell clusters with numbered labels. (B). Violin plots show the expression and distribution of classical cell markers in sub-clusters of
myeloid cells from HD and MM patients. The sub-cluster numbers in the graph bottom correspond to the ones in (A). sub-C0: Macro-IL1B; sub-
C1: Macro-WDR74; sub-C2: Mono-CD14; sub-C3: Macro-CD14; sub-C4: cDC-CD1C-AREG; sub-C5: Mono-FCGR3A; sub-C6: pDC-LILRA4-
GPR83; sub-C7: Macro-THBS1; sub-C8: Mono-GNLY; sub-C9: Mono-FCER1A; sub-C10: Macro-C1QC; sub-C11: cDC-CD1C-CD14; sub-C12:
Mono-SDC1; sub-C13: Mono-HBB; sub-C14: pDC-LILRA4-COTL1; sub-C15: Mono-MS4A1; (C). Bar charts show the proportion of myeloid sub-
clusters among HD and different groups of MM patients. The sub-cluster numbers in right correspond to the ones in (A). (HD: n=7; Low: n=6;
High: n=6). (D). Bar charts show the active scores of cDC among HD and different groups of MM patients (HD: n=7; Low: n=6; High: n=6). (E).
Heatmap shows the DEGs in cDC-CD1C-AREG among HD and different infiltration groups of MM patients. (F). GO Enrichment of DEGs in cDC-
CD1C-AREG between high-infiltration and low-infiltration groups of MM patients. Each dot in the graphs represents a single gene from DEGs.
Upregulated genes are indicated as red dots and downregulated genes are indicated as blue dots. The color bar indicates the z-score of each
pathway. (G). Heatmap shows the interaction strength among immune cells across HD and MM groups. The color showed the interaction
strength that was calculated by CellPhoneDB. Black box: the interaction among myeloid cells; Yellow box: the interaction among myeloid cells
and T/NK cells; Red box: interaction among T cells. In all instances, p < 0.05 was considered significant, * p < 0.05 and *** p < 0.001.
ns, no significance.
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biological processes in cDC-AREG in high tumor infiltration

group, including “response to interferon-gamma”, “response to

reactive oxygen species” and “reactive oxygen species metabolic

process” (Figure 5F). These results demonstrated that the

metabolism pattern of cDC-CD1C-AREG was influenced by

high level of tumor cells. Moreover, we also found up-regulation

of PIM family members (PIM1/PIM3) in cDC-CD1C-AREG

from MM patients compared to HDs (Figure 5E). By contrast,

the activity of cDC-CD14 remained stable across HD and patient

groups (Figure 5D), though the proportion of the sub-cluster

was significantly reduced in MM patients.

Monocytes/Macrophages are another major component of

the innate immune system and involved in anti-tumor activity of

T cells as APCs. Next, our data showed that macrophage-IL1B

(sub-cluster 0) in tumor cell high tumor infiltration group not

only displayed a lower proportion (Figure 5C), but also

strikingly lacked the expression of MHC molecules,

inflammatory cytokines and chemokines compared to the

corresponding sub-cluster in low tumor infiltration group

(Supplementary Figure 4B). The results demonstrated that

macrophage-IL1B and macro-WDR74 were activated in low

tumor cell microenvironment, which promoted the anti-MM

immunity. However, macrophages became to be in a resting

state when MM cells infiltration increased (Supplementary

Figure 4B). Conversely, there was a higher proportion of

Mono-FCGR3A (sub-cluster 5) in high tumor cel l

microenvironment compared to low tumor cell group and

HDs (Figure 5C). However, Mono-FCGR3A in high tumor

infiltration group expressed lower levels of MHC molecules,

inflammatory cytokines and chemokines (HLA-DRB1/HLA-

DPB1, TNF, IL1B, CCL3 and CCL4), which meant the sub-

cluster was less involved in immune responses (Supplementary

Figure 4C). Meanwhile, Mono-FCGR3A both in high and low

tumor infiltration group expressed high level of PIM2/PIM3

compared to HDs (Figure 5G). Therefore, the activities of cDC-

CD1C-AREG, macrophage-IL1B and Mono-FCGR3A in low

tumor infiltration group were elevated as innate immune cells

and APCs, but suppressed in high tumor infiltration group.
Repressed crosstalk among immune cells
was involved in immunosuppressive
microenvironment

Crosstalk among immune cells is necessary in regulating the

immune response to tumor or infection. So far, immune cell

crosstalk in MM microenvironment has not been fully

understood. Here, we investigated the dynamic immune cell

crosstalk along with tumor cell infiltration. Our data showed that

the interaction among myeloid cells was strongest in each group,

including DC, macrophages and monocytes (Figure 5G, black
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box). Whereas, the interaction among myeloid cells in low

tumor infiltration group was significantly strengthened, but

weakened in high tumor infiltration group. In addition,

myeloid cells kept active communications with T and NK cells

(Figure 5G, yellow box). The interaction between T cells and

myeloid cells was compromised in high tumor infiltration group

(Figure 5G), and the weakest interaction existed among T cells

across HD and MM patients (Figure 5G, red box). These results

suggest that myeloid cells are the core player in immune cells

crosstalk, and the interactions among immune cells in MM were

active in low tumor infiltration group, but suppressed in high

tumor infiltration group.
Aberrant metabolism of immune cells
identified in MM microenvironment with
high tumor cell infiltration

Mounting evidence indicates that the aberrant metabolism of

immune cells is involved in tumorgenesis (45–47). Here, our

analysis showed that effector CD8 T cells and NK cells in high

tumor infiltration group displayed unique metabolic features

compared to the corresponding sub-clusters in low tumor

infiltration group and HDs (Figures 6A, B). Further analysis

showed that the immune cell sub-clusters from high tumor

infiltration group shared common metabolic pathways. As the

key players in anti-tumor immunity, the impaired amino acid

metabolism in CD8-GNLY effector T cells and CD8-XCL2

memory T cells was found in high tumor cell microenvironment,

including Arginine, Proline, Glycine, Serine, Threonine, Valine,

Leucine, Isoleucine and Histidine metabolism shown in Figure 6A.

Meanwhile, they displayed enhanced glycolysis/gluconeogenesis,

oxidative phosphorylation and lipid metabolism. Besides, CD8-

GNLY effector T cells in high tumor infiltration group presented

enhanced citrate cycle (TCA cycle), which was different from CD8-

XCL2 memory T cells in high tumor infiltration group. Similar to

effector CD8 T cells, NK-FCGR3A-CCL3 and NK-FCGR3A-

S100A8 in high tumor cell infiltration displayed part of impaired

amino acid metabolism as well as enhanced oxidative

phosphorylation and lipid metabolism (Figure 6B). Glycolysis/

Gluconeogenesis and citrate cycle (TCA cycle) in NK-FCGR3A-

CCL3 were enhanced in high tumor cell infiltration group but

weakened in NK-FCGR3A-S100A8. Unlike CD8 T and NK cells,

the metabolic pattern onmyeloid cells in high tumor cell infiltration

group was similar to the corresponding one inHD (Figure 6C). This

is consistent with the active status of myeloid cells as mentioned

above. Further analysis showed that cDC-CD1C-AREG in high

tumor cell infiltration group displayed enhanced lipid metabolism,

oxidative phosphorylation, glycolysis/gluconeogenesis and citrate

cycle (TCA cycle) compared to the one in low tumor cell infiltration

group. Macrophages-IL1B in high tumor cell infiltration group
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exhibited enhanced lipid metabolism and weakened oxidative

phosphorylation, glycolysis/gluconeogenesis, citrate cycle (TCA

cycle) and amino acid metabolism compared to the

corresponding sub-clusters in low tumor cell infiltration group
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(Figure 6C). The variation of metabolic pathways in immune cells

according to diverse tumor cell infiltration suggested that the

disordered metabolism also induced the dysfunction of immune

cells in MM microenvironment.
A
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C

FIGURE 6

Aberrant metabolism of immune cells in MM patients with high tumor burden (A–C): Heatmap charts show the different metabolic pathways in
each sub-clusters across HD and MM groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1077768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.1077768
Discussion

In this study, we pay close attention to the immune response

in MM, and investigated the underlying mechanisms on

dysfunction of immune cells associated with tumor infiltration

using the unbiased single cell RNA sequencing. Of note, the anti-

tumor immune response is active in patients with low tumor

cells, but it was notably suppressed with the elevation of tumor

cells. The proportion of cytotoxic immune cells (CD8-GNLY

effector T cells and NK-FCGR3A-CCL3 cells) increased in

myeloma microenvironment when tumor cell infiltration was

low, then the activated immune cells were depressed with the

growth of tumor cells. This finding is partially supported by the

previous reports (22) (48), and indicated the efficient anti-tumor

immunity is an external critical factor for tumor cells behavior

beside the internal cytogenetic characteristics of MM cells.

Intriguingly, we observed a significantly elevation of CD8-

XCL2 memory T cells in MM patients compared to HDs. In

consideration of the decreased CD8 effector T cells in high

tumor infiltration group, we have reason to believe that the

differentiation of memory CD8 T cells to effector CD8 T cells

was obviously interfered by MM cell. More important, our study

demonstrated that the interactions among immune cells were

remarkably strengthened at the beginning of disease occurrence

with low tumor cells infiltration, but suppressed with the

elevation of tumor cell infiltration in BM microenvironment.

Prior studies already demonstrated the immunosuppressive

state of BM microenvironment in MM patients, including

exhaustion (49, 50) and senescence (10) of T cells and increased

Treg (13). However, we did not find significant difference on the

proportion of CD8-COTL1 exhaustion T cell among MM groups

and HDs, which is in line with the reports by Oksana Zavidij (22)

and Carolina (51). Moreover, we did not observe the significant

increase of PD1, LAG3, TIGIT, the classic immune checkpoints, on

immune cells, which could help us to explain the reason of the

unfavorable treatment efficacy of immune checkpoint inhibitors in

MM clinic practices. Strikingly, our study identified that serine/

threonine kinases PIM family (PIM1/2/3) would play a pivotal role

in myeloma immunosuppression. The up-regulation of PIM family

member, PIM1/2/3, was observed in CD8-GNLY effector T cells,

NK-FCGR3A-CCL3, cDC-CD1C-AREG and monocyte-FCGR3A.

More and more studies demonstrated PIM kinases are

constitutively active serine/threonine kinases that play important

roles in hematological malignancies (52), including MM (53).

Inhibition of PIM kinase displayed significant anti-tumor efficacy

inMM (54). Recently, the role of PIM family on immune regulation

was reported as well. PIM kinases were involved in the

immunotherapeutic antitumor T-cell response (55, 56). In

addition to T and NK cells, the function of DC and MDSC were

also regulated by PIM kinases (57, 58). Our data also showed that

inhibiting PIM kinases could promote the cytotoxicity of CD8+ T

cells in vitro. These findings by us and other research groups

strongly support that PIM kinases are more critical in immune
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suppressionmediated byMM cells. Therefore, PIM kinases targeted

therapy would be an attractive strategy in MM treatment by both

inhibiting MM proliferation and activating anti-tumor immunity.

In addition, we noted that the overexpression of KLRB1 (CD161) in

CD8-GNLY effector T cells andKLRC1 (NKG2A) overexpression in

NK-FCGR3A-CCL3 cells. We confirmed the association of KLRB1

with the cytotoxicity of CD8 T from MM patients. Sun et al.

reported that CD8+KLRB1+ T cells displayed weaker cytotoxicity

than CD8+KLRB1- T cells in hepatocellular carcinoma-infiltrated

CD8 T cells (28). Mathewson and colleagues further identified

KLRB1 as an inhibitory receptor for tumor-specific T cells (59).

KLRC1 is an inhibitory receptor for NK cells, which forms a

heterodimer with CD94. Preclinical and clinical investigations

have provided evidence that CD94/KLRC1 inhibition is a viable

therapeutic option for numerous tumors, including chronic

lymphoid leukemia and lymphoma (60, 61). All of these findings

support that overexpression of KLRB1 and KLRC1 in CD8 effector

cells and NK cells would be pay more attention in immune cell

dysfunction in MM.

Recently, more and more studies elucidate that metabolic

plasticity and its ability to adapt to stress conditions play

important roles in cancer immunology. The production of

immunosuppressive metabolites and the imbalance of nutrient

caused by chaotic proliferation of tumor cells could induce

dysfunction of immune cells in tumor microenvironment (19,

62–67). PIM kinases are also involved in numerous intercellular

metabolic processes of immune cells (56–58). Xin et al. uncovered a

previously underappreciated role of PIM1 in regulating lipid

oxidative metabolism via PPARg-mediated activities, and

sufficiently rescued metabolic and functional defects of Pim1-/-

MDSCs (58). In the present study, the impaired amino acid

metabolism was observed in CD8-GNLY effector T cell and CD8-

XCL2 memory T cells, especially in high tumor cell

microenvironment. ntracellular arginine in T cells is important

for the promotion of oxidative metabolism, increasing cell viability,

persistence, and in vivo antitumor response (68, 69). Eric et al.

showed that intracellular serine directly modulates adaptive

immunity by regulating T cell proliferation and cell viability (70).

Consistently, these reports support our results that the impaired

amino acid metabolism was involved in the dysfunction of CD8-

GNLY effector T cells in MM immune microenvironment. Huang

and colleagues reported that amino acid transporter controlled the

magnitude of memory T cell generation and persistence by

stimulating mTORC1 signaling, which indicates that amino acid

is important for memory T cells differentiation (71). Hereby, we

speculated the impaired amino acid metabolism resulted in the

elevation of CD8 memory T cells in MM microenvironment by

hindering differentiation of memory T to effector T cells.

Additionally, our data demonstrated that the notably enhanced

lipid metabolism in cytotoxicity NK sub-clusters in high level tumor

cell infiltration was involved in the NK cell impairment, which in

line with the phenotype in aggressive B-cell lymphoma (72).

Accumulation of lipids caused by abnormal fatty acid synthesis is
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associated with dendritic cell dysfunction (73). Enhanced

biosynthesis of glycosphingolipid, fatty acid and unsaturated fatty

acids were observed in our study, which would be associated with

the dysfunction of cDC-CD1C-AREG in MM patients with high

tumor cell infiltration. Of note, PIM kinases up-regulated in

immune cells, including effector CD8 T cell, NK cells and DC

from MM patients, were also associated with the activity of

mammalian target of rapamycin (mTOR) signaling. As metabolic

checkpoints, mTOR signaling integrate signals from oxygen, energy

and nutrients to regulate protein synthesis and anabolic

metabolism. Therefore, our results support that targeting PIM

kinases would be a rational strategy to rescue the function of

immune cells via metabolism regulation. However, more direct

evidence is needed to uncover the role of PIM kinases in immune

response via regulating metabolism and the underlying

mechanisms. We will pay more attention to those in the future.

In summary, our present study elucidates the biological

heterogeneity of immune microenvironment in MM BM with

diverse tumor cell infiltration at single cell resolution.

Disordered amino acids and lipid metabolism in immune cells

under the microenvironment of MM promote the dysfunction of

immune cells and defective immune response in myeloma.

Targeting PIM kinases could be a promising strategy for MM

immunotherapy, and redressing the disordered metabolism

would be the key points to get effects in immune-based therapies.
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